1
|
Pearl MH. Clinical conundrums in pediatric kidney transplantation: What we know about the role of angiotensin II type I receptor antibodies in pediatric kidney transplantation and the path forward. Pediatr Transplant 2024; 28:e14762. [PMID: 38650537 PMCID: PMC11060698 DOI: 10.1111/petr.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/17/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Antibodies to angiotensin II type 1 receptor (AT1R-Abs) are among the most well-studied non-HLA antibodies in renal transplantation. These antibodies have been shown to be common in pediatric kidney transplantation and associated with antibody-mediated rejection (AMR), vascular inflammation, development of human leukocyte donor-specific antibodies (HLA DSA), and allograft loss. As AT1R-Ab testing becomes more readily accessible, evidence to guide clinical practice for testing and treating AT1R-Ab positivity in pediatric kidney transplant recipients remains limited. This review discusses the clinical complexities of evaluating AT1R-Abs given the current available evidence.
Collapse
Affiliation(s)
- Meghan H Pearl
- Division of Pediatric Nephrology, Department of Pediatrics, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
2
|
Pizzo H, Mirocha J, Choi J, Garrison J, Haas M, Zhang X, Kamil ES, Kim I, Jordan SC, Puliyanda DP. Pre-transplant angiotensin II receptor type I antibodies in pediatric renal transplant recipients: An observational cohort study. Pediatr Transplant 2022; 26:e14400. [PMID: 36168673 DOI: 10.1111/petr.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The role of angiotensin II type 1 receptor antibodies (AT1R-Ab) in pediatric renal transplantation is unclear. Here, we evaluated pre-transplant AT1R-Ab on transplant outcomes in the first 5 years. Secondary analysis compared pre-transplant AT1R-Ab levels by age. METHODS Thirty-six patients, 2-20 years old, were divided into two groups: pre-transplant AT1R-Ab- (<17 U/ml; n = 18) and pre-transplant AT1R-Ab+ (≥17 U/ml; n = 18). eGFR was determined at 6-month, 1-, 2-, and 4-year post-transplant. Allograft biopsies were performed in the setting of strong HLA-DSA (MFI > 10 000), AT1R-Ab ≥17 U/ml, and/or elevated creatinine. RESULTS Mean age in pre-transplant AT1R-Ab- was 13.3 years vs. 11.0 in pre-transplant AT1R-Ab+ (p = 0.16). At 6 months, mean eGFR was 111.3 ml/min/1.73 m2 in pre-transplant AT1R-Ab- vs. 100.2 in pre-transplant AT1R-Ab + at 1 year, 103.6 ml/min/1.73 m2 vs. 100.5; at 2 years, 98.9 ml/min/1.73 m2 vs. and 93.7; at 4 years, 72.6 ml/min/1.73 m2 vs. 80.9. 11/36 patients had acute rejection (6 in pre-transplant AT1R-Ab-, 5 in pre-transplant AT1R-Ab + ). There was no difference in rejection rates. All 6 subjects with de novo HLA-DSA and AT1R-Ab ≥17 U/ml at the time of biopsy experienced rejection. Mean age in those with the AT1R-Ab ≥40 U/ml was 10.0 years vs. 13.2 in those <40 U/ml (p = 0.07). CONCLUSION In our small cohort, pre-transplant AT1R-Ab ≥17 U/ml was not associated with reduced graft function or rejection. The pathogenicity of pre-transplant AT1R-Ab in pediatric kidney transplantation requires further investigation.
