1
|
González-Delgado S, Pérez-Portela R, Ortega-Martínez O, Alfonso B, Pereyra RT, Hernández JC. Genomic signals of adaptation to a natural CO 2 gradient over a striking microgeographic scale. MARINE POLLUTION BULLETIN 2024; 209:117225. [PMID: 39515285 DOI: 10.1016/j.marpolbul.2024.117225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Our study explores genomic signs of adaptation in A. lixula to different water pH conditions. To achieve this, we analysed the genomics variation of A. lixula individuals living across a natural pH gradient in Canary Islands, Spain. We use a 2b-RADseq protocol with 74 samples from sites with varying pH levels (from 7.3 to 7.9 during low tide) and included a control site. We identified 14,883 SNPs, with 432 identified as candidate SNPs under selection to pH variations through redundancy analysis. While all SNPs indicated genomic homogeneity, the 432 candidate SNPs under selection displayed genomic differences among sites and along the pH gradient. Out of these 432 loci, 17 were annotated using published A. lixula transcriptomes, involved in biological functions such as growth. Therefore, our findings suggest local adaptation in A. lixula populations to acidification in CO2 vents, even over short distances of 75 m, underscoring their potential resistance to future Ocean Acidification.
Collapse
Affiliation(s)
- Sara González-Delgado
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna (ULL), Av. Astrofisico Francisco Sánchez, S/N, 38206, Canary Islands, Spain.
| | - Rocío Pérez-Portela
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, Barcelona 08028, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Olga Ortega-Martínez
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Sweden.
| | - Beatriz Alfonso
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna (ULL), Av. Astrofisico Francisco Sánchez, S/N, 38206, Canary Islands, Spain.
| | - Ricardo T Pereyra
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Sweden.
| | - José Carlos Hernández
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna (ULL), Av. Astrofisico Francisco Sánchez, S/N, 38206, Canary Islands, Spain.
| |
Collapse
|
2
|
Jenkins TL, Martinelli M, Ellis CD, Stevens JR. Exploring reported population differences in Norway lobster ( Nephrops norvegicus) in the Pomo Pits region of the Adriatic Sea using genome-wide markers. PeerJ 2024; 12:e17852. [PMID: 39450211 PMCID: PMC11500701 DOI: 10.7717/peerj.17852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/11/2024] [Indexed: 10/26/2024] Open
Abstract
The Norway lobster (Nephrops norvegicus) is one of the most important decapod crustacean seafood species in the Adriatic Sea. Previous research has identified significant differences in growth rates and maturation timing of Nephrops in the Pomo/Jabuka Pits area compared to other subpopulations in Adriatic fishing grounds. Here, we use 1,623 genome-wide single nucleotide polymorphisms (SNPs) to investigate whether the Pomo Pits subpopulation is genetically different from other sites in the Adriatic and neighbouring seas. We found no genetic differentiation among all sampled Adriatic sites, suggesting high gene flow between Pomo Pits Nephrops and those of surrounding areas. We also found genetic homogeneity between the Adriatic sites and single-site samples from the Aegean and Tyrrhenian Seas. However, we detected distinct genetic differentiation between all Mediterranean sites and an Atlantic site in western Scotland, which provides evidence for a phylogenetic break between the Atlantic and the Mediterranean. Our results indicate that Pomo Pits Nephrops are not genetically different from others sampled in the Adriatic and that key biological parameters in Pomo Pits Nephrops could be driven by spatial variation in fishing pressure and/or environmental factors rather than geographic isolation.
Collapse
Affiliation(s)
- Tom L. Jenkins
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Michela Martinelli
- National Research Council, Institute for Marine Biological Resources and Biotechnologies (CNR IRBIM), Ancona, Italy
| | - Charlie D. Ellis
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Jamie R. Stevens
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
3
|
dos Santos JB, Choueri RB, dos Santos FEM, Santos LADO, da Silva LF, Nobre CR, Cardoso MA, de Britto Mari R, Simões FR, Delvalls TA, Gusso-Choueri PK. Are Microfibers a Threat to Marine Invertebrates? A Sea Urchin Toxicity Assessment. TOXICS 2024; 12:753. [PMID: 39453173 PMCID: PMC11510891 DOI: 10.3390/toxics12100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
The rise of "fast fashion" has driven up the production of low-cost, short-lived clothing, significantly increasing global textile fiber production and, consequently, exacerbating environmental pollution. This study investigated the ecotoxicological effects of different types of anthropogenic microfibers-cotton, polyester, and mixed fibers (50% cotton: 50% polyester)-on marine organisms, specifically sea urchin embryos. All tested fibers exhibited toxicity, with cotton fibers causing notable effects on embryonic development even at environmentally relevant concentrations. The research also simulated a scenario where microfibers were immersed in seawater for 30 days to assess changes in toxicity over time. The results showed that the toxicity of microfibers increased with both concentration and exposure duration, with polyester being the most toxic among the fibers tested. Although synthetic fibers have been the primary focus of previous research, this study highlights that natural fibers like cotton, which are often overlooked, can also be toxic due to the presence of harmful additives. These natural fibers, despite decomposing faster than synthetic ones, can persist in aquatic environments for extended periods. The findings underline the critical need for further research on both natural and synthetic microfibers to understand their environmental impact and potential threats to marine ecosystems and sea urchin populations.
