1
|
Panicker AJ, Prokop LJ, Hacke K, Jaramillo A, Griffiths LG. Outcome-based Risk Assessment of Non-HLA Antibodies in Heart Transplantation: A Systematic Review. J Heart Lung Transplant 2024; 43:1450-1467. [PMID: 38796046 DOI: 10.1016/j.healun.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Current monitoring after heart transplantation (HT) employs repeated invasive endomyocardial biopsies (EMB). Although positive EMB confirms rejection, EMB fails to predict impending, subclinical, or EMB-negative rejection events. While non-human leukocyte antigen (non-HLA) antibodies have emerged as important risk factors for antibody-mediated rejection after HT, their use in clinical risk stratification has been limited. A systematic review of the role of non-HLA antibodies in rejection pathologies has the potential to guide efforts to overcome deficiencies of EMB in rejection monitoring. METHODS Databases were searched to include studies on non-HLA antibodies in HT recipients. Data collected included the number of patients, type of rejection, non-HLA antigen studied, association of non-HLA antibodies with rejection, and evidence for synergistic interaction between non-HLA antibodies and donor-specific anti-human leukocyte antigen antibody (HLA-DSA) responses. RESULTS A total of 56 studies met the inclusion criteria. Strength of evidence for each non-HLA antibody was evaluated based on the number of articles and patients in support versus against their role in mediating rejection. Importantly, despite previous intense focus on the role of anti-major histocompatibility complex class I chain-related gene A (MICA) and anti-angiotensin II type I receptor antibodies (AT1R) in HT rejection, evidence for their involvement was equivocal. Conversely, the strength of evidence for other non-HLA antibodies supports that differing rejection pathologies are driven by differing non-HLA antibodies. CONCLUSIONS This systematic review underscores the importance of identifying peri-HT non-HLA antibodies. Current evidence supports the role of non-HLA antibodies in all forms of HT rejection. Further investigations are required to define the mechanisms of action of non-HLA antibodies in HT rejection.
Collapse
Affiliation(s)
- Anjali J Panicker
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota; Department of Immunology, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Larry J Prokop
- Mayo Clinic Libraries, Mayo Clinic, Rochester, Minnesota
| | - Katrin Hacke
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona
| | - Andrés Jaramillo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona
| | - Leigh G Griffiths
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota; Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
2
|
Ravichandran R, Itabashi Y, Fleming T, Bansal S, Bowen S, Poulson C, Bharat A, Bremner R, Smith M, Mohanakumar T. Low-dose IL-2 prevents murine chronic cardiac allograft rejection: Role for IL-2-induced T regulatory cells and exosomes with PD-L1 and CD73. Am J Transplant 2022; 22:2180-2194. [PMID: 35603986 DOI: 10.1111/ajt.17101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 01/25/2023]
Abstract
To determine the effects and immunological mechanisms of low-dose interleukin-2 (IL-2) in a murine model of chronic cardiac allograft rejection (BALB/c to C57BL/6) after costimulatory blockade consisting of MR1 (250 μg/ip day 0) and CTLA4-Ig (200 μg/ip day 2), we administered low-dose IL-2 (2000 IU/day) starting on posttransplant day 14 for 3 weeks. T regulatory (Treg) cell infiltration of the grafts was determined by immunohistochemistry; circulating exosomes by western blot and aldehyde bead flow cytometry; antibodies to donor MHC by immunofluorescent staining of donor cells; and antibodies to cardiac self-antigens (myosin, vimentin) by ELISA. We demonstrated that costimulation blockade after allogeneic heart transplantation induced circulating exosomes containing cardiac self-antigens and antibodies to both donor MHC and self-antigens, leading to chronic rejection by day 45. Treatment with low-dose IL-2 prolonged allograft survival (>100 days), prevented chronic rejection, and induced splenic and graft-infiltrating CD4+ CD25+ Foxp3 Treg cells by day 45 and circulating exosomes (Foxp3+) with PD-L1 and CD73. MicroRNA 142, associated with the TGFβ pathway, was significantly downregulated in exosomes from IL-2-treated mice. In conclusion, low-dose IL-2 delays rejection in a murine model of chronic cardiac allograft rejection and also induces graft-infiltrating Tregs and circulating exosomes with immunoregulatory molecules.