Collapse
Affiliation(s)
- Helen Pizzo
- Pediatric Nephrology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - James Mirocha
- Biostatistics Core, Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jua Choi
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jonathan Garrison
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, California, Los Angeles, USA
| | - Xiaohai Zhang
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Elaine S Kamil
- Pediatric Nephrology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Irene Kim
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stanley C Jordan
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dechu P Puliyanda
- Pediatric Nephrology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
3
|
Non-HLA Antibodies in Kidney Transplantation: Immunity and Genetic Insights. Biomedicines 2022; 10:biomedicines10071506. [PMID: 35884811 PMCID: PMC9312985 DOI: 10.3390/biomedicines10071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022] Open
Abstract
The polymorphic human leukocyte antigen (HLA) system has been considered the main target for alloimmunity, but the non-HLA antibodies and autoimmunity have gained importance in kidney transplantation (KT). Apart from the endothelial injury, secondary self-antigen exposure and the presence of polymorphic alloantigens, respectively, auto- and allo- non-HLA antibodies shared common steps in their development, such as: antigen recognition via indirect pathway by recipient antigen presenting cells, autoreactive T cell activation, autoreactive B cell activation, T helper 17 cell differentiation, loss of self-tolerance and epitope spreading phenomena. Both alloimmunity and autoimmunity play a synergic role in the formation of non-HLA antibodies, and the emergence of transcriptomics and genome-wide evaluation techniques has led to important progress in understanding the mechanistic features. Among them, non-HLA mismatches between donors and recipients provide valuable information regarding the role of genetics in non-HLA antibody immunity and development.
Collapse
|
4
|
Musiała A, Donizy P, Augustyniak-Bartosik H, Jakuszko K, Banasik M, Kościelska-Kasprzak K, Krajewska M, Kamińska D. Biomarkers in Primary Focal Segmental Glomerulosclerosis in Optimal Diagnostic-Therapeutic Strategy. J Clin Med 2022; 11:jcm11123292. [PMID: 35743361 PMCID: PMC9225193 DOI: 10.3390/jcm11123292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) involves podocyte injury. In patients with nephrotic syndrome, progression to end-stage renal disease often occurs over the course of 5 to 10 years. The diagnosis is based on a renal biopsy. It is presumed that primary FSGS is caused by an unknown plasma factor that might be responsible for the recurrence of FSGS after kidney transplantation. The nature of circulating permeability factors is not explained and particular biological molecules responsible for inducing FSGS are still unknown. Several substances have been proposed as potential circulating factors such as soluble urokinase-type plasminogen activator receptor (suPAR) and cardiolipin-like-cytokine 1 (CLC-1). Many studies have also attempted to establish which molecules are related to podocyte injury in the pathogenesis of FSGS such as plasminogen activator inhibitor type-1 (PAI-1), angiotensin II type 1 receptors (AT1R), dystroglycan(DG), microRNAs, metalloproteinases (MMPs), forkheadbox P3 (FOXP3), and poly-ADP-ribose polymerase-1 (PARP1). Some biomarkers have also been studied in the context of kidney tissue damage progression: transforming growth factor-beta (TGF-β), human neutrophil gelatinase-associated lipocalin (NGAL), malondialdehyde (MDA), and others. This paper describes molecules that could potentially be considered as circulating factors causing primary FSGS.
Collapse
Affiliation(s)
- Aleksandra Musiała
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
- Correspondence: ; Tel.: +48-6-0172-8231
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Division of Clinical Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Hanna Augustyniak-Bartosik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Katarzyna Jakuszko
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Katarzyna Kościelska-Kasprzak
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Dorota Kamińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| |
Collapse
|
5
|
De Souza L, Prunster J, Chan D, Chakera A, Lim WH. Recurrent glomerulonephritis after kidney transplantation: a practical approach. Curr Opin Organ Transplant 2021; 26:360-380. [PMID: 34039882 DOI: 10.1097/mot.0000000000000887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review will provide a practical approach in the assessment of kidney failure patients with primary glomerulonephritides (GN) being considered for kidney transplantation, focusing on high-risk subtypes of immunoglobulin A nephropathy, focal segmental glomerulosclerosis, idiopathic membranous glomerulonephritis and membranoproliferative glomerulonephritis. RECENT FINDINGS Recurrent glomerulonephritis remains one of the most common causes of allograft loss in kidney transplant recipients. Although the epidemiology and clinical outcomes of glomerulonephritis recurrence occurring after kidney transplantation are relatively well-described, the natural course and optimal treatment strategies of recurrent disease in kidney allografts remain poorly defined. With a greater understanding of the pathophysiology and treatment responses of patients with glomerulonephritis affecting the native kidneys, these discoveries have laid the framework for the potential to improve the management of patients with high-risk glomerulonephritis subtypes being considered for kidney transplantation. SUMMARY Advances in the understanding of the underlying immunopathogenesis of primary GN has the potential to offer novel therapeutic options for kidney patients who develop recurrent disease after kidney transplantation. To test the efficacy of novel treatment options in adequately powered clinical trials requires a more detailed understanding of the clinical and histological characteristics of kidney transplant recipients with recurrent glomerulonephritis.
