1
|
Nørgaard RA, Bhatt DK, Järvinen E, Stage TB, Gabel-Jensen C, Galetin A, Säll C. Evaluating Drug-Drug Interaction Risk Associated with Peptide Analogs Using advanced In Vitro Systems. Drug Metab Dispos 2024; 52:1170-1180. [PMID: 38050097 DOI: 10.1124/dmd.123.001441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023] Open
Abstract
Drug-drug interaction (DDI) assessment of therapeutic peptides is an evolving area. The industry generally follows DDI guidelines for small molecules, but the translation of data generated with commonly used in vitro systems to in vivo is sparse. In the current study, we investigated the ability of advanced human hepatocyte in vitro systems, namely HepatoPac, spheroids, and Liver-on-a-chip, to assess potential changes in regulation of CYP1A2, CYP2B6, CYP3A4, SLCO1B1, and ABCC2 in the presence of selected therapeutic peptides, proteins, and small molecules. The peptide NN1177, a glucagon and GLP-1 receptor co-agonist, did not suppress mRNA expression or activity of CYP1A2, CYP2B6, and CYP3A4 in HepatoPac, spheroids, or Liver-on-a-chip; these findings were in contrast to the data obtained in sandwich cultured hepatocytes. No effect of NN1177 on SLCO1B1 and ABCC2 mRNA was observed in any of the complex systems. The induction magnitude differed across the systems (e.g., rifampicin induction of CYP3A4 mRNA ranged from 2.8-fold in spheroids to 81.2-fold in Liver-on-a-chip). Small molecules, obeticholic acid and abemaciclib, showed varying responses in HepatoPac, spheroids, and Liver-on-a-chip, indicating a need for EC50 determinations to fully assess translatability data. HepatoPac, the most extensively investigated in this study (3 donors), showed high potential to investigate DDIs associated with CYP regulation by therapeutic peptides. Spheroids and Liver-on-a-chip were only assessed in one hepatocyte donor and further evaluations are required to confirm their potential. This study establishes an excellent foundation toward the establishment of more clinically-relevant in vitro tools for evaluation of potential DDIs with therapeutic peptides. SIGNIFICANT STATEMENT: At present, there are no guidelines for drug-drug interaction (DDI) assessment of therapeutic peptides. Existing in vitro methods recommended for assessing small molecule DDIs do not appear to translate well for peptide drugs, complicating drug development for these moieties. Here, we establish evidence that complex cellular systems have potential to be used as more clinically-relevant tools for the in vitro DDI evaluation of therapeutic peptides.
Collapse
Affiliation(s)
- Rune Aa Nørgaard
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| | - Deepak K Bhatt
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| | - Erkka Järvinen
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| | - Tore B Stage
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| | - Charlotte Gabel-Jensen
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| | - Aleksandra Galetin
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| | - Carolina Säll
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| |
Collapse
|
2
|
Yadav J, Maldonato BJ, Roesner JM, Vergara AG, Paragas EM, Aliwarga T, Humphreys S. Enzyme-mediated drug-drug interactions: a review of in vivo and in vitro methodologies, regulatory guidance, and translation to the clinic. Drug Metab Rev 2024:1-33. [PMID: 39057923 DOI: 10.1080/03602532.2024.2381021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Enzyme-mediated pharmacokinetic drug-drug interactions can be caused by altered activity of drug metabolizing enzymes in the presence of a perpetrator drug, mostly via inhibition or induction. We identified a gap in the literature for a state-of-the art detailed overview assessing this type of DDI risk in the context of drug development. This manuscript discusses in vitro and in vivo methodologies employed during the drug discovery and development process to predict clinical enzyme-mediated DDIs, including the determination of clearance pathways, metabolic enzyme contribution, and the mechanisms and kinetics of enzyme inhibition and induction. We discuss regulatory guidance and highlight the utility of in silico physiologically-based pharmacokinetic modeling, an approach that continues to gain application and traction in support of regulatory filings. Looking to the future, we consider DDI risk assessment for targeted protein degraders, an emerging small molecule modality, which does not have recommended guidelines for DDI evaluation. Our goal in writing this report was to provide early-career researchers with a comprehensive view of the enzyme-mediated pharmacokinetic DDI landscape to aid their drug development efforts.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Joseph M Roesner
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Rahway, NJ, USA
| | - Erickson M Paragas
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Theresa Aliwarga
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Sara Humphreys
