1
|
Katsukunya JN, Jones E, Soko ND, Blom D, Sinxadi P, Rayner B, Dandara C. Genetic Variation in ABCB1, ADRB1, CYP3A4, CYP3A5, NEDD4L and NR3C2 Confers Differential Susceptibility to Resistant Hypertension among South Africans. J Pers Med 2024; 14:664. [PMID: 39063918 PMCID: PMC11277774 DOI: 10.3390/jpm14070664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Resistant hypertension (RHTN) prevalence ranges from 4 to 19% in Africa. There is a paucity of data on the role of genetic variation on RHTN among Africans. We set out to investigate the role of polymorphisms in ABCB1, ADRB1, CYP3A4, CYP3A5, NEDD4L, and NR3C2, on RHTN susceptibility among South Africans. Using a retrospective matched case-control study, 190 RHTN patients (cases: blood pressure (BP) ≥ 140/90 mmHg on ≥3 anti-hypertensives or BP < 140/90 mmHg on >3 anti-hypertensives) and 189 non-RHTN patients (controls: <3 anti-hypertensives, BP < 140/90 or ≥140/90 mmHg), 12 single nucleotide polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), quantitative PCR and Sanger sequencing. Genetic association analyses were conducted using the additive model and multivariable logistic regression. Homozygosity for CYP3A5 rs776746C/C genotype (p = 0.02; OR: 0.44; CI: 0.22-0.89) was associated with reduced risk for RHTN. Homozygous ADRB1 rs1801252G/G (p = 0.02; OR: 3.30; CI: 1.17-10.03) and NEDD4L rs4149601A/A genotypes (p = 0.001; OR: 3.82; CI: 1.67-9.07) were associated with increased risk for RHTN. Carriers of the of ADRB1 rs1801252-rs1801253 G-C haplotype had 2.83-fold odds of presenting with RHTN (p = 0.04; OR: 2.83; CI: 1.05-8.20). These variants that are associated with RHTN may have clinical utility in the selection of antihypertensive drugs in our population.
Collapse
Affiliation(s)
- Jonathan N. Katsukunya
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (J.N.K.); (N.D.S.)
- SAMRC/UCT Platform for Pharmacogenomics Research and Translation, South African Medical Research Council, Cape Town 7501, South Africa; (E.J.); (D.B.); (P.S.); (B.R.)
| | - Erika Jones
- SAMRC/UCT Platform for Pharmacogenomics Research and Translation, South African Medical Research Council, Cape Town 7501, South Africa; (E.J.); (D.B.); (P.S.); (B.R.)
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Nyarai D. Soko
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (J.N.K.); (N.D.S.)
- SAMRC/UCT Platform for Pharmacogenomics Research and Translation, South African Medical Research Council, Cape Town 7501, South Africa; (E.J.); (D.B.); (P.S.); (B.R.)
- Department of Pharmaceutical Technology, School of Allied Health Sciences, Harare Institute of Technology, Harare P.O. Box BE 277, Zimbabwe
| | - Dirk Blom
- SAMRC/UCT Platform for Pharmacogenomics Research and Translation, South African Medical Research Council, Cape Town 7501, South Africa; (E.J.); (D.B.); (P.S.); (B.R.)
- Department of Medicine, Division of Lipidology and Cape Heart Institute, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Phumla Sinxadi
- SAMRC/UCT Platform for Pharmacogenomics Research and Translation, South African Medical Research Council, Cape Town 7501, South Africa; (E.J.); (D.B.); (P.S.); (B.R.)
- Department of Medicine, Division of Clinical Pharmacology, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Brian Rayner
- SAMRC/UCT Platform for Pharmacogenomics Research and Translation, South African Medical Research Council, Cape Town 7501, South Africa; (E.J.); (D.B.); (P.S.); (B.R.)
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (J.N.K.); (N.D.S.)