Collapse
Affiliation(s)
- Laura De Souza
- Department of Renal Medicine, Cairns Hospital, Cairns North, Queensland
| | - Janelle Prunster
- Department of Renal Medicine, Cairns Hospital, Cairns North, Queensland
| | - Doris Chan
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth
| | - Aron Chakera
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth
| | - Wai H Lim
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth
- Medical School, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
6
|
Lefaucheur C, Louis K, Philippe A, Loupy A, Coates PT. The emerging field of non-human leukocyte antigen antibodies in transplant medicine and beyond. Kidney Int 2021; 100:787-798. [PMID: 34186057 DOI: 10.1016/j.kint.2021.04.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
The major medical advances in our knowledge of the human leukocyte antigen (HLA) system have allowed us to uncover several gaps in our understanding of alloimmunity. Although the non-HLA system has long sparked the interest of the transplant community, recognition of the role of immunity to non-HLA antigenic targets has only emerged recently. In this review, we will provide a comprehensive summary of the paradigm-changing concept of immunity to the non-HLA angiotensin II type 1 receptor (AT1R), discovered by Duška Dragun et al., that began from careful bedside clinical observations, to validated detection of anti-AT1R antibodies and lead to clinical intervention. This scientific approach has also allowed the recognition of broader pathogenicity of anti-AT1R antibodies across multiple organ transplants and in other human diseases, the integration of both non-HLA and HLA systems to understand their immunologic effects on organ allografts, and the identification of future directions for therapeutic intervention to modulate immunity to AT1R. Rationally designed successful interventions to target AT1R system provide an exemplar for other non-HLA antibodies to cross borders between medical specialties, will generate new avenues in translational research beyond transplantation, and will foster the development of new and reliable tools to improve our understanding of non-HLA immunity and ultimately allow us to improve patient care.
Collapse
Affiliation(s)
- Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale UMR-S970, Université de Paris, Paris, France; Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Human Immunology and Immunopathology, Institut National de la santé et de la recherche médicale UMR-976, Université de Paris, Paris, France
| | - Aurélie Philippe
- Department of Nephrology and Critical Care Medicine, Campus Virchow Klinikum, Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandre Loupy
- Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale UMR-S970, Université de Paris, Paris, France; Department of Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - P Toby Coates
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia; Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Abuzeineh M, Kyeso Y, Philogene MC, Alachkar N, Alasfar S. Presentation and Outcomes of Antibody-Mediated Rejection Associated With Angiotensin II Receptor 1 Antibodies Among Kidney Transplant Recipients. Transplant Proc 2021; 53:1501-1508. [PMID: 33573814 DOI: 10.1016/j.transproceed.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND It remains challenging to manage antibody-mediated rejection (ABMR) associated with angiotensin II type 1 receptor antibodies (AT1R-Abs) in kidney transplant recipients and the outcomes are not well defined. We describe the presentation, clinical course, and outcomes of this condition. METHODS This retrospective study included kidney transplant recipients with AT1R-Ab levels ≥10 units/mL and biopsy-proven ABMR in the absence of significant HLA-donor-specific antibodies at the time of rejection. RESULTS We identified 13 recipients. Median creatinine (Cr) at rejection was significantly higher (2.05 mg/dL) compared with baseline (1.2 mg/dL), P = .006. After ABMR management, the difference in median Cr was not significant (1.5 mg/dL), P = .152. Median AT1R-Ab level was higher in the pretransplant sample (34.5 units/mL) compared with the level at rejection (19 units/mL) and after rejection treatment (13 units/mL); however, these differences were not significant, P = .129. Eight of the 13 recipients received antibody reduction therapy with plasmapheresis and intravenous immunoglobulin, and 5 of the 13 recipients had other therapies. After rejection management, 6 of the 13 recipients had improvement in Cr to baseline and 7 of the 13 recipients had > 50% reduction in proteinuria. CONCLUSIONS AT1R-Ab-associated ABMR management and outcomes depend on the clinical presentation and may include antibody-reducing therapies among other therapies. Further prospective cohorts will improve recognizing and managing this condition.
