1
|
Jutzi T, Krieghoff-Henning EI, Brinker TJ. [The Rise of Artificial Intelligence - High Prediction Accuracy in Early Detection of Pigmented Melanoma]. Laryngorhinootologie 2022. [PMID: 36580975 DOI: 10.1055/a-1949-3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The incidence of malignant melanoma is increasing worldwide. If detected early, melanoma is highly treatable, so early detection is vital.Skin cancer early detection has improved significantly in recent decades, for example by the introduction of screening in 2008 and dermoscopy. Nevertheless, in particular visual detection of early melanomas remains challenging because they show many morphological overlaps with nevi. Hence, there continues to be a high medical need to further develop methods for early skin cancer detection in order to be able to reliably diagnosemelanomas at a very early stage.Routine diagnostics for melanoma detection include visual whole body inspection, often supplemented by dermoscopy, which can significantly increase the diagnostic accuracy of experienced dermatologists. A procedure that is additionally offered in some practices and clinics is wholebody photography combined with digital dermoscopy for the early detection of malignant melanoma, especially for monitoring high-risk patients.In recent decades, numerous noninvasive adjunctive diagnostic techniques were developed for the examination of suspicious pigmented moles, that may have the potential to allow improved and, in some cases, automated evaluation of these lesions. First, confocal laser microscopy should be mentioned here, as well as electrical impedance spectroscopy, multiphoton laser tomography, multispectral analysis, Raman spectroscopy or optical coherence tomography. These diagnostic techniques usually focus on high sensitivity to avoid malignant melanoma being overlooked. However, this usually implies lower specificity, which may lead to unnecessary excision of benign lesions in screening. Also, some of the procedures are time-consuming and costly, which also limits their applicability in skin cancer screening. In the near future, the use of artificial intelligence might change skin cancer diagnostics in many ways. The most promising approach may be the analysis of routine macroscopic and dermoscopic images by artificial intelligence.For the classification of pigmented skin lesions based on macroscopic and dermoscopic images, artificial intelligence, especially in form of neural networks, has achieved comparable diagnostic accuracies to dermatologists under experimental conditions in numerous studies. In particular, it achieved high accuracies in the binary melanoma/nevus classification task, but it also performed comparably well to dermatologists in multiclass differentiation of various skin diseases. However, proof of the basic applicability and utility of such systems in clinical practice is still pending. Prerequisites that remain to be established to enable translation of such diagnostic systems into dermatological routine are means that allow users to comprehend the system's decisions as well as a uniformly high performance of the algorithms on image data from other hospitals and practices.At present, hints are accumulating that computer-aided diagnosis systems could provide their greatest benefit as assistance systems, since studies indicate that a combination of human and machine achieves the best results. Diagnostic systems based on artificial intelligence are capable of detecting morphological characteristics quickly, quantitatively, objectively and reproducibly, and could thus provide a more objective analytical basis - in addition to medical experience.