Collapse
Affiliation(s)
| | - Yoshihiro Itabashi
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Sara Bowen
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Christin Poulson
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ankit Bharat
- Department of surgery, Northwestern University, Chicago, Illinois, USA
| | - Ross Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Michael Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | |
Collapse
|
3
|
Kardol-Hoefnagel T, Otten HG. A Comprehensive Overview of the Clinical Relevance and Treatment Options for Antibody-mediated Rejection Associated With Non-HLA Antibodies. Transplantation 2021; 105:1459-1470. [PMID: 33208690 PMCID: PMC8221725 DOI: 10.1097/tp.0000000000003551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Although solid organ transplant results have improved significantly in recent decades, a pivotal cause of impaired long-term outcome is the development of antibody-mediated rejection (AMR), a condition characterized by the presence of donor-specific antibodies to HLA or non-HLA antigens. Highly HLA-sensitized recipients are treated with desensitization protocols to rescue the transplantation. These and other therapies are also applied for the treatment of AMR. Therapeutic protocols include removal of antibodies, depletion of plasma and B cells, inhibition of the complement cascade, and suppression of the T-cell-dependent antibody response. As mounting evidence illustrates the importance of non-HLA antibodies in transplant outcome, there is a need to evaluate the efficacy of treatment protocols on non-HLA antibody levels and graft function. Many reviews have been recently published that provide an overview of the literature describing the association of non-HLA antibodies with rejection in transplantation, whereas an overview of the treatment options for non-HLA AMR is still lacking. In this review, we will therefore provide such an overview. Most reports showed positive effects of non-HLA antibody clearance on graft function. However, monitoring non-HLA antibody levels after treatment along with standardization of therapies is needed to optimally treat solid organ transplant recipients.
Collapse
Affiliation(s)
- Tineke Kardol-Hoefnagel
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henny G. Otten
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Zhang X, Levine R, Patel JK, Kittleson M, Czer L, Kobashigawa JA. Association of vimentin antibody and other non-HLA antibodies with treated antibody mediated rejection in heart transplant recipients. Hum Immunol 2020; 81:671-674. [PMID: 33041085 DOI: 10.1016/j.humimm.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023]
Abstract
Non-human leukocyte antigen (HLA) antibodies have been implicated in heart transplantation rejection. However, targets of non-HLA antibodies remain elusive. Here, we utilized a panel of multiplex beads-based assay to determine the specificity of non-HLA antibodies following heart transplantation. We utilized a selected cohort of recipients who did not have HLA donor specific antibodies, but were diagnosed with antibody mediated rejection and treated for antibody mediated rejection. We found the presence of vimentin antibody was associated with treated antibody mediated rejection. Our results suggest that, in heart transplant recipients who are suspected of AMR but in the absence of HLA donor specific antibodies, non-HLA antibodies should be examined.
Collapse
Affiliation(s)
- Xiaohai Zhang
- HLA Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| | - Ryan Levine
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jignesh K Patel
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michelle Kittleson
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lawrence Czer
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jon A Kobashigawa
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
5
|
Abstract
The role of anti-HLA antibodies in solid organ rejection is well established and these antibodies are routinely monitored both in patients in the waiting list and in the post-transplant setting. More recently, the presence of other antibodies directed towards non-HLA antigens, or the so-called minor histocompatibility antigens, has drawn the attention of the transplant community; however, their possible involvement in the graft outcome remains uncertain. These antibodies have been described to possibly have a role in rejection and allograft failure. This review focuses on the most studied non-HLA antibodies and their association with different clinical outcomes considered in solid organ transplantation with the aim of clarifying their clinical implication and potential relevance for routine testing.
