1
|
Haroun AM, El-Sayed WM, Hassan RE. Quercetin and L-Arginine Ameliorated the Deleterious Effects of Copper Oxide Nanoparticles on the Liver of Mice Through Anti-inflammatory and Anti-apoptotic Pathways. Biol Trace Elem Res 2024; 202:3128-3140. [PMID: 37775700 DOI: 10.1007/s12011-023-03884-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The widespread use and applications of copper oxide nanoparticles (CuO NPs) in daily life make human exposure to these particles inevitable. This study was carried out to investigate the deteriorations in hepatic and serum biochemical parameters induced by CuO NPs in adult male mice and the potential ameliorative effect of L-arginine and quercetin, either alone or in combination. Seventy adult male mice were equally allocated into seven groups: untreated group, L-arginine, quercetin, CuO NPs, arginine + CuO NPs, quercetin + CuO NPs, and quercetin + arginine + CuO NPs. Treating mice with CuO NPs resulted in bioaccumulation of copper in the liver and consequent liver injury as typified by elevation of serum ALT activity, reduction in the synthetic ability of the liver indicated by a decrease in the hepatic arginase activity, and serum total protein content. This copper accumulation increased oxidative stress, lipid peroxidation, inflammation, and apoptosis as manifested by elevation in malondialdehyde, nitric oxide, tumor necrosis factor-α, the expression level of caspase-3 and bax quantified by qPCR, and the activity of caspase-3, in addition to the reduction of superoxide dismutase activity. It also resulted in severe DNA fragmentation as assessed by Comet assay and significant pathological changes in the liver architecture. The study proved the efficiency of quercetin and L-arginine in mitigating CuO NPs-induced sub-chronic liver toxicity due to their antioxidant, anti-inflammatory, and anti-apoptotic properties; ability to inhibit DNA damage; and the potential as good metal chelators. The results of histopathological analysis confirmed the biochemical and molecular studies.
Collapse
Affiliation(s)
- Amina M Haroun
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Rasha E Hassan
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
2
|
Escherich CS, Chen W, Li Y, Yang W, Nishii R, Li Z, Raetz EA, Devidas M, Wu G, Nichols KE, Inaba H, Pui CH, Jeha S, Camitta BM, Larsen E, Hunger SP, Loh ML, Yang JJ. Germ line genetic NBN variation and predisposition to B-cell acute lymphoblastic leukemia in children. Blood 2024; 143:2270-2283. [PMID: 38446568 PMCID: PMC11443573 DOI: 10.1182/blood.2023023336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Biallelic mutation in the DNA-damage repair gene NBN is the genetic cause of Nijmegen breakage syndrome, which is associated with predisposition to lymphoid malignancies. Heterozygous carriers of germ line NBN variants may also be at risk for leukemia development, although this is much less characterized. By sequencing 4325 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL), we systematically examined the frequency of germ line NBN variants and identified 25 unique, putatively damaging NBN coding variants in 50 patients. Compared with the frequency of NBN variants in gnomAD noncancer controls (189 unique, putatively damaging NBN coding variants in 472 of 118 479 individuals), we found significant overrepresentation in pediatric B-ALL (P = .004; odds ratio, 1.8). Most B-ALL-risk variants were missense and cluster within the NBN N-terminal domains. Using 2 functional assays, we verified 14 of 25 variants with severe loss-of-function phenotypes and thus classified these as nonfunctional or partially functional. Finally, we found that germ line NBN variant carriers, all of whom were identified as heterozygous genotypes, showed similar survival outcomes relative to those with wild type status. Taken together, our findings provide novel insights into the genetic predisposition to B-ALL, and the impact of NBN variants on protein function and suggest that heterozygous NBN variant carriers may safely receive B-ALL therapy. These trials were registered at www.clinicaltrials.gov as #NCT01225874, NCT00075725, NCT00103285, NCI-T93-0101D, and NCT00137111.