Collapse
Affiliation(s)
- Jennifer Barbosa dos Santos
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (Unisanta), Rua Oswaldo Cruz, 266, Santos 11045-907, São Paulo, Brazil; (J.B.d.S.); (F.E.M.d.S.); (T.A.D.); (P.K.G.-C.)
| | - Rodrigo Brasil Choueri
- MarineTox_Lab, Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Campus Santos (Unifesp), Rua Carvalho de Mendonça, 144, Santos 11070-102, São Paulo, Brazil; (C.R.N.); (M.A.C.); (F.R.S.)
| | - Francisco Eduardo Melo dos Santos
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (Unisanta), Rua Oswaldo Cruz, 266, Santos 11045-907, São Paulo, Brazil; (J.B.d.S.); (F.E.M.d.S.); (T.A.D.); (P.K.G.-C.)
| | - Laís Adrielle de Oliveira Santos
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista (Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, São Paulo, Brazil; (L.A.d.O.S.); (L.F.d.S.); (R.d.B.M.)
| | - Letícia Fernanda da Silva
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista (Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, São Paulo, Brazil; (L.A.d.O.S.); (L.F.d.S.); (R.d.B.M.)
| | - Caio Rodrigues Nobre
- MarineTox_Lab, Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Campus Santos (Unifesp), Rua Carvalho de Mendonça, 144, Santos 11070-102, São Paulo, Brazil; (C.R.N.); (M.A.C.); (F.R.S.)
| | - Milton Alexandre Cardoso
- MarineTox_Lab, Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Campus Santos (Unifesp), Rua Carvalho de Mendonça, 144, Santos 11070-102, São Paulo, Brazil; (C.R.N.); (M.A.C.); (F.R.S.)
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Unifesp, Diadema 09972-270, São Paulo, Brazil
| | - Renata de Britto Mari
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista (Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, São Paulo, Brazil; (L.A.d.O.S.); (L.F.d.S.); (R.d.B.M.)
| | - Fábio Ruiz Simões
- MarineTox_Lab, Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Campus Santos (Unifesp), Rua Carvalho de Mendonça, 144, Santos 11070-102, São Paulo, Brazil; (C.R.N.); (M.A.C.); (F.R.S.)
| | - Tomas Angel Delvalls
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (Unisanta), Rua Oswaldo Cruz, 266, Santos 11045-907, São Paulo, Brazil; (J.B.d.S.); (F.E.M.d.S.); (T.A.D.); (P.K.G.-C.)
- Water Challenge S.L., Avda. Papa Negro, 63, 28043 Madrid, Spain
| | - Paloma Kachel Gusso-Choueri
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (Unisanta), Rua Oswaldo Cruz, 266, Santos 11045-907, São Paulo, Brazil; (J.B.d.S.); (F.E.M.d.S.); (T.A.D.); (P.K.G.-C.)
| |
Collapse
|
4
|
Peralta-Serrano M, Hernández JC, Guet R, González-Delgado S, Pérez-Sorribes L, Lopes EP, Pérez-Portela R. Population genomic structure of the sea urchin Diadema africanum, a relevant species in the rocky reef systems across the Macaronesian archipelagos. Sci Rep 2024; 14:22494. [PMID: 39341905 PMCID: PMC11439068 DOI: 10.1038/s41598-024-73354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
The sea urchin Diadema africanum is a macro-herbivore found in the rocky reef systems of the West African region and Macaronesian archipelagos. Over several decades, high densities of this species have generated marine barrens in certain areas at the Canary Islands. In contrast, more recently, during the last few years, the species has suffered mass mortality events that continue to the present day. In this study, we used 9,109 Single Nucleotide Polymorphisms (SNPs) and a fragment of a mitochondrial gene to evaluate the species' population structure, effects of mass mortalities on its diversity, and potential local adaptation across the Canary Islands and Cabo Verde. Our research provides compelling evidence of low genomic diversity and homogeneity across the studied area for neutral markers, along with recent demographic fluctuations. The high connectivity among distant areas likely allows a rapid recovering of the populations from local mortality events. Interestingly, we also observed genomic sub-structure from 405 SNPs identified as candidate loci under selection for seawater temperature. The lack of divergence among distant sites and the low diversity found can be attributed to the species' divergence from a small ancestral genomic pool, followed by a contemporary demographic expansion, and ongoinggene flow.
Collapse
Affiliation(s)
- Marc Peralta-Serrano
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain
| | - José Carlos Hernández
- Marine Comunity Ecology and Conservation, Departamento de Biología Animal, Edafología y Geología, Faculty of Science (Biology), University of La Laguna, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Romain Guet
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain
- Marine Comunity Ecology and Conservation, Departamento de Biología Animal, Edafología y Geología, Faculty of Science (Biology), University of La Laguna, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Sara González-Delgado
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain
| | - Laia Pérez-Sorribes
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain
- Department of Ecology and Evolution, Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Evandro P Lopes
- Instituto de Engenharias e Ciências do Mar, Universidade Técnica do Atlântico, C.P. 163, Mindelo, Republic of Cabo Verde
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
| | - Rocio Pérez-Portela
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain.