- SAMRC/UCT Platform for Pharmacogenomics Research and Translation, South African Medical Research Council, Cape Town 7501, South Africa; (E.J.); (D.B.); (P.S.); (B.R.)
| |
Collapse
|
2
|
Powell NR, Shugg T, Leighty J, Martin M, Kreutz RP, Eadon MT, Lai D, Lu T, Skaar TC. Analysis of the combined effect of rs699 and rs5051 on angiotensinogen expression and hypertension. Chronic Dis Transl Med 2024; 10:102-117. [PMID: 38872760 PMCID: PMC11166681 DOI: 10.1002/cdt3.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 06/15/2024] Open
Abstract
Background Hypertension (HTN) involves genetic variability in the renin-angiotensin system and influences antihypertensive response. We previously reported that angiotensinogen (AGT) messenger RNA (mRNA) is endogenously bound by miR-122-5p and rs699 A > G decreases reporter mRNA in the microRNA functional-assay PASSPORT-seq. The AGT promoter variant rs5051 C > T is in linkage disequilibrium (LD) with rs699 A > G and increases AGT transcription. The independent effect of these variants is understudied due to their LD therefore we aimed to test the hypothesis that increased AGT by rs5051 C > T counterbalances AGT decreased by rs699 A > G, and when these variants occur independently, it translates to HTN-related phenotypes. Methods We used in silico, in vitro, in vivo, and retrospective models to test this hypothesis. Results In silico, rs699 A > G is predicted to increase miR-122-5p binding affinity by 3%. Mir-eCLIP results show rs699 is 40-45 nucleotides from the strongest microRNA-binding site in the AGT mRNA. Unexpectedly, rs699 A > G increases AGT mRNA in an AGT-plasmid-cDNA HepG2 expression model. Genotype-Tissue Expression (GTEx) and UK Biobank analyses demonstrate liver AGT expression and HTN phenotypes are not different when rs699 A > G occurs independently from rs5051 C > T. However, GTEx and the in vitro experiments suggest rs699 A > G confers cell-type-specific effects on AGT mRNA abundance, and suggest paracrine renal renin-angiotensin-system perturbations could mediate the rs699 A > G associations with HTN. Conclusions We found that rs5051 C > T and rs699 A > G significantly associate with systolic blood pressure in Black participants in the UK Biobank, demonstrating a fourfold larger effect than in White participants. Further studies are warranted to determine if altered antihypertensive response in Black individuals might be due to rs5051 C > T or rs699 A > G. Studies like this will help clinicians move beyond the use of race as a surrogate for genotype.
Collapse
Affiliation(s)
- Nicholas R. Powell
- Division of Clinical Pharmacology, Department of MedicineSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Tyler Shugg
- Division of Clinical Pharmacology, Department of MedicineSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Jacob Leighty
- Division of Clinical Pharmacology, Department of MedicineSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Matthew Martin
- Department of Pharmacology and ToxicologySchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Rolf P. Kreutz
- Department of CardiologySchool of Medicine, Krannert Institute of Cardiology, Indiana UniversityIndianapolisIndianaUSA
| | - Michael T. Eadon
- Division of Nephrology, Department of MedicineSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Dongbing Lai
- Department of Medical and Molecular GeneticsSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Tao Lu
- Department of Pharmacology and ToxicologySchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Todd C. Skaar
- Division of Clinical Pharmacology, Department of MedicineSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
3
|
Katsukunya JN, Soko ND, Naidoo J, Rayner B, Blom D, Sinxadi P, Chimusa ER, Dandara M, Dzobo K, Jones E, Dandara C. Pharmacogenomics of Hypertension in Africa: Paving the Way for a Pharmacogenetic-Based Approach for the Treatment of Hypertension in Africans. Int J Hypertens 2023; 2023:9919677. [PMID: 38633331 PMCID: PMC11022520 DOI: 10.1155/2023/9919677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 04/19/2024] Open
Abstract
In Africa, the burden of hypertension has been rising at an alarming rate for the last two decades and is a major cause for cardiovascular disease (CVD) mortality and morbidity. Hypertension is characterised by elevated blood pressure (BP) ≥ 140/90 mmHg. Current hypertension guidelines recommend the use of antihypertensives belonging to the following classes: calcium channel blockers (CCB), angiotensin converting inhibitors (ACEI), angiotensin receptor blockers (ARB), diuretics, β-blockers, and mineralocorticoid receptor antagonists (MRAs), to manage hypertension. Still, a considerable number of hypertensives in Africa have their BP uncontrolled due to poor drug response and remain at the risk of CVD events. Genetic factors are a major contributing factor, accounting for 20% to 80% of individual variability in therapy and poor response. Poor response to antihypertensive drug therapy is characterised by elevated BPs and occurrence of adverse drug reactions (ADRs). As a result, there have been numerous studies which have examined the role of genetic variation and its influence on antihypertensive drug response. These studies are predominantly carried out in non-African populations, including Europeans and Asians, with few or no Africans participating. It is important to note that the greatest genetic diversity is observed in African populations as well as the highest prevalence of hypertension. As a result, this warrants a need to focus on how genetic variation affects response to therapeutic interventions used to manage hypertension in African populations. In this paper, we discuss the implications of genetic diversity in CYP11B2, GRK4, NEDD4L, NPPA, SCNN1B, UMOD, CYP411, WNK, CYP3A4/5, ACE, ADBR1/2, GNB3, NOS3, B2, BEST3, SLC25A31, LRRC15 genes, and chromosome 12q loci on hypertension susceptibility and response to antihypertensive therapy. We show that African populations are poorly explored genetically, and for the few characterised genes, they exhibit qualitative and quantitative differences in the profile of pharmacogene variants when compared to other ethnic groups. We conclude by proposing prioritization of pharmacogenetics research in Africa and possible adoption of pharmacogenetic-guided therapies for hypertension in African patients. Finally, we outline the implications, challenges, and opportunities these studies present for populations of non-European descent.