Collapse
Affiliation(s)
- Mohammad Abuzeineh
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yousuf Kyeso
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Nada Alachkar
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sami Alasfar
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
8
|
Abuzeineh M, Aala A, Alasfar S, Alachkar N. Angiotensin II receptor 1 antibodies associate with post-transplant focal segmental glomerulosclerosis and proteinuria. BMC Nephrol 2020; 21:253. [PMID: 32615995 PMCID: PMC7331243 DOI: 10.1186/s12882-020-01910-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Angiotensin II type 1 receptors (AT1Rs) are expressed on podocytes, endothelial and other cells, and play an essential role in the maintenance of podocyte function and vascular homeostasis. The presence of AT1R antibodies (AT1R-Abs) leads to activation of these receptors resulting in podocyte injury and endothelial cell dysfunction. We assessed the correlation between AT1R-Abs and the risk of post-transplant FSGS. METHODS This is a retrospective study, which included all kidney transplant recipients with positive AT1R-Abs (≥ 9 units/ml), who were transplanted and followed at our center between 2006 and 2016. We assessed the development of biopsy proven FSGS and proteinuria by urine protein to creatinine ratio of ≥1 g/g and reviewed short and long term outcomes. RESULTS We identified 100 patients with positive AT1R-Abs at the time of kidney transplant biopsy or proteinuria. 49% recipients (FSGS group) had biopsy-proven FSGS and/or proteinuria and 51% did not (non-FSGS group). Pre-transplant hypertension was present in 89% of the FSGS group compared to 72% in the non-FSGS group, p = 0.027. Of the FSGS group, 43% were on angiotensin converting enzyme inhibitors or angiotensin receptor blockers prior to transplantation, compared to 25.5% in the non-FSGS group, p = 0.06. Primary idiopathic FSGS was the cause of ESRD in 20% of the FSGS group, compared to 6% in the non-FSGS group, p = 0.03. The allograft loss was significantly higher in the FSGS group 63% compared to 39% in non-FSGS. Odds ratio and 95% confidence interval were 2.66 (1.18-5.99), p = 0.017. CONCLUSIONS Our data suggest a potential association between AT1R-Abs and post-transplant FSGS leading to worse allograft outcome. Therefore, AT1R-Abs may be considered biomarkers for post-transplant FSGS.
Collapse
Affiliation(s)
- Mohammad Abuzeineh
- Department of Medicine, Division of Nephrology, The Johns Hopkins University School of Medicine, 600 N Wolfe St, Carnegie 344B, Baltimore, MD, 21287, USA
| | - Amtul Aala
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sami Alasfar
- Department of Medicine, Division of Nephrology, The Johns Hopkins University School of Medicine, 600 N Wolfe St, Carnegie 344B, Baltimore, MD, 21287, USA
| | - Nada Alachkar
- Department of Medicine, Division of Nephrology, The Johns Hopkins University School of Medicine, 600 N Wolfe St, Carnegie 344B, Baltimore, MD, 21287, USA.
| |
Collapse
|
9
|
Zhang X, Reinsmoen NL. Impact and production of Non-HLA-specific antibodies in solid organ transplantation. Int J Immunogenet 2020; 47:235-242. [PMID: 32426916 DOI: 10.1111/iji.12494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
Organ transplantation is an effective way to treat end-stage organ disease. Extending the graft survival is one of the major goals in the modern era of organ transplantation. However, long-term graft survival has not significantly improved in recent years despite the improvement of patient management and advancement of immunosuppression regimen. Antibody-mediated rejection is a major obstacle for long-term graft survival. Donor human leucocyte antigen (HLA)-specific antibodies were initially identified as a major cause for antibody-mediated rejection. Recently, with the development of solid-phase-based assay reagents, the contribution of non-HLA antibodies in organ transplantation starts to be appreciated. Here, we review the role of most studied non-HLA antibodies, including angiotensin II type 1 receptor (AT1 R), K-α-tubulin and vimentin antibodies, in the solid organ transplant, and discuss the possible mechanism by which these antibodies are stimulated.