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Segovia NI, Coral-Santacruz D, Haye PA. Genetic homogeneity and weak signatures of local adaptation in the marine mussel Mytilus chilensis. Sci Rep 2024; 14:21081. [PMID: 39256462 PMCID: PMC11387636 DOI: 10.1038/s41598-024-71944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
The natural populations of the marine mussel Mytilus chilensis and the associated aquaculture industry forms a sensitive social-ecological system that relies on the released propagules for cultivation in the highly heterogeneous environment (temperature, productivity, and salinity) of northern Patagonia (42-44 °S). We assessed spatial genetic structure, signals of local adaptation, and population assignment of M. chilensis analyzing 5963 SNPs from 125 individuals across six natural populations sampled over two consecutive years along the southeast Pacific coast (39° 25' to 43° 07' S, ~ 430 km). Neutral and putatively adaptive loci revealed high genetic diversity and low genetic differentiation among populations. Of the whole dataset, less than 1% (50) of loci were identified as putatively adaptive through multiple approaches, with only 0.1% detected in by all of them, and only two loci of them were correlated with environmental variables. No evidence of Isolation by Environment (IBE) was found, albeit a slight differentiation in the southern sampling location (Yaldad). These results suggest that the genetic structure observed is primarily shaped by neutral processes with weak signals of local adaptation. Gene-flow appears to be the main evolutionary force influencing the species' population genetic structure. Because of the importance for the industry, the probability of correct assignment of individuals to their population of origin using allelic frequencies was evaluated. Analyses exhibited relatively low probabilities (< 50% for four out of six sites) of accurately assigning individuals to their geographic origin, with a limited success of SNP markers the for such purposes. Likely, species' high dispersal capacity, seed translocation, and the spill-over effect of mussel aquaculture prevents population genetic differentiation through high effective gene flow, hindering local genetic adaptation.
Collapse
Affiliation(s)
- Nicolás I Segovia
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Coquimbo, Chile
| | - Diana Coral-Santacruz
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Coquimbo, Chile
| | - Pilar A Haye
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.
- Instituto Milenio en Socio-Ecología Costera (SECOS), Coquimbo, Chile.
| |
Collapse
|
6
|
Galià-Camps C, Enguídanos A, Turon X, Pascual M, Carreras C. The past, the recent, and the ongoing evolutionary processes of the worldwide invasive ascidian Styela plicata. Mol Ecol 2024; 33:e17502. [PMID: 39205460 DOI: 10.1111/mec.17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Invasive species are one of the main threats to global biodiversity and, within marine ecosystems, tunicates feature some prominent examples. Styela plicata is an ascidian species inhabiting harbours in all temperate oceans and seas, thus being considered a thriving invasive species. However, this species' adaptive mechanisms, introduction history, and population structure have never been completely elucidated. Here, by genotyping 87 S. plicata individuals from 18 localities worldwide with 2b-RADseq, we confirm the global presence of four chromosome inversions, demonstrate population structuring on this species, detect local adaptation signals, and infer historical demographic events. We show that North Carolina individuals constitute an unrelated population, Atlanto-Mediterranean and Pacific localities form their own genetic clusters with substructuring, being the most evident the split between northern and southern Atlantic localities. The locality of South Carolina presents an intermediate genetic position between North Carolina and the other two groups pointing to a hybrid origin with recurrent gene flow. We generate and test demographic models, providing evidence of two independent introduction events to the Atlantic and Pacific, and an admixture that originated the population of South Carolina. Finally, we identify candidate loci for adaptation, with functions involved with cell processes, metabolism, development, and ion transport, among others. Overall, this study highlights the complex historical processes of S. plicata, which have led this species to its current distribution, population structure, and local adaptation footprint in oceans worldwide.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
| | - Alba Enguídanos
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
7
|
García-Merchán VH, Palero F, Rufino M, Macpherson E, Abelló P, Pascual M. Mitochondrial, nuclear and morphological differentiation in the swimming crab Liocarcinus depurator along the Atlantic-Mediterranean transition. Sci Rep 2024; 14:19342. [PMID: 39164316 PMCID: PMC11335902 DOI: 10.1038/s41598-024-69883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Environmental gradients in the sea may coincide with phenotypic or genetic gradients resulting from an evolutionary balance between selection and dispersal. The population differentiation of the swimming crab, Liocarcinus depurator, an important by-catch species in the Mediterranean Sea and North-East Atlantic, was assessed using both genetic and morphometric approaches. A total of 472 specimens were collected along its distribution area, and 17 morphometric landmarks, one mitochondrial gene (COI) and 11 polymorphic microsatellite markers were scored in 350, 287 and 280 individuals, respectively. Morphometric data lacked significant differences, but genetic analyses showed significant genetic differentiation between Atlantic and Mediterranean populations, with a steeper gradient in COI compared to microsatellite markers. Interestingly, nuclear differentiation was due to an outlier locus with a gradient in the Atlantic-Mediterranean transition area overlapping with the mtDNA gradient. Such overlapping clines are likely to be maintained by natural selection. Our results suggest a scenario of past isolation with local adaptation and secondary contact between the two basins. Local adaptation during the process of vicariance may reinforce genetic differentiation at loci maintained by environmental selection even after secondary contact.