Collapse
Affiliation(s)
- Carolin S. Escherich
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Department for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Wenan Chen
- Department of Pathology, Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yizhen Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rina Nishii
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Zhenhua Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Elizabeth A. Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gang Wu
- Department of Pathology, Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sima Jeha
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Bruce M. Camitta
- Department of Pediatrics, Midwest Center for Cancer and Blood Disorders, Medical College of Wisconsin, Milwaukee, WI
| | - Eric Larsen
- Department of Pediatrics, Maine Children's Cancer Program, Scarborough, ME
| | - Stephen P. Hunger
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mignon L. Loh
- Department of Pediatrics and the Ben Towne Center for Childhood Cancer Research, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
3
|
Tayanloo-Beik A, Hamidpour SK, Nikkhah A, Arjmand R, Mafi AR, Rezaei-Tavirani M, Larijani B, Gilany K, Arjmand B. DNA Damage Responses, the Trump Card of Stem Cells in the Survival Game. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:165-188. [PMID: 37923882 DOI: 10.1007/5584_2023_791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Stem cells, as a group of undifferentiated cells, are enriched with self-renewal and high proliferative capacity, which have attracted the attention of many researchers as a promising approach in the treatment of many diseases over the past years. However, from the cellular and molecular point of view, the DNA repair system is one of the biggest challenges in achieving therapeutic goals through stem cell technology. DNA repair mechanisms are an advantage for stem cells that are constantly multiplying to deal with various types of DNA damage. However, this mechanism can be considered a trump card in the game of cell survival and treatment resistance in cancer stem cells, which can hinder the curability of various types of cancer. Therefore, getting a deep insight into the DNA repair system can bring researchers one step closer to achieving major therapeutic goals. The remarkable thing about the DNA repair system is that this system is not only under the control of genetic factors, but also under the control of epigenetic factors. Therefore, it is necessary to investigate the role of the DNA repair system in maintaining the survival of cancer stem cells from both aspects.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Escherich C, Chen W, Li Y, Yang W, Nishii R, Li Z, Raetz EA, Devidas M, Wu G, Nichols KE, Inaba H, Pui CH, Jeha S, Camitta BM, Larsen E, Hunger SP, Loh ML, Yang JJ. Germline Genetic NBN Variation and Predisposition to B-cell Acute Lymphoblastic Leukemia in Children. RESEARCH SQUARE 2023:rs.3.rs-3171814. [PMID: 37503171 PMCID: PMC10371123 DOI: 10.21203/rs.3.rs-3171814/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Biallelic mutation in the DNA-damage repair gene NBN is the genetic cause of Nijmegen Breakage Syndrome, which is associated with predisposition to lymphoid malignancies. Heterozygous carriers of germline NBN variants may also be at risk for leukemia development, although this is much less characterized. We systematically examined the frequency of germline NBN variants in pediatric B-ALL and identified 25 putatively damaging NBN coding variants in 50 of 4,183 B-ALL patients. Compared with the frequency of NBN variants in 118,479 gnomAD non-cancer controls we found significant overrepresentation in pediatric B-ALL (p=0.004, OR=1.77). Most B-ALL-risk variants were missense and cluster within the NBN N-terminal domains. Using two functional assays, we verified 14 of 25 variants with severe loss-of-function phenotypes and thus classified these as pathogenic or likely pathogenic. Finally, we found that heterozygous germline NBN variant carriers showed similar survival outcomes relative to those with WT status. Taken together, our findings provide novel insights into the genetic predisposition to B-ALL, the impact of NBN variants on protein function and suggest that heterozygous NBN variant carriers may safely receive B-ALL therapy.