Collapse
Affiliation(s)
- Tanja Jutzi
- Arbeitsgruppe Digitale Biomarker für die Onkologie, Deutsches Krebsforschungszentrum, Heidelberg, Deutschland
| | - Eva I Krieghoff-Henning
- Arbeitsgruppe Digitale Biomarker für die Onkologie, Deutsches Krebsforschungszentrum, Heidelberg, Deutschland
| | - Titus J Brinker
- Arbeitsgruppe Digitale Biomarker für die Onkologie, Deutsches Krebsforschungszentrum, Heidelberg, Deutschland
| |
Collapse
|
2
|
Jutzi TB, Krieghoff-Henning EI, Brinker TJ. Künstliche Intelligenz auf dem Vormarsch – Hohe Vorhersage-Genauigkeit bei der Früherkennung pigmentierter Melanome. AKTUELLE DERMATOLOGIE 2022. [DOI: 10.1055/a-1514-2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfassungWeltweit steigt die Inzidenz des malignen Melanoms an. Bei frühzeitiger Erkennung ist das Melanom gut behandelbar, eine Früherkennung ist also lebenswichtig.Die Hautkrebs-Früherkennung hat sich in den letzten Jahrzehnten bspw. durch die Einführung des Screenings im Jahr 2008 und die Dermatoskopie deutlich verbessert. Dennoch bleibt die visuelle Erkennung insbesondere von frühen Melanomen eine Herausforderung, weil diese viele morphologische Überlappungen mit Nävi zeigen. Daher ist der medizinische Bedarf weiterhin hoch, die Methoden zur Hautkrebsfrüherkennung gezielt weiterzuentwickeln, um Melanome bereits in einem sehr frühen Stadium sicher diagnostizieren zu können.Die Routinediagnostik zur Hautkrebs-Früherkennung umfasst die visuelle Ganzkörperinspektion, oft ergänzt durch die Dermatoskopie, durch die sich die diagnostische Treffsicherheit erfahrener Hautärzte deutlich erhöhen lässt. Ein Verfahren, was in einigen Praxen und Kliniken zusätzlich angeboten wird, ist die kombinierte Ganzkörperfotografie mit der digitalen Dermatoskopie für die Früherkennung maligner Melanome, insbesondere für das Monitoring von Hochrisiko-Patienten.In den letzten Jahrzenten wurden zahlreiche nicht invasive zusatzdiagnostische Verfahren zur Beurteilung verdächtiger Pigmentmale entwickelt, die das Potenzial haben könnten, eine verbesserte und z. T. automatisierte Bewertung dieser Läsionen zu ermöglichen. In erster Linie ist hier die konfokale Lasermikroskopie zu nennen, ebenso die elektrische Impedanzspektroskopie, die Multiphotonen-Lasertomografie, die Multispektralanalyse, die Raman-Spektroskopie oder die optische Kohärenztomografie. Diese diagnostischen Verfahren fokussieren i. d. R. auf hohe Sensitivität, um zu vermeiden, ein malignes Melanom zu übersehen. Dies bedingt allerdings üblicherweise eine geringere Spezifität, was im Screening zu unnötigen Exzisionen vieler gutartiger Läsionen führen kann. Auch sind einige der Verfahren zeitaufwendig und kostenintensiv, was die Anwendbarkeit im Screening ebenfalls einschränkt.In naher Zukunft wird insbesondere die Nutzung von künstlicher Intelligenz die Diagnosefindung in vielfältiger Weise verändern. Vielversprechend ist v. a. die Analyse der makroskopischen und dermatoskopischen Routine-Bilder durch künstliche Intelligenz. Für die Klassifizierung von pigmentierten Hautläsionen anhand makroskopischer und dermatoskopischer Bilder erzielte die künstliche Intelligenz v. a. in Form neuronaler Netze unter experimentellen Bedingungen in zahlreichen Studien bereits eine vergleichbare diagnostische Genauigkeit wie Dermatologen. Insbesondere bei der binären Klassifikationsaufgabe Melanom/Nävus erreichte sie hohe Genauigkeiten, doch auch in der Multiklassen-Differenzierung von verschiedenen Hauterkrankungen zeigt sie sich vergleichbar gut wie Dermatologen. Der Nachweis der grundsätzlichen Anwendbarkeit und des Nutzens solcher Systeme in der klinischen Praxis steht jedoch noch aus. Noch zu schaffende Grundvoraussetzungen für die Translation solcher Diagnosesysteme in die dermatologischen Routine sind Möglichkeiten für die Nutzer, die Entscheidungen des Systems nachzuvollziehen, sowie eine gleichbleibend gute Leistung der Algorithmen auf Bilddaten aus fremden Kliniken und Praxen.Derzeit zeichnet sich ab, dass computergestützte Diagnosesysteme als Assistenzsysteme den größten Nutzen bringen könnten, denn Studien deuten darauf hin, dass eine Kombination von Mensch und Maschine die besten Ergebnisse erzielt. Diagnosesysteme basierend auf künstlicher Intelligenz sind in der Lage, Merkmale schnell, quantitativ, objektiv und reproduzierbar zu erfassen, und könnten somit die Medizin auf eine mathematische Grundlage stellen – zusätzlich zur ärztlichen Erfahrung.