Collapse
Affiliation(s)
- Xiaohai Zhang
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars- Sinai Medical Center, Los Angeles, CA, USA
| | - Nancy L Reinsmoen
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars- Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Abstract
After more than 6 decades of clinical practice, the transplant community continues to research noninvasive biomarkers of solid organ injury to help improve patient care. In this review, we discuss the clinical usefulness of selective biomarkers and how they are processed at the laboratory. In addition, we organize these biomarkers based on specific aims and introduce innovative markers currently under investigation.
Collapse
Affiliation(s)
- John Choi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Albana Bano
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Jamil Azzi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Can components of the plasminogen activation system predict the outcome of kidney transplants? Cent Eur J Immunol 2018; 43:222-230. [PMID: 30135637 PMCID: PMC6102612 DOI: 10.5114/ceji.2018.77394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 12/03/2022] Open
Abstract
Proteolytic and antiproteolytic enzymes play a critical role in the physiology and pathology of different stages of human life. One of the important members of the proteolytic family is the plasminogen activation system (PAS), which includes several elements crucial for this review: the 50 kDa glycoprotein plasminogen activator inhibitor 1 (PAI-1) that inhibits tissue-type (tPA) and urokinase-type plasminogen activator (uPA). These two convert plasminogen into its active form named plasmin that can lyse a broad spectrum of proteins. Urokinase receptor (uPAR) is the binding site of uPA. This glycoprotein on the cell surface facilitates urokinase activation of plasminogen, creating high proteolytic activity close to the cell surface. PAS activities have been reported to predict the outcome of kidney transplants. However, reports on expression of PAS in kidney transplants seem to be controversial. On the one hand there are reports that impaired proteolytic activity leads to induction of chronic allograft nephropathy, while on the other hand treatment with uPA and tPA can restore function of acute renal transplants. In this comprehensive review we describe the complexity of the PAS as well as biological effects of the PAS on renal allografts, and provide a possible explanation of the reported controversy.
Collapse
|
12
|
Garg N, Samaniego MD, Clark D, Djamali A. Defining the phenotype of antibody-mediated rejection in kidney transplantation: Advances in diagnosis of antibody injury. Transplant Rev (Orlando) 2017; 31:257-267. [PMID: 28882367 DOI: 10.1016/j.trre.2017.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 11/29/2022]
Abstract
The diagnostic criteria for antibody-mediated rejection (ABMR) are constantly evolving in light of the evidence. Inclusion of C4d-negative ABMR has been one of the major advances in the Banff Classification in recent years. Currently Banff 2015 classification requires evidence of donor specific antibodies (DSA), interaction between DSA and the endothelium, and acute tissue injury (in the form of microvasculature injury (MVI); acute thrombotic microangiopathy; or acute tubular injury in the absence of other apparent cause). In this article we review not only the ABMR phenotypes acknowledged in the most recent Banff classification, but also the phenotypes related to novel pathogenic antibodies (non-HLA DSA, antibody isoforms and subclasses, complement-binding functionality) and molecular diagnostic tools (gene transcripts, metabolites, small proteins, cytokines, and donor-derived cell-free DNA). These novel tools are also being considered for the prognosis and monitoring of treatment response. We propose that improved classification of ABMR based on underlying pathogenic mechanisms and outcomes will be an important step in identifying patient-centered therapies to extend graft survival.