Collapse
Affiliation(s)
- Jonathan N. Katsukunya
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Nyarai D. Soko
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Jashira Naidoo
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Brian Rayner
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dirk Blom
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Lipidology and Cape Heart Institute, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phumla Sinxadi
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Clinical Pharmacology, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile R. Chimusa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear NE1 8ST, UK
| | - Michelle Dandara
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Kevin Dzobo
- Medical Research Council-SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Erika Jones
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Powell NR, Shugg T, Leighty J, Martin M, Kreutz RP, Eadon MT, Lai D, Lu T, Skaar TC. Analysis of the Combined Effect of rs699 and rs5051 on Angiotensinogen Expression and Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536073. [PMID: 37066278 PMCID: PMC10104131 DOI: 10.1101/2023.04.07.536073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Hypertension (HTN) involves genetic variability in the renin-angiotensin system and characterizing this variability will help advance precision antihypertensive treatments. We previously reported that angiotensinogen (AGT) mRNA is endogenously bound by mir-122-5p and that rs699 A>G significantly decreases reporter mRNA in the functional mirSNP assay PASSPORT-seq. The AGT promoter variant rs5051 C>T is in linkage disequilibrium (LD) with rs699 A>G and increases AGT transcription. We hypothesized that the increased AGT by rs5051 C>T counterbalances AGT decrease by rs699 A>G, and when these variants occur independently, would translate to HTN-related phenotypes. The independent effect of each of these variants is understudied due to their LD, therefore, we used in silico, in vitro, in vivo, and retrospective clinical and biobank analyses to assess HTN and AGT expression phenotypes where rs699 A>G occurs independently from rs5051 C>T. In silico, rs699 A>G is predicted to increase mir-122-5p binding strength by 3%. Mir-eCLIP assay results show that rs699 is 40-45 nucleotides from the strongest microRNA binding site in the AGT mRNA. Unexpectedly, rs699 A>G increases AGT mRNA in a plasmid cDNA HepG2 expression model. GTEx and UK Biobank analyses demonstrate that liver AGT expression and HTN phenotypes were not different when rs699 A>G occurs independently from rs5051 C>T, allowing us to reject the original hypothesis. However, both GTEx and our in vitro experiments suggest rs699 A>G confers cell-type specific effects on AGT mRNA abundance. We found that rs5051 C>T and rs699 A>G significantly associate with systolic blood pressure in Black participants in the UK Biobank, demonstrating a 4-fold larger effect than in White participants. Further studies are warranted to determine if the altered antihypertensive response in Black individuals might be due to rs5051 C>T or rs699 A>G. Studies like this will help clinicians move beyond the use of race as a surrogate for genotype.