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| |
Collapse
|
3
|
Czuba LC, Isoherranen N. LX-2 Stellate Cells Are a Model System for Investigating the Regulation of Hepatic Vitamin A Metabolism and Respond to Tumor Necrosis Factor α and Interleukin 1 β. Drug Metab Dispos 2024; 52:442-454. [PMID: 38485281 PMCID: PMC11023816 DOI: 10.1124/dmd.124.001679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/18/2024] Open
Abstract
Hepatic stellate cells (HSCs) are the major site of vitamin A (retinol) esterification and subsequent storage as retinyl esters within lipid droplets. However, retinyl esters become depleted in many pathophysiological states, including acute and chronic liver injuries. Recently, using a liver slice culture system as a model of acute liver injury and fibrogenesis, a time-dependent increase and decrease in the apparent formation of the bioactive retinoid all-trans-retinoic acid (atRA) and retinyl palmitate was measured, respectively. This coincided with temporal changes in the gene expression of retinoid-metabolizing enzymes and binding proteins, that preceded HSC activation. However, the underlying mechanisms that promote early changes in retinoid metabolism remain unresolved. We hypothesized that LX-2 cells could be applied to investigate differences in quiescent and activated HSC retinoid metabolism. We demonstrate that the hypermetabolic state of activated stellate cells relative to quiescent stellate cells may be attributed to induction of STRA6, RBP4, and CYP26A1, thereby reducing intracellular concentrations of atRA. We further hypothesized that paracrine and autocrine cytokine signaling regulates HSC vitamin A metabolism in both quiescent and activated cells. In quiescent cells, tumor necrosis factor α dose-dependently downregulated LRAT and CRBP1 mRNA, with EC50 values of 30-50 pg/mL. Likewise, interleukin-1β decreased LRAT and CRBP1 gene expression but with less potency. In activated stellate cells, multiple enzymes were downregulated, suggesting that the full effects of altered hepatic vitamin A metabolism in chronic conditions require both paracrine and autocrine signaling events. Further, this study suggests the potential for cell type-specific autocrine effects in hepatic retinoid signaling. SIGNIFICANCE STATEMENT: HSCs are the major site of vitamin A storage and important determinants of retinol metabolism during liver fibrogenesis. Here, two LX-2 culture methods were applied as models of hepatic retinoid metabolism to demonstrate the effects of activation status and dose-dependent cytokine exposure on the expression of genes involved in retinoid metabolism. This study suggests that compared to quiescent cells, activated HSCs are hypermetabolic and have reduced apparent formation of retinoic acid, which may alter downstream retinoic acid signaling.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
| |
Collapse
|
4
|
Zhao Y, Vary JC, Yadav AS, Czuba LC, Shum S, LaFrance J, Huang W, Isoherranen N, Hebert MF. Effect of isotretinoin on CYP2D6 and CYP3A activity in patients with severe acne. Br J Clin Pharmacol 2024; 90:759-768. [PMID: 37864393 PMCID: PMC10922942 DOI: 10.1111/bcp.15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
AIMS Previously, retinoids have decreased CYP2D6 mRNA expression in vitro and induced CYP3A4 in vitro and in vivo. This study aimed to determine whether isotretinoin administration changes CYP2D6 and CYP3A activities in patients with severe acne. METHODS Thirty-three patients (22 females and 11 males, 23.5 ± 6.0 years old) expected to receive isotretinoin treatment completed the study. All participants were genotyped for CYP2D6 and CYP3A5. Participants received dextromethorphan (DM) 30 mg orally as a dual-probe substrate of CYP2D6 and CYP3A activity at two study timepoints: pre-isotretinoin treatment and with isotretinoin for at least 1 week. The concentrations of isotretinoin, DM and their metabolites were measured in 2-h postdose plasma samples and in cumulative 0-4-h urine collections using liquid chromatography-mass spectrometry. RESULTS In CYP2D6 extensive metabolizers, the urinary dextrorphan (DX)/DM metabolic ratio (MR) (CYP2D6 activity marker) was numerically, but not significantly, lower with isotretinoin administration compared to pre-isotretinoin (geometric mean ratio [GMR] [90% confidence interval (CI)] 0.78 [0.55, 1.11]). The urinary 3-hydroxymorphinan (3HM)/DX MR (CYP3A activity marker) was increased (GMR 1.18 [1.03, 1.35]) and the urinary DX-O-glucuronide/DX MR (proposed UGT2B marker) was increased (GMR 1.22 [1.06, 1.39]) with isotretinoin administration compared to pre-isotretinoin. CONCLUSIONS Administration of isotretinoin did not significantly reduce CYP2D6 activity in extensive metabolizers, suggesting that the predicted downregulation of CYP2D6 based on in vitro data does not translate into humans. We observed a modest increase in CYP3A activity (predominantly CYP3A4) with isotretinoin treatment. The data also suggest that DX glucuronidation is increased following isotretinoin administration.