Collapse
|
6
|
Zhang X, Reinsmoen NL. Impact and production of Non-HLA-specific antibodies in solid organ transplantation. Int J Immunogenet 2020; 47:235-242. [PMID: 32426916 DOI: 10.1111/iji.12494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
Organ transplantation is an effective way to treat end-stage organ disease. Extending the graft survival is one of the major goals in the modern era of organ transplantation. However, long-term graft survival has not significantly improved in recent years despite the improvement of patient management and advancement of immunosuppression regimen. Antibody-mediated rejection is a major obstacle for long-term graft survival. Donor human leucocyte antigen (HLA)-specific antibodies were initially identified as a major cause for antibody-mediated rejection. Recently, with the development of solid-phase-based assay reagents, the contribution of non-HLA antibodies in organ transplantation starts to be appreciated. Here, we review the role of most studied non-HLA antibodies, including angiotensin II type 1 receptor (AT1 R), K-α-tubulin and vimentin antibodies, in the solid organ transplant, and discuss the possible mechanism by which these antibodies are stimulated.
Collapse
Affiliation(s)
- Xiaohai Zhang
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars- Sinai Medical Center, Los Angeles, CA, USA
| | - Nancy L Reinsmoen
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars- Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
7
|
Rampersad C, Shaw J, Gibson IW, Wiebe C, Rush DN, Nickerson PW, Ho J. Early Antibody-Mediated Kidney Transplant Rejection Associated With Anti-Vimentin Antibodies: A Case Report. Am J Kidney Dis 2020; 75:138-143. [DOI: 10.1053/j.ajkd.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/29/2019] [Indexed: 11/11/2022]
|
8
|
|
9
|
Immune responses towards bioengineered tissues and strategies to control them. Curr Opin Organ Transplant 2019; 24:582-589. [PMID: 31385889 DOI: 10.1097/mot.0000000000000688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Research into development of artificial tissues and bioengineered organs to replace physiological functions of injured counterparts has highlighted a previously underestimated challenge for its clinical translatability: the immune response against biomaterials. Herein, we will provide an update and review current knowledge regarding this important barrier to regenerative medicine. RECENT FINDINGS Although a clear understanding of the immune reactivity against biomaterials remains elusive, accumulating evidence indicates that innate immune cells, primarily neutrophils and macrophages, play a key role in the initial phases of the immune response. More recently, data have shown that in later phases, T and B cells are also involved. The use of physicochemical modifications of biomaterials and cell-based strategies to modulate the host inflammatory response is being actively investigated for effective biomaterial integration. SUMMARY The immune response towards biomaterials and bioengineered organs plays a crucial role in determining their utility as transplantable grafts. Expanding our understanding of these responses is necessary for developing protolerogenic strategies and delivering on the ultimate promise of regenerative medicine.