Collapse
Affiliation(s)
- Carolin Escherich
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yizhen Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rina Nishii
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zhenhua Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Elizabeth A. Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Bruce M. Camitta
- Department of Pediatrics, Midwest Center for Cancer and Blood Disorders, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eric Larsen
- Department of Pediatrics, Maine Children’s Cancer Program, Scarborough, ME, USA
| | - Stephen P. Hunger
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mignon L. Loh
- Seattle Children’s Hospital, the Ben Towne Center for Childhood Cancer Research, University of Washington, Seattle, WA, USA
| | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
5
|
Shevyrev D, Tereshchenko V, Berezina TN, Rybtsov S. Hematopoietic Stem Cells and the Immune System in Development and Aging. Int J Mol Sci 2023; 24:ijms24065862. [PMID: 36982935 PMCID: PMC10056303 DOI: 10.3390/ijms24065862] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Hematopoietic stem cells (HSCs) support haematopoiesis throughout life and give rise to the whole variety of cells of the immune system. Developing in the early embryo, passing through the precursor stage, and maturing into the first HSCs, they undergo a fairly large number of divisions while maintaining a high regenerative potential due to high repair activity. This potential is greatly reduced in adult HSCs. They go into a state of dormancy and anaerobic metabolism to maintain their stemness throughout life. However, with age, changes occur in the pool of HSCs that negatively affect haematopoiesis and the effectiveness of immunity. Niche aging and accumulation of mutations with age reduces the ability of HSCs to self-renew and changes their differentiation potential. This is accompanied by a decrease in clonal diversity and a disturbance of lymphopoiesis (decrease in the formation of naive T- and B-cells) and the predominance of myeloid haematopoiesis. Aging also affects mature cells, regardless of HSC, therefore, phagocytic activity and the intensity of the oxidative burst decrease, and the efficiency of processing and presentation of antigens by myeloid cells is impaired. Aging cells of innate and adaptive immunity produce factors that form a chronic inflammatory background. All these processes have a serious negative impact on the protective properties of the immune system, increasing inflammation, the risk of developing autoimmune, oncological, and cardiovascular diseases with age. Understanding the mechanisms of reducing the regenerative potential in a comparative analysis of embryonic and aging HSCs, the features of inflammatory aging will allow us to get closer to deciphering the programs for the development, aging, regeneration and rejuvenation of HSCs and the immune system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Valeriy Tereshchenko
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Tatiana N Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia
| | - Stanislav Rybtsov
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| |
Collapse
|
6
|
Abstract
Although hematopoietic stem cells (HSCs) in the bone marrow are in a state of quiescence, they harbor the self-renewal capacity and the pluripotency to differentiate into mature blood cells when needed, which is key to maintain hematopoietic homeostasis. Importantly, HSCs are characterized by their long lifespan ( e. g., up to 60 months for mice), display characteristics of aging, and are vulnerable to various endogenous and exogenous genotoxic stresses. Generally, DNA damage in HSCs is endogenous, which is typically induced by reactive oxygen species (ROS), aldehydes, and replication stress. Mammalian cells have evolved a complex and efficient DNA repair system to cope with various DNA lesions to maintain genomic stability. The repair machinery for DNA damage in HSCs has its own characteristics. For instance, the Fanconi anemia (FA)/BRCA pathway is particularly important for the hematopoietic system, as it can limit the damage caused by DNA inter-strand crosslinks, oxidative stress, and replication stress to HSCs to prevent FA occurrence. In addition, HSCs prefer to utilize the classical non-homologous end-joining pathway, which is essential for the V(D)J rearrangement in developing lymphocytes and is involved in double-strand break repair to maintain genomic stability in the long-term quiescent state. In contrast, the base excision repair pathway is less involved in the hematopoietic system. In this review, we summarize the impact of various types of DNA damage on HSC function and review our knowledge of the corresponding repair mechanisms and related human genetic diseases.