Collapse
Affiliation(s)
- Victor Hugo García-Merchán
- Group of Evolution, Ecology & Conservation (EECO), Universidad del Quindío, Carrera 15, Calle 12N, 630004, Armenia, Quindío, Colombia.
| | - Ferran Palero
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain.
| | - Marta Rufino
- Divisão de Modelação e Gestão de Recursos Pesqueiros, Instituto Português do Mar e da Atmosfera (IPMA), Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165, Lisboa, Portugal
- Centre of Statistics and its Applications (CEAUL), University of Lisbon, 1749-016, Lisbon, Portugal
| | - Enrique Macpherson
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), C. d'Accés Cala Sant Francesc 14, 17300, Blanes, Spain
| | - Pere Abelló
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
| | - Marta Pascual
- Department of Genetics and IRBio, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
8
|
López A, Carreras C, Pascual M, Pegueroles C. Evaluating restriction enzyme selection for reduced representation sequencing in conservation genomics. Mol Ecol Resour 2023. [PMID: 37706675 DOI: 10.1111/1755-0998.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023]
Abstract
Conservation genomic studies in non-model organisms generally rely on reduced representation sequencing techniques based on restriction enzymes to identify population structure as well as candidate loci for local adaptation. While the expectation is that the reduced representation of the genome is randomly distributed, the proportion of the genome sampled might depend on the GC content of the recognition site of the restriction enzyme used. Here, we evaluated the distribution and functional composition of loci obtained after a reduced representation approach using Genotyping-by-Sequencing (GBS). To do so, we compared experimental data from two endemic fish species (Symphodus ocellatus and Symphodus tinca, EcoT22I enzyme) and two ecosystem engineer sea urchins (Paracentrotus lividus and Arbacia lixula, ApeKI enzyme). In brief, we mapped the sequenced loci to the phylogenetically closest reference genome available (Labrus bergylta in the fish and Strongylocentrotus purpuratus in the sea urchin datasets), classified them as exonic, intronic and intergenic, and studied their function by using Gene Ontology (GO) terms. We also simulated the effect of using both enzymes in the two reference genomes. In both simulated and experimental data, we detected an enrichment towards exonic or intergenic regions depending on the restriction enzyme used and failed to detect differences between total loci and candidate loci for adaptation in the empirical dataset. Most of the functions assigned to the mapped loci were shared between the four species and involved a myriad of general functions. Our results highlight the importance of restriction enzyme selection and the need for high-quality annotated genomes in conservation genomic studies.
Collapse
Affiliation(s)
- Ainhoa López
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cinta Pegueroles
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
9
|
Marlétaz F, Couloux A, Poulain J, Labadie K, Da Silva C, Mangenot S, Noel B, Poustka AJ, Dru P, Pegueroles C, Borra M, Lowe EK, Lhomond G, Besnardeau L, Le Gras S, Ye T, Gavriouchkina D, Russo R, Costa C, Zito F, Anello L, Nicosia A, Ragusa MA, Pascual M, Molina MD, Chessel A, Di Carlo M, Turon X, Copley RR, Exposito JY, Martinez P, Cavalieri V, Ben Tabou de Leon S, Croce J, Oliveri P, Matranga V, Di Bernardo M, Morales J, Cormier P, Geneviève AM, Aury JM, Barbe V, Wincker P, Arnone MI, Gache C, Lepage T. Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes. CELL GENOMICS 2023; 3:100295. [PMID: 37082140 PMCID: PMC10112332 DOI: 10.1016/j.xgen.2023.100295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/24/2022] [Accepted: 03/06/2023] [Indexed: 04/22/2023]
Abstract
Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Center for Life’s Origin & Evolution, Department of Genetics, Evolution, & Environment, University College London, WC1 6BT London, UK
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Énergie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Karine Labadie
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Énergie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Sophie Mangenot
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Albert J. Poustka
- Evolution and Development Group, Max-Planck-Institut für Molekulare Genetik, 14195 Berlin, Germany
- Dahlem Center for Genome Research and Medical Systems Biology (Environmental and Phylogenomics Group), 12489 Berlin, Germany
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Cinta Pegueroles
- Institute for Research on Biodiversity (IRBio), Department of Genetics, Microbiology, and Statistics, University of Barcelona, 08028 Barcelona, Spain
| | - Marco Borra
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Elijah K. Lowe
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Guy Lhomond
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Stéphanie Le Gras
- Plateforme GenomEast, IGBMC, CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illirch Cedex, France
| | - Tao Ye
- Plateforme GenomEast, IGBMC, CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illirch Cedex, France
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, 904-0495 Onna-son, Japan
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Letizia Anello
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Aldo Nicosia
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Marta Pascual
- Institute for Research on Biodiversity (IRBio), Department of Genetics, Microbiology, and Statistics, University of Barcelona, 08028 Barcelona, Spain
| | - M. Dolores Molina
- Departament de Genètica, Microbiologia, i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut Biology Valrose, Université Côte d’Azur, 06108 Nice Cedex 2, France
| | - Aline Chessel
- Institut Biology Valrose, Université Côte d’Azur, 06108 Nice Cedex 2, France
| | - Marta Di Carlo
- Institute for Biomedical Research and Innovation (CNR), 90146 Palermo, Italy
| | - Xavier Turon
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB, CSIC), 17300 Blanes, Spain
| | - Richard R. Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Jean-Yves Exposito
- Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 69367 Lyon, France
| | - Pedro Martinez
- Departament de Genètica, Microbiologia, i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), 08028 Barcelona, Spain
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Smadar Ben Tabou de Leon
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, 31095 Haifa, Israel
| | - Jenifer Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Paola Oliveri
- Center for Life’s Origin & Evolution, Department of Genetics, Evolution, & Environment, University College London, WC1 6BT London, UK
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Maria Di Bernardo
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale, 90146 Palermo, Italy
| | - Julia Morales
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, CNRS, Sorbonne Université, 29680 Roscoff, France