Collapse
Affiliation(s)
- Tanja B. Jutzi
- Nachwuchsgruppe Digitale Biomarker für die Onkologie, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland
| | - Eva I. Krieghoff-Henning
- Nachwuchsgruppe Digitale Biomarker für die Onkologie, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland
| | - Titus J. Brinker
- Nachwuchsgruppe Digitale Biomarker für die Onkologie, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland
| |
Collapse
|
3
|
Kutzner H, Jutzi TB, Krahl D, Krieghoff‐Henning EI, Heppt MV, Hekler A, Schmitt M, Maron RCR, Fröhling S, Kalle C, Brinker TJ. Überdiagnose von Melanomen – Ursachen, Konsequenzen und Lösungsansätze. J Dtsch Dermatol Ges 2020; 18:1236-1244. [DOI: 10.1111/ddg.14233_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/13/2020] [Indexed: 11/28/2022]
Affiliation(s)
| | - Tanja B. Jutzi
- Nachwuchsgruppe Digitale Biomarker für die Onkologie (DBO), Nationales Centrum für Tumorerkrankungen (NCT) Deutsches Krebsforschungszentrum (DKFZ) Heidelberg
| | - Dieter Krahl
- Privates Labor für Dermatohistopathologie Mönchhofstraße 52 Heidelberg
| | - Eva I. Krieghoff‐Henning
- Nachwuchsgruppe Digitale Biomarker für die Onkologie (DBO), Nationales Centrum für Tumorerkrankungen (NCT) Deutsches Krebsforschungszentrum (DKFZ) Heidelberg
| | | | - Achim Hekler
- Nachwuchsgruppe Digitale Biomarker für die Onkologie (DBO), Nationales Centrum für Tumorerkrankungen (NCT) Deutsches Krebsforschungszentrum (DKFZ) Heidelberg
| | - Max Schmitt
- Nachwuchsgruppe Digitale Biomarker für die Onkologie (DBO), Nationales Centrum für Tumorerkrankungen (NCT) Deutsches Krebsforschungszentrum (DKFZ) Heidelberg
| | - Roman C. R. Maron
- Nachwuchsgruppe Digitale Biomarker für die Onkologie (DBO), Nationales Centrum für Tumorerkrankungen (NCT) Deutsches Krebsforschungszentrum (DKFZ) Heidelberg
| | - Stefan Fröhling
- Nachwuchsgruppe Digitale Biomarker für die Onkologie (DBO), Nationales Centrum für Tumorerkrankungen (NCT) Deutsches Krebsforschungszentrum (DKFZ) Heidelberg
| | - Christof Kalle
- Berlin Institute of Health (BIH) und Charité – Universitätsmedizin Berlin
| | - Titus J. Brinker
- Nachwuchsgruppe Digitale Biomarker für die Onkologie (DBO), Nationales Centrum für Tumorerkrankungen (NCT) Deutsches Krebsforschungszentrum (DKFZ) Heidelberg
| |
Collapse
|
4
|
Kutzner H, Jutzi TB, Krahl D, Krieghoff-Henning EI, Heppt MV, Hekler A, Schmitt M, Maron RCR, Fröhling S, von Kalle C, Brinker TJ. Overdiagnosis of melanoma - causes, consequences and solutions. J Dtsch Dermatol Ges 2020; 18:1236-1243. [PMID: 32841508 DOI: 10.1111/ddg.14233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Malignant melanoma is the skin tumor that causes most deaths in Germany. At an early stage, melanoma is well treatable, so early detection is essential. However, the skin cancer screening program in Germany has been criticized because although melanomas have been diagnosed more frequently since introduction of the program, the mortality from malignant melanoma has not decreased. This indicates that the observed increase in melanoma diagnoses be due to overdiagnosis, i.e. to the detection of lesions that would never have created serious health problems for the patients. One of the reasons is the challenging distinction between some benign and malignant lesions. In addition, there may be lesions that are biologically equivocal, and other lesions that are classified as malignant according to current criteria, but that grow so slowly that they would never have posed a threat to patient's life. So far, these "indolent" melanomas cannot be identified reliably due to a lack of biomarkers. Moreover, the likelihood that an in-situ melanoma will progress to an invasive tumor still cannot be determined with any certainty. When benign lesions are diagnosed as melanoma, the consequences are