Collapse
Affiliation(s)
- Yuqian Zhao
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Jay C. Vary
- Department of Medicine, Division of Dermatology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Aprajita S. Yadav
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Lindsay C. Czuba
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Jeffrey LaFrance
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Weize Huang
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
- Milo Gibaldi Endowed Chair of Pharmaceutics, Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Mary F. Hebert
- Department of Pharmacy, University of Washington, School of Pharmacy, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington, USA
| |
Collapse
|
5
|
Pouzin C, Teutonico D, Fagniez N, Ziti-Ljajic S, Perreard-Dumaine A, Pardon M, Klieber S, Nguyen L. Prediction of CYP Down Regulation after Tusamitamab Ravtansine Administration (a DM4-Conjugate), Based on an In Vitro-In Vivo Extrapolation Approach. Clin Pharmacol Ther 2024; 115:278-287. [PMID: 37964462 DOI: 10.1002/cpt.3102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Tusamitamab ravtansine is an antibody-drug conjugate (ADC) composed of a humanized monoclonal antibody (IgG1) and DM4 payload. Even if DM4 and its main metabolite methyl-DM4 (Me-DM4) circulate at low concentrations after ADC administration, their potential as perpetrators of cytochrome P450 mediated drug-drug interaction was assessed. In vitro studies in human hepatocytes indicated that Me-DM4 elicited a clear concentration-dependent down regulation of cytochrome P450 enzymes (CYP3A4, 1A2, and 2B6). Because DM4 was unstable under the incubation conditions studied, the in vitro constants could not be determined for this entity. Thus, to predict the clinical relevance of this observed downregulation, an in vitro-in vivo extrapolation (IVIVE) pharmacokinetic (PK) based approach was developed. To mitigate model prediction errors and because of their similar inhibitory effect on tubulin polymerization, the same downregulation constants were used for DM4 and Me-DM4. This approach describes the time course of decreasing CYP3A4, 1A2, and 2B6 enzyme amounts as a function of circulating concentrations of DM4 and Me-DM4 predicted from a population PK model. The developed IVIVE-PK model showed that the highest CYP abundance decrease was observed for CYP3A4, with a transient reduction of < 10% from baseline. The impact on midazolam exposure, as probe substrate of CYP3A, was then simulated based on a physiologically-based PK static method. The maximal CYP3A4 abundance reduction was associated with a predicted midazolam area under the curve (AUC) ratio of 1.14. To conclude, the observed in vitro downregulation of CYPs by Me-DM4 is not expected to have relevant clinical impact.
Collapse
Affiliation(s)
- Clemence Pouzin
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| | - Donato Teutonico
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| | - Nathalie Fagniez
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| | - Samira Ziti-Ljajic
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| | | | | | - Sylvie Klieber
- Sanofi R&D, In vitro ADME, Drug Metabolism and Pharmacokinetics, Paris, France
| | - Laurent Nguyen
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| |
Collapse
|
6
|
Czuba LC, Malhotra K, Enthoven L, Fay EE, Moreni SL, Mao J, Shi Y, Huang W, Totah RA, Isoherranen N, Hebert MF. CYP2D6 Activity Is Correlated with Changes in Plasma Concentrations of Taurocholic Acid during Pregnancy and Postpartum in CYP2D6 Extensive Metabolizers. Drug Metab Dispos 2023; 51:1474-1482. [PMID: 37550070 PMCID: PMC10586507 DOI: 10.1124/dmd.123.001358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of >20% of marketed drugs. CYP2D6 expression and activity exhibit high interindividual variability and is induced during pregnancy. The farnesoid X receptor (FXR) is a transcriptional regulator of CYP2D6 that is activated by bile acids. In pregnancy, elevated plasma bile acid concentrations are associated with maternal and fetal risks. However, modest changes in bile acid concentrations may occur during healthy pregnancy, thereby altering FXR signaling. A previous study demonstrated that hepatic tissue concentrations of bile acids positively correlated with the hepatic mRNA expression of CYP2D6. This study sought to characterize the plasma bile acid metabolome in healthy women (n = 47) during midpregnancy (25-28 weeks gestation) and ≥3 months postpartum and to determine if plasma bile acids correlate with CYP2D6 activity. It is hypothesized that during pregnancy, plasma bile acids would favor less hydrophobic bile acids (cholic acid vs. chenodeoxycholic acid) and that plasma concentrations of cholic acid and its conjugates would positively correlate with the urinary ratio of dextrorphan/dextromethorphan. At 25-28 weeks gestation, taurine-conjugated bile acids comprised 23% of the quantified serum bile acids compared with 7% ≥3 months postpartum. Taurocholic acid positively associated with the urinary ratio of dextrorphan/dextromethorphan, a biomarker of CYP2D6 activity. Collectively, these results confirm that the bile acid plasma metabolome differs between pregnancy and postpartum and provide evidence that taurocholic acid may impact CYP2D6 activity during pregnancy. SIGNIFICANCE STATEMENT: Bile acid homeostasis is altered in pregnancy, and plasma concentrations of taurocholic acid positively correlate with CYP2D6 activity. Differences between plasma and/or tissue concentrations of farnesoid X receptor ligands such as bile acids may contribute to the high interindividual variability in CYP2D6 expression and activity.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Karan Malhotra
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Luke Enthoven
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Emily E Fay
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Sue L Moreni