Collapse
|
10
|
Compelling scientific and clinical evidence that non-HLA specific antibodies impact graft outcome independently and in concert with donor HLA specific antibodies. Hum Immunol 2019; 80:555-560. [PMID: 31279533 DOI: 10.1016/j.humimm.2019.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Nonhuman leukocyte antigen antibodies that have impact in the heart transplant patient. Curr Opin Organ Transplant 2019; 24:279-285. [DOI: 10.1097/mot.0000000000000642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Anti-vimentin antibodies in transplant and disease. Hum Immunol 2019; 80:602-607. [PMID: 30926354 DOI: 10.1016/j.humimm.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Non-HLA antibodies are recognized as a potential source of antibody mediated rejection following transplantation. The epitopes which lead to production of these antibodies are a result of tissue disruption, specifically endothelium, secondary to inflammation and injury. Vimentin is a cytoskeletal protein involved in many aspects of cellular organization, signaling, and proliferation. Recently, antivimentin antibodies have been shown to be important not only for rheumatological autoimmune diseases, but also cardiac and renal transplant dysfunction. In cardiac transplant recipients, antivimentin antibodies are associated with coronary artery vasculopathy and chronic graft loss. In renal transplantation, antivimentin antibodies are detected prior to transplantation and are also correlated with chronic graft dysfunction. In renal transplant recipients, antivimentin antibodies seen prior to transplantation are thought to be secondary to chronic endothelial injury during hemodialysis and therefore more prevalent prior to renal transplant than cardiac transplantation. In this review, we will examine the generation and pathogenesis of antivimentin antibodies. Given that these antibodies appear to be associated with both post-cardiac and -renal transplant dysfunction, developing standard detection paradigms may be important for risk stratification prior to transplantation. Finally, understanding the pathogenesis of antivimentin antibodies may lead to the development potential therapies in order to improve long-term survival.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Allo- and autoantibodies have been found to play important roles in both acute and chronic allograft rejection in organ transplantation, although only recently have non-human leukocyte antigen (non-HLA), nondonor-specific antibodies been given a more in-depth treatment. This review summarizes recent reports about investigations and proteomic approaches to identify self-antigens and corresponding autoantibodies that are associated with acute and chronic allograft rejection. Finally, we discuss the insights gained from these, challenges, and future prospects. RECENT FINDINGS Significant discoveries have been made regarding the presence and role of autoantibodies and alloantibodies, both those formed pretransplant and posttransplant, in acute and chronic rejection. These discoveries are made possible because of the publication of the human genome and subsequent development in the ability of expression and analysis of human proteome. SUMMARY Antibodies play a critical role in survival and dysfunction of a transplanted kidney. Even though HLA antibodies have been given the majority of the scientific community's attention for the past few decades, antibodies against autoantigens and that of non-HLA origin are gaining attention. Recent publications have identified novel self-antigens that are associated with acute and chronic rejection that have added to our understanding of new players in immune-related transplant rejection.
Collapse
|
14
|
Lopez-Soler RI, Borgia JA, Kanangat S, Fhied CL, Conti DJ, Constantino D, Ata A, Chan R, Wang Z. Anti-vimentin Antibodies Present at the Time of Transplantation May Predict Early Development of Interstitial Fibrosis/Tubular Atrophy. Transplant Proc 2017; 48:2023-33. [PMID: 27569939 DOI: 10.1016/j.transproceed.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Anti-vimentin (a cytoskeletal protein) autoantibodies in renal transplant recipients have been correlated with interstitial fibrosis/tubular atrophy (IFTA). In this study, we examine the association between pretransplantation anti-vimentin antibodies and the subsequent development of IFTA. METHODS Sera obtained before renal transplantation from 97 transplant recipients were analyzed for the presence of anti-vimentin antibodies via Luminex assays to determine the concentration of anti-vimentin antibodies. Results were correlated with findings of IFTA on biopsy as well as graft function and patient and graft survival. RESULTS In our patient population, 56 of 97 patients were diagnosed by biopsy with IFTA 2.9 (±2.1) years after renal transplantation. Patients with IFTA on biopsy had higher mean concentration of anti-vimentin antibodies when compared to patients without IFTA (32.2 μg/mL [3.97-269.12 μg/mL] vs 14.57 μg/mL [4.71-87.81 μg/mL]). The risk of developing IFTA with a concentration of anti-vimentin antibody >15 μg/mL before transplantation was 1.96 (95% CI = 1.38-2.79, P = .011). Patients with elevated anti-vimentin antibody concentrations (>15 μg/mL) at the time of transplantation also had a higher risk of developing IFTA (81.4% vs 41.2%; P < .05). In addition, graft function was worse at 1, 3, and 5 years posttransplantation in patients with elevated concentrations of pretransplantation anti-vimentin antibody. Although there were more graft losses in the IFTA groups (49.12% vs 25.64%, P = .021) and the IFTA patients loss their grafts earlier (4.3 years vs 3.6 years), there was no statistical difference in graft loss rates. CONCLUSIONS Pretransplantation anti-vimentin antibody concentrations >15 μg/mL may be a risk factor for IFTA.