unnecessary psychological and physical stress for the affected patients and incurred therapy costs. Vice versa, underdiagnoses in the sense of overlooked melanomas can adversely affect patients' prognoses and may necessitate more intense therapies. Novel diagnostic options could reduce the number of over- and underdiagnoses and contribute to more objective diagnoses in borderline cases. One strategy that has yielded promising results in pilot studies is the use of artificial intelligence-based diagnostic tools. However, these applications still await translation into clinical and pathological routine.
Collapse
Affiliation(s)
| | - Tanja B Jutzi
- Digital Biomarkers for Oncology group (DBO), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Krahl
- Private Laboratory for Dermatohistopathology, Mönchhofstraße 52, Heidelberg, Germany
| | - Eva I Krieghoff-Henning
- Digital Biomarkers for Oncology group (DBO), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus V Heppt
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Achim Hekler
- Digital Biomarkers for Oncology group (DBO), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Max Schmitt
- Digital Biomarkers for Oncology group (DBO), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roman C R Maron
- Digital Biomarkers for Oncology group (DBO), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Fröhling
- Digital Biomarkers for Oncology group (DBO), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christof von Kalle
- Berlin Institute of Health (BIH) and Charité-University Medical Center Berlin, Berlin, Germany
| | - Titus J Brinker
- Digital Biomarkers for Oncology group (DBO), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Dika E, Ravaioli GM, Fanti PA, Neri I, Patrizi A. Spitz Nevi and Other Spitzoid Neoplasms in Children: Overview of Incidence Data and Diagnostic Criteria. Pediatr Dermatol 2017; 34:25-32. [PMID: 27874206 DOI: 10.1111/pde.13025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Spitz nevi are benign melanocytic neoplasms characterized by epithelioid or spindle melanocytes or both. In some rare cases their presentation overlaps with the clinical and histopathologic features of malignant melanoma, so a differential diagnosis can be difficult to make. Intermediate forms between Spitz nevi and malignant melanoma, with unpredictable behavior, have been called atypical Spitz tumors. A literature search was performed to review the clinical, dermoscopic, genetic, and histopathologic aspects of spitzoid tumors. Spitz nevi mainly occur in children, with no predilection for sex, and in young women. Common sites are the head and lower arms, where Spitz nevi present as pink nodules or hyperpigmented plaques. Spitzoid lesions may have diverse dermoscopic patterns: vascular, starburst, globular, atypical, reticular, negative homogeneous, or targetoid. The management of spitzoid lesions can be invasive or conservative; surgical excision is usually reserved for those with doubtful features, whereas clinical and dermoscopic follow-up is preferred for typical pediatric Spitz nevi. The role of sentinel lymph node biopsy in atypical Spitz tumors is debated. Immunohistochemistry and new molecular techniques such as comparative genomic hybridization, polymerase chain reaction, and fluorescence in situ hybridization offer new diagnostic perspectives, investigating genetic alterations that are specific for malignant melanoma or for Spitz nevi.
Collapse
Affiliation(s)
- Emi Dika
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Giulia Maria Ravaioli
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Pier Alessandro Fanti
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Iria Neri
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Annalisa Patrizi
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|