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Jennie Mao
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Yuanyuan Shi
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Weize Huang
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Rheem A Totah
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Mary F Hebert
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Amaeze OU, Czuba LC, Yadav AS, Fay EE, LaFrance J, Shum S, Moreni SL, Mao J, Huang W, Isoherranen N, Hebert MF. Impact of Pregnancy and Vitamin A Supplementation on CYP2D6 Activity. J Clin Pharmacol 2023; 63:363-372. [PMID: 36309846 PMCID: PMC9931631 DOI: 10.1002/jcph.2169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
The mechanism of cytochrome P450 2D6 (CYP2D6) induction during pregnancy has not been evaluated in humans. This study assessed the changes in CYP2D6 and CYP3A activities during pregnancy and postpartum, and the effect of vitamin A administration on CYP2D6 activity. Forty-seven pregnant CYP2D6 extensive metabolizers (with CYP2D6 activity scores of 1 to 2) received dextromethorphan (DM) 30 mg orally as a single dose during 3 study windows (at 25 to 28 weeks of gestation, study day 1; at 28 to 32 weeks of gestation, study day 2; and at ≥3 months postpartum, study day 3). Participants were randomly assigned to groups with no supplemental vitamin A (control) or with supplemental vitamin A (10 000 IU/day orally for 3 to 4 weeks) after study day 1. Concentrations of DM and its metabolites, dextrorphan (DX) and 3-hydroxymorphinan (3HM), were determined from a 2-hour post-dose plasma sample and cumulative 4-hour urine sample using liquid chromatography-mass spectrometry. Change in CYP2D6 activity was assessed using DX/DM plasma and urine metabolic ratios. The activity change in CYP3A was also assessed using the 3HM/DM urine metabolic ratio. The DX/DM urine ratio was significantly higher (43%) in pregnancy compared with postpartum (P = .03), indicating increased CYP2D6 activity. The DX/DM plasma ratio was substantially higher in the participants, with an activity score of 1.0 during pregnancy (P = .04) compared with postpartum. The 3HM/DM urinary ratio was significantly higher (92%) during pregnancy, reflecting increased CYP3A activity (P = .02). Vitamin A supplementation did not change CYP2D6 activity during pregnancy; however, plasma all-trans retinoic acid (atRA) concentrations were positively correlated with increased CYP2D6 activity during pregnancy and postpartum. Further research is needed to elucidate the mechanisms of increased CYP2D6 activity during pregnancy.
Collapse
Affiliation(s)
- Ogochukwu U Amaeze
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Lindsay C. Czuba
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Aprajita S. Yadav
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Emily E. Fay
- Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington, United States
| | - Jeffrey LaFrance
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Sue L. Moreni
- Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington, United States
| | - Jennie Mao
- Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington, United States
| | - Weize Huang
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
- Milo Gibaldi Endowed Chair of Pharmaceutics, Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Mary F. Hebert
- Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington, United States
- Department of Pharmacy, University of Washington, School of Pharmacy, Seattle, Washington, United States
| |
Collapse
|
8
|
Brusasco M, Feliciani C, De Felici del Giudice MB. A case of chronic granulomatous disease and acne: is isotretinoin a safe treatment? Dermatol Reports 2022. [DOI: 10.4081/dr.2023.9631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We report the case of a patient with chronic granulomatous disease and acne treated with isotretinoin, who developed a diffuse staphylococcal skin infection during the therapy. Chronic granulomatous disease is a rare genetic disorder characterized by an altered innate immunity with an increased risk of potentially lethal bacterial and fungal infections. Although chronic granulomatous disease is rare, acne is a common manifestation in these patients, but there are no data about the gold standard therapy.
Collapse
|
9
|
Calderon-Garcia AA, Perez-Fernandez M, Curto-Aguilera D, Rodriguez-Martin I, Sánchez-Barba M, Gonzalez-Nunez V. Exposure to Morphine and Cocaine Modify the Transcriptomic Landscape in Zebrafish Embryos. Neuroscience 2022; 507:14-27. [PMID: 36404518 DOI: 10.1016/j.neuroscience.2022.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
Morphine and other opioid analgesics are the drugs of election to treat moderate-to-severe pain, and they elicit their actions by binding to the opioid receptors. Cocaine is a potent inhibitor of dopamine, serotonin, and noradrenaline reuptake, as it blocks DAT, the dopamine transporter, causing an increase in the local concentration of these neurotransmitters in the synaptic cleft. The molecular effects of these drugs have been studied in specific brain areas or nuclei, but the systemic effects in the whole organism have not been comprehensively analyzed. This study aims to analyze the transcriptomic changes elicited by morphine (10 uM) and cocaine (15 uM) in zebrafish embryos. An RNAseq assay was performed with tissues extracts from zebrafish embryos treated from 5 hpf (hours post fertilization) to 72 hpf, and the most representative deregulated genes were experimentally validated by qPCR. We have found changes in the expression of genes related to lipid metabolism, chemokine receptor ligands, visual system, hemoglobins, and metabolic detoxification pathways. Besides, morphine and cocaine modified the global DNA methylation pattern in zebrafish embryos, which would explain the changes in gene expression elicited by these two drugs of abuse.