| | - Patrick Cormier
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, CNRS, Sorbonne Université, 29680 Roscoff, France
| | - Anne-Marie Geneviève
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650 Banyuls/Mer, France
| | - Jean Marc Aury
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Christian Gache
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Thierry Lepage
- Institut Biology Valrose, Université Côte d’Azur, 06108 Nice Cedex 2, France
| |
Collapse
|
10
|
Murano C, Vaccari L, Casotti R, Corsi I, Palumbo A. Occurrence of microfibres in wild specimens of adult sea urchin Paracentrotus lividus (Lamarck, 1816) from a coastal area of the central Mediterranean Sea. MARINE POLLUTION BULLETIN 2022; 176:113448. [PMID: 35217421 DOI: 10.1016/j.marpolbul.2022.113448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
This study investigates the occurrence of anthropogenic fibres inside wild Paracentrotus lividus at a Mediterranean coastal area in 2020. From each sea urchin, the coelomic fluid was directly analysed while digestive tracts and gonads were removed, pre-treated with trypsin (0.3%) and digested with H2O2 (10%) before analysis. A total of 260 fibres and 1 fragment were found in 100 specimens, with an average of 2.6 items/individual. Fibres were more abundant in the digestive system, less in gonads and in the coelomic fluid, respectively. Fourier transform infrared (FTIR) analysis of representative fibres identified 67% natural (cotton-based) and 33% synthetic polymers (polyester) suggesting their origin from textiles, possibly released from laundry sewages. Overall, these results encourage further in-depth investigations on fibres accumulation and potential transfer through the trophic chain up to humans.
Collapse
Affiliation(s)
- Carola Murano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy.
| | - Lisa Vaccari
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Raffaella Casotti
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
11
|
Boulanger E, Benestan L, Guerin PE, Dalongeville A, Mouillot D, Manel S. Climate differently influences the genomic patterns of two sympatric marine fish species. J Anim Ecol 2021; 91:1180-1195. [PMID: 34716929 DOI: 10.1111/1365-2656.13623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
Climate influences population genetic variation in marine species. Capturing these impacts remains challenging for marine fishes which disperse over large geographical scales spanning steep environmental gradients. It requires the extensive spatial sampling of individuals or populations, representative of seascape heterogeneity, combined with a set of highly informative molecular markers capable of revealing climatic-associated genetic variations. We explored how space, dispersal and environment shape the genomic patterns of two sympatric fish species in the Mediterranean Sea, which ranks among the oceanic basins most affected by climate change and human pressure. We hypothesized that the population structure and climate-associated genomic signatures of selection would be stronger in the less mobile species, as restricted gene flow tends to facilitate the fixation of locally adapted alleles. To test our hypothesis, we genotyped two species with contrasting dispersal abilities: the white seabream Diplodus sargus and the striped red mullet Mullus surmuletus. We collected 823 individuals and used genotyping by sequencing (GBS) to detect 8,206 single nucleotide polymorphisms (SNPs) for the seabream and 2,794 for the mullet. For each species, we identified highly differentiated genomic regions (i.e. outliers) and disentangled the relative contribution of space, dispersal and environmental variables (climate, marine primary productivity) on the outliers' genetic structure to test the prevalence of gene flow and local adaptation. We observed contrasting patterns of gene flow and adaptive genetic variation between the two species. The seabream showed a distinct Alboran sea population and panmixia across the Mediterranean Sea. The mullet revealed additional differentiation within the Mediterranean Sea that was significantly correlated to summer and winter temperatures, as well as marine primary productivity. Functional annotation of the climate-associated outlier SNPs then identified candidate genes involved in heat tolerance that could be examined to further predict species' responses to climate change. Our results illustrate the key steps of a comparative seascape genomics study aiming to unravel the evolutionary processes at play in marine species, to better anticipate their response to climate change. Defining population adaptation capacities and environmental niches can then serve to incorporate evolutionary processes into species conservation planning.
Collapse
Affiliation(s)
- Emilie Boulanger
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France.,MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Laura Benestan
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Pierre-Edouard Guerin
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | | | - David Mouillot
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Institut Universitaire de France, Paris, France
| | - Stéphanie Manel
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| |
Collapse
|
12
|
Wang Q, Liu Y, Yan L, Chen L, Li B. Genome-Wide SNP Discovery and Population Genetic Analysis of Mesocentrotus nudus in China Seas. Front Genet 2021; 12:717764. [PMID: 34490044 PMCID: PMC8416983 DOI: 10.3389/fgene.2021.717764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Mesocentrotus nudus is an important commercially aquatic species because of its high edible and medicinal values. However, wild stocks have dramatically decreased in recent decades. Understanding the population structure and genetic diversity can provide vital information for genetic conservation and improvement. In the present study, the genotyping-by-sequencing (GBS) approach was adopted to identify the genome-wide single-nucleotide polymorphisms (SNPs) from a collection of 80 individuals consisting of five geographical populations (16 individuals from each population), covering the natural habitats of M. nudus in China seas. An average of 0.96-Gb clean reads per sample were sequenced, and a total of 51,738 biallelic SNPs were identified. Based on these SNPs, diversity index analysis showed that all populations have a similar pattern with positive Fis (0.136) and low Ne (724.3). Low genetic differentiation and high genetic connectivity among five geographical populations were detected by pairwise Fst, principal component analysis (PCA), admixture, and phylogenetic analysis. Besides, two YWL individuals originating from an isolated ancestor may imply that there is a genetically differentiated population in the adjacent sea. Overall, the results showed that GBS is an effective method to detect genome-wide SNPs for M. nudus and suggested that the protective measures and the investigation with larger spatial scale and sample size for M. nudus should be carried out in the future.