Collapse
Affiliation(s)
- Neetika Garg
- Department of Medicine, Nephrology Division, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States.
| | - Milagros D Samaniego
- Department of Medicine, Nephrology Division, University of Michigan, Ann Arbor, MI 48109, United States
| | - Dana Clark
- Department of Medicine, Nephrology Division, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Arjang Djamali
- Department of Medicine, Nephrology Division, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| |
Collapse
|
13
|
Endothelial Cells in Antibody-Mediated Rejection of Kidney Transplantation: Pathogenesis Mechanisms and Therapeutic Implications. J Immunol Res 2017; 2017:8746303. [PMID: 28255564 PMCID: PMC5309424 DOI: 10.1155/2017/8746303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
Antibody-mediated rejection (AMR) has been identified as a main obstacle for stable immune tolerance and long survival of kidney allografts. In spite of new insights into the underlying mechanisms of AMR, accurate diagnosis and efficient treatment are still challenges in clinical practice. Endothelium is the first barrier between recipients' immune systems and grafts in vascularized organ transplants. Considering that endothelial cells express a number of antigens that can be attacked by various allo- and autoantibodies, endothelial cells act as main targets for the recipients' humoral immune responses. Importantly, emerging evidence has shown that endothelial cells in transplants could also initiate protective mechanisms in response to immune injuries. A better understanding of the role of endothelial cells during the pathogenesis of AMR might provide novel therapeutic targets. In the present review, we summarize the antigens expressed by endothelial cells and also discuss the activation and accommodation of endothelial cells as well as their clinical implications. Collectively, the progress discussed in this review indicates endothelial cells as promising targets to improve current diagnosis and therapeutic regimens for AMR.
Collapse
|
14
|
Zand L, Glassock RJ, De Vriese AS, Sethi S, Fervenza FC. What are we missing in the clinical trials of focal segmental glomerulosclerosis? Nephrol Dial Transplant 2017; 32:i14-i21. [DOI: 10.1093/ndt/gfw324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/28/2016] [Indexed: 01/11/2023] Open
|
15
|
Bjerre A, Tangeraas T, Heidecke H, Dragun D, Dechend R, Staff AC. Angiotensin II type 1 receptor antibodies in childhood kidney transplantation. Pediatr Transplant 2016; 20:627-32. [PMID: 27251358 DOI: 10.1111/petr.12728] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 12/23/2022]
Abstract
Angiotensin II type 1 receptor antibodies (AT1 RAb) have emerged as non-HLA Ab present in patients with acute AMR and risk of graft loss. Furthermore, AT1 RAb have been shown to increase angiotensin II sensitivity which may play a role in the development of CVD and hypertension. Data on AT1 RAb in stable transplant recipients are lacking. The aim of this study was to analyze the levels of AT1 RAb in a cohort of stable patients after kidney transplantation (tx) in childhood. A cross-sectional study of 30 children (median age 14, range 3-19 yr, median time since tx five yr) and 28 adults who were transplanted in childhood (median age 26, range 20-40 yr, median time since tx 18 yr) transplanted between 1993-2006 and 1983-2002, respectively, was performed. Healthy controls were 51 healthy children (5-8 yr) and 199 healthy donors (median age 56.5 yr, range 42-83 yr). Plasma AT1 RAb were analyzed by immunoassay. Median total AT1 RAb IgG concentration was significantly higher in the pediatric-tx group as compared to the adult-tx group (40.0 and 10.95 U/mL, p < 0.0001). For both groups, the tx group showed higher levels: the pediatric-tx group vs. control group (40.0 vs. 13.3 U/mL, p = 0.0006) and the adult-tx group vs. adult control group (10.95 vs. 6.5 U/mL, p < 0.0001). Age was the strongest indicator of high levels of AT1 RAb IgG (p = 0.0003). AT1 RAb total IgG levels are significantly higher in a stable pediatric-tx cohort as compared to adult-tx patients and healthy controls of comparable age groups. The relevance of our findings in relation to age, time since tx, previous or future rejection, and CVD risk merits future studies.