Collapse
Affiliation(s)
- Nicholas R. Powell
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis IN
| | - Tyler Shugg
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis IN
| | - Jacob Leighty
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis IN
| | - Matthew Martin
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, Indianapolis IN
| | - Rolf P. Kreutz
- Indiana University School of Medicine, Department of Cardiology, Krannert Institute of Cardiology, Indianapolis IN
| | - Michael T. Eadon
- Indiana University School of Medicine, Department of Medicine, Division of Nephrology, Indianapolis IN
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis IN
| | - Dongbing Lai
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis IN
| | - Tao Lu
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, Indianapolis IN
| | - Todd C. Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis IN
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis IN
| |
Collapse
|
5
|
Gholami M, Zoughi M, Hasanzad M, Larijani B, Amoli MM. Haplotypic variants of COVID-19 related genes are associated with blood pressure and metabolites levels. J Med Virol 2023; 95:e28355. [PMID: 36443248 PMCID: PMC9877746 DOI: 10.1002/jmv.28355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The genetic association of coronavirus disease 2019 (COVID-19) with its complications has not been fully understood. This study aimed to identify variants and haplotypes of candidate genes implicated in COVID-19 related traits by combining the literature review and pathway analysis. To explore such genes, the protein-protein interactions and relevant pathways of COVID-19-associated genes were assessed. A number of variants on candidate genes were identified from Genome-wide association studies (GWASs) which were associated with COVID-19 related traits (p ˂ 10-6 ). Haplotypic blocks were assessed using haplotypic structures among the 1000 Genomes Project (r2 ≥ 0.8, D' ≥ 0.8). Further functional analyses were performed on the selected variants. The results demonstrated that a group of variants in ACE and AGT genes were significantly correlated with COVID-19 related traits. Three haplotypes were identified to be involved in the blood metabolites levels and the development of blood pressure. Functional analyses revealed that most GWAS index variants were expression quantitative trait loci and had transcription factor binding sites, exonic splicing enhancers or silencer activities. Furthermore, the proxy haplotype variants, rs4316, rs4353, rs4359, and three variants, namely rs2493133, rs2478543, and rs5051, were associated with blood metabolite and systolic blood pressure, respectively. These variants exerted more regulatory effects compared with other GWAS variants. The present study indicates that the genetic variants and candidate haplotypes of COVID-19 related genes are associated with blood pressure and blood metabolites. However, further observational studies are warranted to confirm these results.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Marziyeh Zoughi
- Metabolomics and genomics research center endocrinology and metabolism molecular‐cellular sciences instituteTehran University of medical sciencesTehranIran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Yehia R, Schaalan M, Abdallah DM, Saad AS, Sarhan N, Saleh S. Impact of TNF-α Gene Polymorphisms on Pancreatic and Non-Small Cell Lung Cancer-Induced Cachexia in Adult Egyptian Patients: A Focus on Pathogenic Trajectories. Front Oncol 2021; 11:783231. [PMID: 34900737 PMCID: PMC8651494 DOI: 10.3389/fonc.2021.783231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023] Open
Abstract
Background Cachexia is a frequent syndrome in pancreatic and non-small cell lung (NSCL) cancer patients. The storm of cancer-induced inflammatory cytokines, in particular TNF-α, is a crucial pathogenic mechanism. Among the molecular alterations accused of cancer-induced cachexia, TNF-α 308 G/A (rs1800629) and −1031T/C (rs1799964) are single-nucleotide polymorphisms (SNPs) within the gene encoding this pro-inflammatory cytokine. Recent studies have demonstrated the crucial role of non-coding microRNAs (miRNAs) in pathogenesis of different diseases including cachexia. Moreover, the mechanistic cytokine signaling pathway of miR-155, as a TNF-α regulator, supports the involvement of SOCS1, TAB2, and Foxp3, which are direct targets of TNF-α gene. Aim A case–control study (NCT04131478) was conducted primarily to determine the incidence of TNF-α 308 G/A (rs1800629) and −1031T/C (rs1799964) gene polymorphisms in adult Egyptian patients with local/advanced or metastatic pancreatic or NSCL cancer and investigate both as cachexia risk factors. The association of gene polymorphism with cachexia severity and the expression of miR-155 in cachectic patients were analyzed. A mechanistic investigation of the cytokine signaling pathway, involving SOCS1, TAB2, and Foxp3, was also performed. Results In both pancreatic and NSCL cancer cohorts, the mutant TNF-α variant of 308 G/A was positively associated with cachexia; on the contrary, that of 1031T/C was negatively associated with cachexia in the NSCL cancer patients. MiR-155 was higher in cachexia and in alignment with its severity in the cachectic group as compared with the non-cachectic group in both the pancreatic and NSCL cancer patients. Though TAB2 did not change to any significant extent in cachectic patients, the levels of SOCS1 and Foxp3 were significantly lower in the cachectic group as compared with the non-cachectic group. Conclusion Carriers of the A allele 308 G/A gene and high miR-155 are at greater risk of cachexia in both the pancreatic and NSCL cancer patients; however, the mutant variant of 1031T/C gene is protective against cachexia in the NSCL cancer patients. Finally, high levels of miR-155 in the cachectic group lead to negative feedback inhibition of both SOCS1 and Foxp3 in both the pancreatic and NSCL cancer patients.