Collapse
Affiliation(s)
- Quanchao Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ying Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lang Yan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Linlin Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Baoquan Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
13
|
Pérez-Portela R, Garcia-Cisneros A, Campos-Canet M, Palacín C. Genetic homogeneity, lack of larvae recruitment, and clonality in absence of females across western Mediterranean populations of the starfish Coscinasterias tenuispina. Sci Rep 2021; 11:16819. [PMID: 34413402 PMCID: PMC8376918 DOI: 10.1038/s41598-021-96331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
We here analysed the populations' genetic structure of Coscinasterias tenuispina, an Atlantic-Mediterranean fissiparous starfish, focusing on the western Mediterranean, to investigate: the distribution and prevalence of genetic variants, the relative importance of asexual reproduction, connectivity across the Atlantic-Mediterranean transition, and the potential recent colonisation of the Mediterranean Sea. Individuals from 11 Atlantic-Mediterranean populations of a previous study added to 172 new samples from five new W Mediterranean sites. Individuals were genotyped at 12 microsatellite loci and their gonads histologically analysed for sex determination. Additionally, four populations were genotyped at two-time points. Results demonstrated genetic homogeneity and low clonal richness within the W Mediterranean, due to the dominance of a superclone, but large genetic divergence with adjacent areas. The lack of new genotypes recruitment over time, and the absence of females, confirmed that W Mediterranean populations were exclusively maintained by fission and reinforced the idea of its recent colonization. The existence of different environmental conditions among basins and/or density-depend processes could explain this lack of recruitment from distant areas. The positive correlation between clonal richness and heterozygote excess suggests that most genetic diversity is retained within individuals in the form of heterozygosity in clonal populations, which might increase their resilience.
Collapse
Affiliation(s)
- Rocío Pérez-Portela
- grid.5841.80000 0004 1937 0247Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 643 Diagonal Avenue, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Research Institute of Biodiversity (IRBIO), University of Barcelona, Barcelona, Spain
| | - Alex Garcia-Cisneros
- grid.5841.80000 0004 1937 0247Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 643 Diagonal Avenue, 08028 Barcelona, Spain
| | - Marta Campos-Canet
- grid.5841.80000 0004 1937 0247Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 643 Diagonal Avenue, 08028 Barcelona, Spain
| | - Creu Palacín
- grid.5841.80000 0004 1937 0247Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 643 Diagonal Avenue, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Research Institute of Biodiversity (IRBIO), University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
López-Márquez V, Cushman SA, Templado J, Wan HY, Bothwell HM, Machordom A. Genetic connectivity of two marine gastropods in the Mediterranean Sea: seascape genetics reveals species-specific oceanographic drivers of gene flow. Mol Ecol 2021; 30:4608-4629. [PMID: 34260775 DOI: 10.1111/mec.16080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
Oceanographic features such as currents, waves, temperature and salinity, together with life history traits, control patterns and rates of gene flow and contribute to shaping the population genetic structure of marine organisms. Seascape genetics is an emerging discipline that adopts a spatially explicit approach to examine biotic and abiotic factors that drive gene flow in marine environments. In this study, we examined factors that contribute to genetic differentiation in two coastal Mediterranean gastropods whose geographical ranges overlap but which inhabit different environments. The two species differ in several life history traits and in their dispersal capabilities. Genetic differentiation was relatively low for the trochid species Gibbula divaricata (FST =0.059), and high for the vermetid species Dendropoma lebeche (FST =0.410). Salinity emerged as the most important variable explaining the genetic structure of both species; sea surface temperature was also important for G. divaricata. For the more sessile D. lebeche, the coastline was predicted to provide important pathways for stepping-stone connectivity and gene flow. Our results provide a greater understanding of the factors influencing marine population connectivity, which may be useful to guide marine conservation and management in the Mediterranean.