Collapse
|
7
|
Martins S, Erichsen L, Datsi A, Wruck W, Goering W, Chatzantonaki E, de Amorim VCM, Rossi A, Chrzanowska KH, Adjaye J. Impaired p53-Mediated DNA Damage Response Contributes to Microcephaly in Nijmegen Breakage Syndrome Patient-Derived Cerebral Organoids. Cells 2022; 11:cells11050802. [PMID: 35269426 PMCID: PMC8909307 DOI: 10.3390/cells11050802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder caused by mutations within nibrin (NBN), a DNA damage repair protein. Hallmarks of NBS include chromosomal instability and clinical manifestations such as growth retardation, immunodeficiency, and progressive microcephaly. We employed induced pluripotent stem cell-derived cerebral organoids from two NBS patients to study the etiology of microcephaly. We show that NBS organoids carrying the homozygous 657del5 NBN mutation are significantly smaller with disrupted cyto-architecture. The organoids exhibit premature differentiation, and Neuronatin (NNAT) over-expression. Furthermore, pathways related to DNA damage response and cell cycle are differentially regulated compared to controls. After exposure to bleomycin, NBS organoids undergo delayed p53-mediated DNA damage response and aberrant trans-synaptic signaling, which ultimately leads to neuronal apoptosis. Our data provide insights into how mutations within NBN alters neurogenesis in NBS patients, thus providing a proof of concept that cerebral organoids are a valuable tool for studying DNA damage-related disorders.
Collapse
Affiliation(s)
- Soraia Martins
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (W.W.); (E.C.); (V.C.M.d.A.)
| | - Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (W.W.); (E.C.); (V.C.M.d.A.)
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (W.W.); (E.C.); (V.C.M.d.A.)
| | - Wolfgang Goering
- Institute for Pathology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Eleftheria Chatzantonaki
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (W.W.); (E.C.); (V.C.M.d.A.)
| | - Vanessa Cristina Meira de Amorim
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (W.W.); (E.C.); (V.C.M.d.A.)
| | - Andrea Rossi
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany;
| | - Krystyna H. Chrzanowska
- Department of Medical Genetics, Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (W.W.); (E.C.); (V.C.M.d.A.)
- Correspondence:
| |
Collapse
|
8
|
Chen Y, Sun J, Ju Z, Wang ZQ, Li T. Nbs1-mediated DNA damage repair pathway regulates haematopoietic stem cell development and embryonic haematopoiesis. Cell Prolif 2021; 54:e12972. [PMID: 33586242 PMCID: PMC7941224 DOI: 10.1111/cpr.12972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives DNA damages pose threats to haematopoietic stem cells (HSC) maintenance and haematopoietic system homeostasis. Quiescent HSCs in adult mouse bone marrow are resistant to DNA damage, while human umbilical cord blood‐derived proliferative HSCs are prone to cell death upon ionizing radiation. Murine embryonic HSCs proliferate in foetal livers and divide symmetrically to generate HSC pool. How murine embryonic HSCs respond to DNA damages is not well‐defined. Materials and methods Mice models with DNA repair molecule Nbs1 or Nbs1/p53 specifically deleted in embryonic HSCs were generated. FACS analysis, in vitro and in vivo HSC differentiation assays, qPCR, immunofluorescence and Western blotting were used to delineate roles of Nbs1‐p53 signaling in HSCs and haematopoietic progenitors. Results Nbs1 deficiency results in persistent DNA breaks in embryonic HSCs, compromises embryonic HSC development and finally results in mouse perinatal lethality. The persistent DNA breaks in Nbs1 deficient embryonic HSCs render cell cycle arrest, while driving a higher rate of cell death in haematopoietic progenitors. Although Nbs1 deficiency promotes Atm‐Chk2‐p53 axis activation in HSCs and their progenies, ablation of p53 in Nbs1 deficient HSCs accelerates embryonic lethality. Conclusions Our study discloses that DNA double‐strand repair molecule Nbs1 is essential in embryonic HSC development and haematopoiesis. Persistent DNA damages result in distinct cell fate in HSCs and haematopoietic progenitors. Nbs1 null HSCs tend to be maintained through cell cycle arrest, while Nbs1 null haematopoietic progenitors commit cell death. The discrepancies are mediated possibly by different magnitude of p53 signaling.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jie Sun
- Jiangsu Hansoh Pharmaceutical Group Co., Ltd., Lianyungang, China
| | - Zhenyu Ju
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany.,Faculty of Biology and Pharmacy, Friedrich-Schiller University of Jena, Jena, Germany
| | - Tangliang Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| |
Collapse
|