Collapse
Affiliation(s)
- Andrés Angel Calderon-Garcia
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Spain; Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Spain
| | - Maria Perez-Fernandez
- Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca, Spain
| | - Daniel Curto-Aguilera
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Spain
| | - Ivan Rodriguez-Martin
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Mercedes Sánchez-Barba
- Institute of Biomedical Research of Salamanca (IBSAL), Spain; Dept. Statistics. Faculty of Medicine, University of Salamanca, Spain
| | - Veronica Gonzalez-Nunez
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Spain; Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Spain.
| |
Collapse
|
10
|
Yadav AS, Stevison F, Kosaka M, Wong S, Kenny JR, Amory JK, Isoherranen N. Isotretinoin and its Metabolites Alter mRNA of Multiple Enzyme and Transporter Genes In Vitro, but Downregulation of Organic Anion Transporting Polypeptide Does Not Translate to the Clinic. Drug Metab Dispos 2022; 50:1042-1052. [PMID: 35545255 PMCID: PMC11022860 DOI: 10.1124/dmd.122.000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Isotretinoin [13-cis-retinoic acid (13cisRA)] is widely used for the treatment of neuroblastoma and acne. It acts via regulating gene transcription through binding to retinoic acid receptors. Yet, the potential for isotretinoin to cause transcriptionally mediated drug-drug interactions (DDIs) has not been fully explored. We hypothesized that isotretinoin and its active metabolites all-trans-retinoic acid (atRA) and 4-oxo-13cisRA would alter the transcription of enzymes and transporters in the human liver via binding to nuclear receptors. The goal of this study was to define the DDI potential of isotretinoin and its metabolites resulting from transcriptional regulation of cytochrome P450 and transporter mRNAs. In human hepatocytes (n = 3), 13cisRA, atRA, and 4-oxo-13cisRA decreased OATP1B1, CYP1A2, CYP2C9, and CYP2D6 mRNA and increased CYP2B6 and CYP3A4 mRNA in a concentration-dependent manner. The EC50 values for OATP1B1 mRNA downregulation ranged from 2 to 110 nM, with maximum effect (Emax ) ranging from 0.17- to 0.54-fold. Based on the EC50 and Emax values and the known circulating concentrations of 13cisRA and its metabolites after isotretinoin dosing, a 55% decrease in OATP1B1 activity was predicted in vivo. In vivo DDI potential was evaluated clinically in participants dosed with isotretinoin for up to 32 weeks using coproporphyrin-I (CP-I) as an OATP1B1 biomarker. CP-I steady-state serum concentrations were unaltered following 2, 8, or 16 weeks of isotretinoin treatment. These data show that isotretinoin and its metabolites alter transcription of multiple enzymes and transporters in vitro, but translation of these changes to in vivo drug-drug interactions requires clinical evaluation for each enzyme. SIGNIFICANCE STATEMENT: Isotretinoin and its metabolites alter the mRNA expression of multiple cytochrome P450s (CYPs) and transporters in human hepatocytes, suggesting that isotretinoin may cause clinically significant drug-drug interactions (DDIs). Despite the observed changes in organic anion transporting polypeptide 1B1 (OATP1B1) mRNA in human hepatocytes, no clinical DDI was observed when measuring a biomarker, coproporphyrin-I. Further work is needed to determine whether these findings can be extrapolated to a lack of a DDI with CYP1A2, CYP2B6, and CYP2C9 substrates.
Collapse
Affiliation(s)
- Aprajita S Yadav
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Faith Stevison
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Mika Kosaka
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Susan Wong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Jane R Kenny
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - John K Amory
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| |
Collapse
|
11
|
Säll C, Alifrangis L, Dahl K, Friedrichsen MH, Nygård SB, Kristensen K. In vitro CYP450 enzyme down-regulation by GLP-1/glucagon co-agonist does not translate to observed drug-drug interactions in the clinic. Drug Metab Dispos 2022; 50:DMD-AR-2022-000865. [PMID: 35680133 DOI: 10.1124/dmd.122.000865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022] Open
Abstract
NN1177 is a glucagon/glucagon-like peptide 1 receptor co-agonist investigated for chronic weight management and treatment of non-alcoholic steatohepatitis. Here, we show concentration-dependent down-regulation of cytochrome P450 enzymes using freshly isolated human hepatocytes treated with this linear 29-amino acid peptide. Notably, reductions in CYP3A4 mRNA expression (57.2-71.7%) and activity (18.5-51.5%) were observed with a clinically-relevant concentration of 100 nM NN1177. CYP1A2 and CYP2B6 were also affected, but to a lesser extent. Physiological-based pharmacokinetic modelling simulated effects on CYP3A4 and CYP1A2 probe substrates (midazolam and caffeine, respectively) and revealed potential safety concerns related to drug-drug interactions (DDIs). To investigate the clinical relevance of observed in vitro CYP down-regulation, a phase 1 clinical cocktail study was initiated to assess the DDI potential. The study enrolled 45 study participants (BMI 23.0-29.9 kg/m2) to receive a Cooperstown 5+1 cocktail (midazolam, caffeine, omeprazole, dextromethorphan, and S-warfarin/vitamin K) alone and following steady state NN1177 exposure. The analysis of pharmacokinetic profiles for the cocktail drugs showed no significant effect from the co-administration of NN1177 on AUC0-inf for midazolam or S-warfarin. Omeprazole, caffeine, and dextromethorphan generally displayed decreases in AUC0-inf and Cmax following NN1177 co-administration. Thus, the in vitro observations were not reflected in the clinic. These findings highlight remaining challenges associated with standard in vitro systems used to predict DDIs for peptide-based drugs as well as the complexity of DDI trial design for these modalities. Overall, there is an urgent need for better pre-clinical models to assess potential drug-drug interaction risks associated with therapeutic peptides during drug development. Significance Statement This study highlights significant challenges associated with assessing drug-drug interaction risks for therapeutic peptides using in vitro systems, since potential concerns identified by standard assays did not translate to the clinical setting. Further research is required to guide investigators involved in peptide-based drug development towards better non-clinical models in order to more accurately evaluate potential drug-drug interactions.