Collapse
Affiliation(s)
| | - Samuel A Cushman
- USDA Forest Service Rocky Mountain Research Station, Flagstaff, AZ, USA
| | - José Templado
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Ho Yi Wan
- Department of Wildlife, Humboldt State University, Arcata, CA, USA
| | - Helen M Bothwell
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Annie Machordom
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
15
|
Mendiola MJR, Ravago‐Gotanco R. Genetic differentiation and signatures of local adaptation revealed by RADseq for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Ecol Evol 2021; 11:7951-7969. [PMID: 34188864 PMCID: PMC8216953 DOI: 10.1002/ece3.7625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Connectivity of marine populations is shaped by complex interactions between biological and physical processes across the seascape. The influence of environmental features on the genetic structure of populations has key implications for the dynamics and persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and conservation. This study employed a seascape genomics approach combining larval dispersal modeling and population genomic analysis using single nucleotide polymorphisms (SNPs) obtained from RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea. Despite potential for widespread dispersal across the Sulu Sea, significant genetic differentiation was detected among eight populations based on 1,655 SNPs (FST = 0.0057, p < .001) and a subset of 1,643 putatively neutral SNP markers (FST = 0.0042, p < .001). Oceanography influences genetic structure, with redundancy analysis (RDA) indicating significant contribution of asymmetric ocean currents to neutral genetic variation ( R adj 2 = 0.133, p = .035). Genetic structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (N e < 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (FST = 0.2390, p < .001), significantly correlated with sea surface temperature variabilities during peak spawning months for S. olivacea ( R adj 2 = 0.692-0.763; p < .050), suggesting putative signatures of selection and local adaptation to thermal clines. While oceanography and dispersal ability likely shape patterns of gene flow and genetic structure of S. olivacea across the Sulu Sea, the impacts of genetic drift and natural selection influenced by sea surface temperature also appear as likely drivers of population genetic structure. This study contributes to the growing body of literature documenting population genetic structure and local adaptation for highly dispersive marine species, and provides information useful for spatial management of the fishery resource.
Collapse
Affiliation(s)
| | - Rachel Ravago‐Gotanco
- The Marine Science InstituteUniversity of the Philippines DilimanQuezon CityPhilippines
| |
Collapse
|
16
|
Singh SP, Groeneveld JC, Willows‐Munro S. Genetic structure and life history are key factors in species distribution models of spiny lobsters. Ecol Evol 2020; 10:14394-14410. [PMID: 33391723 PMCID: PMC7771135 DOI: 10.1002/ece3.7043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 11/06/2022] Open
Abstract
AIM We incorporated genetic structure and life history phase in species distribution models (SDMs) constructed for a widespread spiny lobster, to reveal local adaptations specific to individual subspecies and predict future range shifts under the RCP 8.5 climate change scenario. LOCATION Indo-West Pacific. METHODS MaxEnt was used to construct present-day SDMs for the spiny lobster Panulirus homarus and individually for the three genetically distinct subspecies of which it comprises. SDMs incorporated both sea surface and benthic (seafloor) climate layers to recreate discrete influences of these habitats during the drifting larval and benthic juvenile and adult life history phases. Principle component analysis (PCA) was used to infer environmental variables to which individual subspecies were adapted. SDM projections of present-day habitat suitability were compared with predictions for the year 2,100, under the RCP 8.5 climate change scenario. RESULTS In the PCA, salinity best explained P. h. megasculptus habitat suitability, compared with current velocity in P. h. rubellus and sea surface temperature in P. h. homarus. Drifting and benthic life history phases were adapted to different combinations of sea surface and benthic environmental variables considered. Highly suitable habitats for benthic phases were spatially enveloped within more extensive sea surface habitats suitable for drifting larvae. SDMs predicted that present-day highly suitable habitats for P. homarus will decrease by the year 2,100. MAIN CONCLUSIONS Incorporating genetic structure in SDMs showed that individual spiny lobster subspecies had unique adaptations, which could not be resolved in species-level models. The use of sea surface and benthic climate layers revealed the relative importance of environmental variables during drifting and benthic life history phases. SDMs that included genetic structure and life history were more informative in predictive models of climate change effects.
Collapse
Affiliation(s)
| | - Johan C. Groeneveld
- Oceanographic Research InstituteDurbanSouth Africa
- School of Life SciencesUniversity of KwaZulu‐NatalPietermaritzburgSouth Africa
| | - Sandi Willows‐Munro
- School of Life SciencesUniversity of KwaZulu‐NatalPietermaritzburgSouth Africa
| |
Collapse
|
17
|
Sillero N, Huey RB, Gilchrist G, Rissler L, Pascual M. Distribution modelling of an introduced species: do adaptive genetic markers affect potential range? Proc Biol Sci 2020; 287:20201791. [PMID: 32933443 DOI: 10.1098/rspb.2020.1791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Biological invasions have increased in the last few decades mostly due to anthropogenic causes such as globalization of trade. Because invaders sometimes cause large economic losses and ecological disturbances, estimating their origin and potential geographical ranges is useful. Drosophila subobscura is native to the Old World but was introduced in the New World in the late 1970s and spread widely. We incorporate information on adaptive genetic markers into ecological niche modelling and then estimate the most probable geographical source of colonizers; evaluate whether the genetic bottleneck experienced by founders affects their potential distribution; and finally test whether this species has spread to all its potential suitable habitats worldwide. We find the environmental space occupied by this species in its native and introduced distributions are notably the same, although the introduced niche has shifted slightly towards higher temperature and lower precipitation. The genetic bottleneck of founding individuals was a key factor limiting the spread of this introduced species. We also find that regions in the Mediterranean and north-central Portugal show the highest probability of being the origin of the colonizers. Using genetically informed environmental niche modelling can enhance our understanding of the initial colonization and spread of invasive species, and also elucidate potential areas of future expansions worldwide.