Collapse
Affiliation(s)
- Anna Bjerre
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| | - Trine Tangeraas
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| | | | - Duska Dragun
- Department of Nephrology and Intensive Care Medicine, Charité Hospital, Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Clinic-Berlin, Berlin, Germany
| | - Anne Cathrine Staff
- Department of Obstetrics and Department of Gynecology, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Abstract
The development of post-transplantation antibodies against non-HLA autoantigens is associated with rejection and decreased long-term graft survival. Although our knowledge of non-HLA antibodies is incomplete, compelling experimental and clinical findings demonstrate that antibodies directed against autoantigens such as angiotensin type 1 receptor, perlecan and collagen, contribute to the process of antibody-mediated acute and chronic rejection. The mechanisms that underlie the production of autoantibodies in the setting of organ transplantation is an important area of ongoing investigation. Ischaemia-reperfusion injury, surgical trauma and/or alloimmune responses can result in the release of organ-derived autoantigens (such as soluble antigens, extracellular vesicles or apoptotic bodies) that are presented to B cells in the context of the transplant recipient's antigen presenting cells and stimulate autoantibody production. Type 17 T helper cells orchestrate autoantibody production by supporting the proliferation and maturation of autoreactive B cells within ectopic tertiary lymphoid tissue. Conversely, autoantibody-mediated graft damage can trigger alloimmunity and the development of donor-specific HLA antibodies that can act in synergy to promote allograft rejection. Identification of the immunologic phenotypes of transplant recipients at risk of non-HLA antibody-mediated rejection, and the development of targeted therapies to treat such rejection, are sorely needed to improve both graft and patient survival.
Collapse
|
17
|
Dragun D, Catar R, Philippe A. Non-HLA antibodies against endothelial targets bridging allo- and autoimmunity. Kidney Int 2016; 90:280-288. [PMID: 27188505 DOI: 10.1016/j.kint.2016.03.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/12/2016] [Accepted: 03/17/2016] [Indexed: 12/17/2022]
Abstract
Detrimental actions of donor-specific antibodies (DSAs) directed against both major histocompatibility antigens (human leukocyte antigen [HLA]) and specific non-HLA antigens expressed on the allograft endothelium are a flourishing research area in kidney transplantation. Newly developed solid-phase assays enabling detection of functional non-HLA antibodies targeting G protein-coupled receptors such as angiotensin type I receptor and endothelin type A receptor were instrumental in providing long-awaited confirmation of their broad clinical relevance. Numerous recent clinical studies implicate angiotensin type I receptor and endothelin type A receptor antibodies as prognostic biomarkers for earlier occurrence and severity of acute and chronic immunologic complications in solid organ transplantation, stem cell transplantation, and systemic autoimmune vascular disease. Angiotensin type 1 receptor and endothelin type A receptor antibodies exert their pathophysiologic effects alone and in synergy with HLA-DSA. Recently identified antiperlecan antibodies are also implicated in accelerated allograft vascular pathology. In parallel, protein array technology platforms enabled recognition of new endothelial surface antigens implicated in endothelial cell activation. Upon target antigen recognition, non-HLA antibodies act as powerful inducers of phenotypic perturbations in endothelial cells via activation of distinct intracellular cell-signaling cascades. Comprehensive diagnostic assessment strategies focusing on both HLA-DSA and non-HLA antibody responses could substantially improve immunologic risk stratification before transplantation, help to better define subphenotypes of antibody-mediated rejection, and lead to timely initiation of targeted therapies. Better understanding of similarities and dissimilarities in HLA-DSA and distinct non-HLA antibody-related mechanisms of endothelial damage should facilitate discovery of common downstream signaling targets and pave the way for the development of endothelium-centered therapeutic strategies to accompany intensified immunosuppression and/or mechanical removal of antibodies.
Collapse
Affiliation(s)
- Duska Dragun
- Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum and Center for Cardiovascular Research, Medical Faculty of the Charité Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| | - Rusan Catar
- Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum and Center for Cardiovascular Research, Medical Faculty of the Charité Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Aurélie Philippe
- Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum and Center for Cardiovascular Research, Medical Faculty of the Charité Berlin, Berlin, Germany
| |
Collapse
|