Collapse
|
12
|
Czuba LC, Fay EE, LaFrance J, Smith CK, Shum S, Moreni SL, Mao J, Isoherranen N, Hebert MF. Plasma Retinoid Concentrations Are Altered in Pregnant Women. Nutrients 2022; 14:1365. [PMID: 35405978 PMCID: PMC9002937 DOI: 10.3390/nu14071365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
Vitamin A is vital to maternal-fetal health and pregnancy outcomes. However, little is known about pregnancy associated changes in maternal vitamin A homeostasis and concentrations of circulating retinol metabolites. The goal of this study was to characterize retinoid concentrations in healthy women (n = 23) during two stages of pregnancy (25-28 weeks gestation and 28-32 weeks gestation) as compared to ≥3 months postpartum. It was hypothesized that plasma retinol, retinol binding protein 4 (RBP4), transthyretin and albumin concentrations would decline during pregnancy and return to baseline by 3 months postpartum. At 25-28 weeks gestation, plasma retinol (-27%), 4-oxo-13-cis-retinoic acid (-34%), and albumin (-22%) concentrations were significantly lower, and all-trans-retinoic acid (+48%) concentrations were significantly higher compared to ≥3 months postpartum in healthy women. In addition, at 28-32 weeks gestation, plasma retinol (-41%), retinol binding protein 4 (RBP4; -17%), transthyretin (TTR; -21%), albumin (-26%), 13-cis-retinoic acid (-23%) and 4-oxo-13-cis-retinoic acid (-48%) concentrations were significantly lower, whereas plasma all-trans-retinoic acid concentrations (+30%) were significantly higher than ≥3 months postpartum. Collectively, the data demonstrates that in healthy pregnancies, retinol plasma concentrations are lower, but all-trans-retinoic acid concentrations are higher than postpartum.
Collapse
Affiliation(s)
- Lindsay C. Czuba
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA; (L.C.C.); (J.L.); (S.S.); (N.I.)
| | - Emily E. Fay
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA 98195, USA; (E.E.F.); (S.L.M.); (J.M.)
| | - Jeffrey LaFrance
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA; (L.C.C.); (J.L.); (S.S.); (N.I.)
| | - Chase K. Smith
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA 98195, USA;
| | - Sara Shum
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA; (L.C.C.); (J.L.); (S.S.); (N.I.)
| | - Sue L. Moreni
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA 98195, USA; (E.E.F.); (S.L.M.); (J.M.)
| | - Jennie Mao
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA 98195, USA; (E.E.F.); (S.L.M.); (J.M.)
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA; (L.C.C.); (J.L.); (S.S.); (N.I.)
| | - Mary F. Hebert
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA 98195, USA; (E.E.F.); (S.L.M.); (J.M.)
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
13
|
Zou P, Heath A, Sewell C, Lu Y, Tran D, Seo SK. EXOGENOUS Sex Hormones and Sex Hormone Receptor Modulators in COVID-19: Rationale and Clinical Pharmacology Considerations. Clin Pharmacol Ther 2021; 111:559-571. [PMID: 34888850 DOI: 10.1002/cpt.2508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/03/2021] [Indexed: 11/12/2022]
Abstract
Male patients with coronavirus disease 2019 (COVID-19) fare much worse than female patients in COVID-19 severity and mortality according to data from several studies. Because of this sex disparity, researchers hypothesize that the use of exogenous sex hormone therapy and sex hormone receptor modulators might provide therapeutic potential for patients with COVID-19. Repurposing approved drugs or drug candidates at late-stage clinical development could expedite COVID-19 therapy development because their clinical formulation, routes of administration, dosing regimen, clinical pharmacology, and potential adverse events have already been established or characterized in humans. A number of exogenous sex hormones and sex hormone receptor modulators are currently or will be under clinical investigation for COVID-19 therapy. In this review, we discuss the rationale for exogenous sex hormones and sex hormone receptor modulators in COVID-19 treatment, summarize ongoing and planned clinical trials, and discuss some of the clinical pharmacology considerations on clinical study design. To inform clinical study design and facilitate the clinical development of exogenous sex hormones and sex hormone receptor modulators for COVID-19 therapy, clinical investigators should pay attention to clinical pharmacology factors, such as dosing regimen, special populations (i.e., geriatrics, pregnancy, lactation, and renal/hepatic impairment), and drug interactions.