Collapse
Affiliation(s)
- Neftalí Sillero
- CICGE Centro de Investigação em Ciências Geo-Espaciais, Faculdade de Ciências da Universidade do Porto (FCUP), Observatório Astronómico Prof. Manuel de Barros, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal
| | - Raymond B Huey
- Department of Biology, University of Washington, Seattle, WA, USA
| | - George Gilchrist
- Division of Environmental Biology, National Science Foundation, Alexandria, VA, USA.,Department of Biology, The College of William and Mary, Williamsburg, VA, USA
| | - Leslie Rissler
- Division of Environmental Biology, National Science Foundation, Alexandria, VA, USA
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística and IRBio, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Segovia NI, González-Wevar CA, Haye PA. Signatures of local adaptation in the spatial genetic structure of the ascidian Pyura chilensis along the southeast Pacific coast. Sci Rep 2020; 10:14098. [PMID: 32839518 PMCID: PMC7445245 DOI: 10.1038/s41598-020-70798-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022] Open
Abstract
The highly heterogeneous Humboldt Current System (HCS) and the 30°S transition zone on the southeast Pacific coast, represent an ideal scenario to test the influence of the environment on the spatial genomic structure in marine near-shore benthic organisms. In this study, we used seascape genomic tools to evaluate the genetic structure of the commercially important ascidian Pyura chilensis, a species that exhibits a low larval transport potential but high anthropogenic dispersal. A recent study in this species recorded significant genetic differentiation across a transition zone around 30°S in putatively adaptive SNPs, but not in neutral ones, suggesting an important role of environmental heterogeneity in driving genetic structure. Here, we aim to understand genomic-oceanographic associations in P. chilensis along the Southeastern Pacific coast using two combined seascape genomic approaches. Using 149 individuals from five locations along the HCS, a total of 2,902 SNPs were obtained by Genotyping-By-Sequencing, of which 29–585 were putatively adaptive loci, depending on the method used for detection. In adaptive loci, spatial genetic structure was better correlated with environmental differences along the study area (mainly to Sea Surface Temperature, upwelling-associated variables and productivity) than to the geographic distance between sites. Additionally, results consistently showed the presence of two groups, located north and south of 30°S, which suggest that local adaptation processes seem to allow the maintenance of genomic differentiation and the spatial genomic structure of the species across the 30°S biogeographic transition zone of the Humboldt Current System, overriding the homogenizing effects of gene flow.
Collapse
Affiliation(s)
- Nicolás I Segovia
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.,Departamento de Ciencias Ecológicas, Facultad de Ciencias, Instituto de Ecología Y Biodiversidad IEB, Universidad de Chile, Santiago, Chile
| | - Claudio A González-Wevar
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Instituto de Ecología Y Biodiversidad IEB, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias Marinas Y Limnológicas (ICML), Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP de Investigaciones en Dinámica de Ecosistemas de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Pilar A Haye
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.
| |
Collapse
|
19
|
Pérez‐Portela R, Riesgo A, Wangensteen OS, Palacín C, Turon X. Enjoying the warming Mediterranean: Transcriptomic responses to temperature changes of a thermophilous keystone species in benthic communities. Mol Ecol 2020; 29:3299-3315. [DOI: 10.1111/mec.15564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Rocío Pérez‐Portela
- Department of Evolutionary Biology, Ecology and Environmental Sciences University of Barcelona, and Research Institute of Biodiversity (IRBIO) Barcelona Spain
- Center for Advanced Studies of Blanes (CEAB, CSIC) Girona Spain
| | - Ana Riesgo
- Department of Life Sciences The Natural History Museum London UK
| | - Owen S. Wangensteen
- Norwegian College of Fishery Science UiT The Arctic University of Norway Tromsø Norway
| | - Cruz Palacín
- Department of Evolutionary Biology, Ecology and Environmental Sciences University of Barcelona, and Research Institute of Biodiversity (IRBIO) Barcelona Spain
| | - Xavier Turon
- Center for Advanced Studies of Blanes (CEAB, CSIC) Girona Spain
| |
Collapse
|
20
|
Individual-based population genomics reveal different drivers of adaptation in sympatric fish. Sci Rep 2020; 10:12683. [PMID: 32728037 PMCID: PMC7391720 DOI: 10.1038/s41598-020-69160-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/03/2020] [Indexed: 01/08/2023] Open
Abstract
Connectivity and local adaptation are two contrasting evolutionary forces highly influencing population structure. To evaluate the impact of early-life traits and environmental conditions on genetic structuring and adaptation, we studied two sympatric fish species in the Western Mediterranean Sea: Symphodus tinca and S. ocellatus. We followed an individual-based approach and measured early-life history traits from otolith readings, gathered information on environmental variables and obtained genome-wide markers from genotyping-by-sequencing (GBS). The two species presented contrasting population structure across the same geographic gradient, with high and significant population differentiation in S. ocellatus, mostly determined by oceanographic fronts, and low differentiation and no front effect in S. tinca. Despite their different levels of genetic differentiation, we identified in both species candidate regions for local adaptation by combining outlier analysis with environmental and phenotypic association analyses. Most candidate loci were associated to temperature and productivity in S. ocellatus and to temperature and turbulence in S. tinca suggesting that different drivers may determine genomic diversity and differentiation in each species. Globally, our study highlights that individual-based approach combining genomic, environmental and phenotypic information is key to identify signals of selection and the processes mediating them.
Collapse
|