Collapse
Affiliation(s)
- R I Lopez-Soler
- Division of Surgery, Section of Transplantation, Albany Medical Center, Albany, New York.
| | - J A Borgia
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois; Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - S Kanangat
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - C L Fhied
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - D J Conti
- Division of Surgery, Section of Transplantation, Albany Medical Center, Albany, New York
| | - D Constantino
- Transplant Immunology Laboratory, Albany Medical College, Albany, New York
| | - A Ata
- Division of Surgery, Section of Transplantation, Albany Medical Center, Albany, New York
| | - R Chan
- Division of Surgery, Section of Transplantation, Albany Medical Center, Albany, New York
| | - Z Wang
- Center For Cardiovascular Sciences, Albany Medical College, Albany, New York
| |
Collapse
|
15
|
Zhang X, Reinsmoen NL. Impact of Non-Human Leukocyte Antigen-Specific Antibodies in Kidney and Heart Transplantation. Front Immunol 2017; 8:434. [PMID: 28450866 PMCID: PMC5389972 DOI: 10.3389/fimmu.2017.00434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/28/2017] [Indexed: 12/17/2022] Open
Abstract
The presence of donor human leukocyte antigen (HLA)-specific antibodies has been shown to be associated with graft loss and decreased patient survival, but it is not uncommon that donor-specific HLA antibodies are absent in patients with biopsy-proven antibody-mediated rejection. In this review, we focus on the latest findings on antibodies against non-HLA antigens in kidney and heart transplantation. These non-HLA antigens include myosin, vimentin, Kα1 tubulin, collagen, and angiotensin II type 1 receptor. It is suggested that the detrimental effects of HLA antibodies and non-HLA antibodies synergize together to impact graft outcome. Injury of graft by HLA antibodies can cause the exposure of neo-antigens which in turn stimulate the production of antibodies against non-HLA antigens. On the other hand, the presence of non-HLA antibodies may increase the risk for a patient to develop HLA-specific antibodies. These findings indicate it is imperative to stratify the patient’s immunologic risk by assessing both HLA and non-HLA antibodies.
Collapse
Affiliation(s)
- Xiaohai Zhang
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nancy L Reinsmoen
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
16
|
Immunological Risk Stratification by Assessing Both the HLA and Non-HLA-Specific Antibodies. Transplantation 2017; 101:23-25. [DOI: 10.1097/tp.0000000000001495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Matsuda Y, Sarwal MM. Unraveling the Role of Allo-Antibodies and Transplant Injury. Front Immunol 2016; 7:432. [PMID: 27818660 PMCID: PMC5073555 DOI: 10.3389/fimmu.2016.00432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/03/2016] [Indexed: 12/25/2022] Open
Abstract
Alloimmunity driving rejection in the context of solid organ transplantation can be grossly divided into mechanisms predominantly driven by either T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR), though the co-existence of both types of rejections can be seen in a variable number of sampled grafts. Acute TCMR can generally be well controlled by the establishment of effective immunosuppression (1, 2). Acute ABMR is a low frequency finding in the current era of blood group and HLA donor/recipient matching and the avoidance of engraftment in the context of high-titer, preformed donor-specific antibodies. However, chronic ABMR remains a major complication resulting in the untimely loss of transplanted organs (3-10). The close relationship between donor-specific antibodies and ABMR has been revealed by the highly sensitive detection of human leukocyte antigen (HLA) antibodies (7, 11-15). Injury to transplanted organs by activation of humoral immune reaction in the context of HLA identical transplants and the absence of donor specific antibodies (17-24), strongly suggest the participation of non-HLA (nHLA) antibodies in ABMR (25). In this review, we discuss the genesis of ABMR in the context of HLA and nHLA antibodies and summarize strategies for ABMR management.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Minnie M. Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Non-human leukocyte antigen-specific antibodies in thoracic transplantation. Curr Opin Organ Transplant 2016; 21:350-4. [DOI: 10.1097/mot.0000000000000330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|