Collapse
Affiliation(s)
- Peng Zou
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Agiua Heath
- Division of Urology, Obstetrics, and Gynecology, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Catherine Sewell
- Division of Urology, Obstetrics, and Gynecology, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yanhui Lu
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Doanh Tran
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shirley K Seo
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
14
|
Shum S, Yadav A, Fay E, Moreni S, Mao J, Czuba L, Wang C, Isoherranen N, Hebert MF. Infant dextromethorphan and dextrorphan exposure via breast milk from mothers who are CYP2D6 extensive metabolizers. J Clin Pharmacol 2021; 62:747-755. [PMID: 34889461 DOI: 10.1002/jcph.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/03/2021] [Indexed: 11/11/2022]
Abstract
The risk of infant exposure to dextromethorphan (DM) and its active metabolite, dextrorphan (DX), through breast milk has not been evaluated. In this study, bound and unbound DM and DX concentrations in breast milk and plasma at 2 h post-dose were measured in 20 lactating women (n = 20) following a single 30 mg oral dose of DM. The DM and DX concentrations in breast milk were positively correlated with their respective plasma concentrations. The breast milk-to-plasma (M/P) ratios of 1.0 and 1.6 and the unbound M/P ratios of 1.1 and 2.0 for DM and DX, respectively, suggested that DM and DX are extensively distributed into breast milk. The infant exposure following a single dose of 30 mg DM was estimated using the breast milk concentrations to be 0.33 ± 0.32 μg/kg/day and 1.8 ± 1.0 μg/kg/day for DM and DX, respectively. The steady-state infant exposure was estimated using the M/P ratios and previously reported AUC of DM and DX following repeated dosing of DM 60 mg orally twice daily to be 0.64 ± 0.22 μg/kg/day and 1.23 ± 0.38 μg/kg/day, respectively. Based on these estimated infant doses, the relative infant doses (RIDs) were estimated to be <1%, suggesting the infant is only exposed to a minor fraction of adult dose through breast milk; however, one nursing infant developed an erythematous rash during this study which warrants additional research to fully elucidate the risks of infant exposure to DM and DX through breast milk. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sara Shum
- University of Washington, Department of Pharmaceutics, Seattle, WA, USA
| | - Aprajita Yadav
- University of Washington, Department of Pharmaceutics, Seattle, WA, USA
| | - Emily Fay
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Sue Moreni
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Jennie Mao
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Lindsay Czuba
- University of Washington, Department of Pharmaceutics, Seattle, WA, USA
| | - Celine Wang
- University of Washington, Department of Pharmacy, Seattle, WA, USA
| | - Nina Isoherranen
- University of Washington, Department of Pharmaceutics, Seattle, WA, USA
| | - Mary F Hebert
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA.,University of Washington, Department of Pharmacy, Seattle, WA, USA
| |
Collapse
|
15
|
Regen F, Cosma NC, Otto LR, Clemens V, Saksone L, Gellrich J, Uesekes B, Ta TMT, Hahn E, Dettling M, Heuser I, Hellmann-Regen J. Clozapine modulates retinoid homeostasis in human brain and normalizes serum retinoic acid deficit in patients with schizophrenia. Mol Psychiatry 2021; 26:5417-5428. [PMID: 32488128 PMCID: PMC8589649 DOI: 10.1038/s41380-020-0791-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/24/2022]
Abstract
The atypical antipsychotic clozapine is one of the most potent drugs of its class, yet its precise mechanisms of action remain insufficiently understood. Recent evidence points toward the involvement of endogenous retinoic acid (RA) signaling in the pathophysiology of schizophrenia. Here we investigated whether clozapine may modulate RA-signaling. Effects of clozapine on the catabolism of all-trans RA (at-RA), the biologically most active metabolite of Vitamin A, were assessed in murine and human brain tissue and peripheral blood-derived mononuclear cells (PBMC). In patients with schizophrenia with and without clozapine treatment and matched healthy controls, at-RA serum levels and blood mRNA expression of retinoid-related genes in PBMCs were quantified. Clozapine and its metabolites potently inhibited RA catabolism at clinically relevant concentrations. In PBMC-derived microsomes, we found a large interindividual variability of the sensitivity toward the effects of clozapine. Furthermore, at-RA and retinol serum levels were significantly lower in patients with schizophrenia compared with matched healthy controls. Patients treated with clozapine exhibited significantly higher at-RA serum levels compared with patients treated with other antipsychotics, while retinol levels did not differ between treatment groups. Similarly, in patients without clozapine treatment, mRNA expression of RA-inducible targets CYP26A and STRA6, as well as at-RA/retinol ratio, were significantly reduced. In contrast, clozapine-treated patients did not differ from healthy controls in this regard. Our findings provide the first evidence for altered peripheral retinoid homeostasis in schizophrenia and suggest modulation of RA catabolism as a novel mechanism of action of clozapine, which may be useful in future antipsychotic drug development.