Collapse
Affiliation(s)
- Rana Yehia
- Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Mona Schaalan
- Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amr S Saad
- Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Neven Sarhan
- Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Samira Saleh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Dumeny L, Vardeny O, Edelmann F, Pieske B, Duarte JD, Cavallari LH. NR3C2 genotype is associated with response to spironolactone in diastolic heart failure patients from the Aldo-DHF trial. Pharmacotherapy 2021; 41:978-987. [PMID: 34569641 DOI: 10.1002/phar.2626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023]
Abstract
STUDY OBJECTIVE This study aimed to determine if variants in NR3C2, which codes the target protein of spironolactone, or CYP11B2, which is involved in aldosterone synthesis, were associated with spironolactone response, focused on the primary end point of diastolic function (E/e'), in Aldosterone Receptor Blockade in Diastolic Heart Failure (Aldo-DHF) participants. DESIGN Post-hoc genetic analysis. DATA SOURCE Data and samples were derived from the multi-center, randomized, double-blind, placebo-controlled Aldo-DHF trial. PATIENTS Aldo-DHF participants treated with spironolactone (n = 184) or placebo (n = 178) were included. INTERVENTION Participants were genotyped for NR3C2 rs5522, NR3C2 rs2070951 and CYP11B2 rs1799998 via pyrosequencing. MEASUREMENTS In the placebo and spironolactone arms, separate multivariable linear regression analyses were performed for change in E/e' with each single nucleotide polymorphism (SNP), adjusted for age, sex, and baseline E/e'. To discern potential mechanisms of a genotype effect, associated SNPs were further examined for their association with change in blood pressure, circulating procollagen type III N-terminal peptide (PIIINP), and left atrial area. MAIN RESULTS Carriers of the rs5522 G allele in the placebo arm had a greater increase in E/e' over the 12-month course of the trial compared to noncarriers (β = 1.10; 95% confidence interval [CI]: 0.05-2.16; p = 0.04). No corresponding E/e' worsening by rs5522 genotype was observed in the spironolactone arm. None of the other genotypes were associated with change in E/e'. Compared to noncarriers, rs5522 G carriers also had a greater increase in left atrial area with placebo (β = 0.83; 95% CI: 0.17-1.48; p = 0.01) and a greater reduction in diastolic blood pressure with spironolactone (β = -3.56; 95% CI: -6.73 to -0.39; p = 0.03). Serum PIIINP levels were similar across rs5522 genotypes. CONCLUSIONS Our results suggest that spironolactone attenuates progression of diastolic dysfunction associated with the NR3C2 rs5522 G allele. Validation of our findings is needed.
Collapse
Affiliation(s)
- Leanne Dumeny
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Orly Vardeny
- Center for Care Delivery and Outcomes Research, Minneapolis Veteran Affairs Health Care System, Minneapolis, Minnesota, USA
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Julio D Duarte
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Larisa H Cavallari
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics, Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Wang L, Zhang Z, Liu D, Yuan K, Zhu G, Qi X. Association of -344C/T polymorphism in the aldosterone synthase (CYP11B2) gene with cardiac and cerebrovascular events in Chinese patients with hypertension. J Int Med Res 2020; 48:300060520949409. [PMID: 32938270 PMCID: PMC7503017 DOI: 10.1177/0300060520949409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective Several recent studies have shown that the aldosterone synthase gene (CYP11B2) −344C/T polymorphism is related to cardiovascular diseases. However, whether the −344C allele influences the incidence of cardiovascular diseases in Chinese patients with hypertension is unclear. Methods Chinese patients with essential hypertension were genotyped for the −344C/T polymorphism in CYP11B2 (n = 755; CC, n = 112; CT, n = 361; TT, n = 282) and followed for 11 years for major adverse cardiovascular events (MACEs), including stroke, onset of coronary artery disease (CAD), and CAD-related death. Established cardiovascular risk factors were used to adjust the multivariate Cox analysis. Results After a mean follow-up period of 7.60 ± 1.12 years, a significantly higher incidence of MACEs was seen in patients with the CC genotype than in those with the CT and TT genotypes. The CC variant was significantly and independently predictive of MACEs (hazard ratio = 2.049), CAD (hazard ratio = 1.754), and stroke (hazard ratio = 2.588), but not CAD-related stroke or death. Conclusion The CYP11B2 −344 CC genotype is a risk factor for CAD and stroke, independent of other established cardiovascular risk factors in Chinese patients with hypertension.
Collapse
Affiliation(s)
- Lili Wang
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Zhi Zhang
- Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Dongxia Liu
- Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Kexin Yuan
- Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Guohua Zhu
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyong Qi
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| |
Collapse
|