Collapse
Affiliation(s)
- Francesca Regen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Nicoleta-Carmen Cosma
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Lisa R Otto
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Vera Clemens
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Lana Saksone
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Janine Gellrich
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Berk Uesekes
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Thi Minh Tam Ta
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Eric Hahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Michael Dettling
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Isabella Heuser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany
| | - Julian Hellmann-Regen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry, Campus Benjamin Franklin, Berlin, Germany.
| |
Collapse
|
16
|
Li H, Wang YG, Ma ZC, Yun-Hang G, Ling S, Teng-Fei C, Guang-Ping Z, Gao Y. A high-throughput cell-based gaussia luciferase reporter assay for measurement of CYP1A1, CYP2B6, and CYP3A4 induction. Xenobiotica 2021; 51:752-763. [PMID: 33896369 DOI: 10.1080/00498254.2021.1918800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The induction of cytochrome P450s can result in reduced drug efficacy and lead to potential drug-drug interactions. The xenoreceptors-aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR)-play key roles in CYP induction by xenobiotics. In order to be able to rapidly screen for the induction of three enzymes (CYP1A1, CYP2B6, and CYP3A4), we generated a stable AhR-responsive HepG2 cell line, a stable CAR-responsive HepG2 cell line, and a stable PXR-responsive HepG2 cell line.To validate these stable xenoreceptor-responsive HepG2 cell lines, we evaluated the induction of the different Gaussia reporter activities, as well as the mRNA and protein expression levels of endogenous CYPs in response to different inducers.The induction of luciferase activity in the stable xenoreceptor-responsive HepG2 cell lines by specific inducers occurred in a concentration dependent manner. There was a positive correlation between the induction of luciferase activities and the induction endogenous CYP mRNA expression levels. These xenoreceptor-responsive HepG2 cell lines were further validated with known CYP1A1, CYP2B6, and CYP3A4 inducers.These stable xenoreceptor-responsive HepG2 cell lines may be used in preclinical research for the rapid and sensitive detection of AhR, CAR, and PXR ligands that induce CYP450 isoforms.
Collapse
Affiliation(s)
- Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Guang Wang
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| | - Zeng-Chun Ma
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| | - Gao Yun-Hang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Song Ling
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Teng-Fei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhang Guang-Ping
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Gao
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Turner PK, Hall SD, Chapman SC, Rehmel JL, Royalty JE, Guo Y, Kulanthaivel P. Abemaciclib Does Not Have a Clinically Meaningful Effect on Pharmacokinetics of CYP1A2, CYP2C9, CYP2D6, and CYP3A4 Substrates in Patients with Cancer. Drug Metab Dispos 2020; 48:796-803. [DOI: 10.1124/dmd.119.090092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
|
18
|
Isoherranen N, Zhong G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacol Ther 2019; 204:107400. [PMID: 31419517 PMCID: PMC6881548 DOI: 10.1016/j.pharmthera.2019.107400] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
The Cytochrome P450 (CYP) family 26 enzymes contribute to retinoic acid (RA) metabolism and homeostasis in humans, mammals and other chordates. The three CYP26 family enzymes, CYP26A1, CYP26B1 and CYP26C1 have all been shown to metabolize all-trans-retinoic acid (atRA) it's 9-cisRA and 13-cisRA isomers and primary metabolites 4-OH-RA and 4-oxo-RA with high efficiency. While no crystal structures of CYP26 enzymes are available, the binding of various ligands has been extensively explored via homology modeling. All three CYP26 enzymes are inducible by treatment with atRA in various prenatal and postnatal tissues and cell types. However, current literature shows that in addition to regulation by atRA, CYP26 enzyme expression is also regulated by other endogenous processes and inflammatory cytokines. In humans and in animal models the expression patterns of CYP26 enzymes have been shown to be tissue and cell type specific, and the expression of the CYP26 enzymes is believed to regulate the formation of critical atRA concentration gradients in various tissue types. Yet, very little data exists on direct disease associations of altered CYP26 expression or activity. Nevertheless, data is emerging describing a variety of human genetic variations in the CYP26 enzymes that are associated with different pathologies. Interestingly, some of these genetic variants result in increased activity of the CYP26 enzymes potentially leading to complex gene-environment interactions due to variability in dietary intake of retinoids. This review highlights the current knowledge of structure-function of CYP26 enzymes and focuses on their role in human retinoid metabolism in different tissues.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
CYP1A2 Downregulation by Obeticholic Acid: Usefulness as a Positive Control for the In Vitro Evaluation of Drug-Drug Interactions. J Pharm Sci 2019; 108:3903-3910. [DOI: 10.1016/j.xphs.2019.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
|