1
|
Cerutti-Pereyra F, Drenkard EJ, Espinoza M, Finucci B, Galván-Magaña F, Hacohen-Domené A, Hearn A, Hoyos-Padilla ME, Ketchum JT, Mejía-Falla PA, Moya-Serrano AV, Navia AF, Pazmiño DA, Ramírez-Macías D, Rummer JL, Salinas-de-León P, Sosa-Nishizaki O, Stock C, Chin A. Vulnerability of Eastern Tropical Pacific chondrichthyan fish to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17373. [PMID: 38967106 DOI: 10.1111/gcb.17373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 07/06/2024]
Abstract
Climate change is an environmental emergency threatening species and ecosystems globally. Oceans have absorbed about 90% of anthropogenic heat and 20%-30% of the carbon emissions, resulting in ocean warming, acidification, deoxygenation, changes in ocean stratification and nutrient availability, and more severe extreme events. Given predictions of further changes, there is a critical need to understand how marine species will be affected. Here, we used an integrated risk assessment framework to evaluate the vulnerability of 132 chondrichthyans in the Eastern Tropical Pacific (ETP) to the impacts of climate change. Taking a precautionary view, we found that almost a quarter (23%) of the ETP chondrichthyan species evaluated were highly vulnerable to climate change, and much of the rest (76%) were moderately vulnerable. Most of the highly vulnerable species are batoids (77%), and a large proportion (90%) are coastal or pelagic species that use coastal habitats as nurseries. Six species of batoids were highly vulnerable in all three components of the assessment (exposure, sensitivity and adaptive capacity). This assessment indicates that coastal species, particularly those relying on inshore nursery areas are the most vulnerable to climate change. Ocean warming, in combination with acidification and potential deoxygenation, will likely have widespread effects on ETP chondrichthyan species, but coastal species may also contend with changes in freshwater inputs, salinity, and sea level rise. This climate-related vulnerability is compounded by other anthropogenic factors, such as overfishing and habitat degradation already occurring in the region. Mitigating the impacts of climate change on ETP chondrichthyans involves a range of approaches that include addressing habitat degradation, sustainability of exploitation, and species-specific actions may be required for species at higher risk. The assessment also highlighted the need to further understand climate change's impacts on key ETP habitats and processes and identified knowledge gaps on ETP chondrichthyan species.
Collapse
Affiliation(s)
| | | | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
- MigraMar, Olema, California, USA
| | - Brittany Finucci
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | | | - Alexander Hearn
- MigraMar, Olema, California, USA
- Universidad San Francisco de Quito, Galápagos, Ecuador
| | | | - James T Ketchum
- MigraMar, Olema, California, USA
- Pelagios-Kakunjá A.C., La Paz, Baja California Sur, Mexico
| | - Paola A Mejía-Falla
- Wildlife Conservation Society-WCS Colombia, Cali, Colombia
- Fundación colombiana para la investigación y conservación de tiburones y rayas-SQUALUS, Cali, Colombia
| | | | - Andres F Navia
- Fundación colombiana para la investigación y conservación de tiburones y rayas-SQUALUS, Cali, Colombia
| | - Diana A Pazmiño
- MigraMar, Olema, California, USA
- Universidad San Francisco de Quito, Galápagos, Ecuador
| | - Deni Ramírez-Macías
- Conexiones Terramar A.C. Whale Shark Mexico, La Paz, Baja California Sur, Mexico
| | - Jodie L Rummer
- James Cook University, Townsville, Queensland, Australia
| | - Pelayo Salinas-de-León
- Charles Darwin Foundation, Galápagos, Ecuador
- Save Our Seas Foundation Shark Research Center and Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, Florida, USA
| | - Oscar Sosa-Nishizaki
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Carretera Ensenada-Tijuana, Ensenada, Baja California, Mexico
| | | | - Andrew Chin
- James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
2
|
Andrade H, Vihtakari M, Santos J. Geographic variation in the life history of lane snapper Lutjanus synagris, with new insights from the warm edge of its distribution. JOURNAL OF FISH BIOLOGY 2023; 103:950-964. [PMID: 37339932 DOI: 10.1111/jfb.15488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Research on life-history variations in widely distributed fish species is needed to understand global warming impacts on populations and to improve fisheries management advice. The lane snapper Lutjanus synagris (Linnaeus, 1758) is commercially important to fisheries in the Western Central Atlantic, where spread information on its life-history traits is available. We studied growth, age, reproduction and mortality of lane snapper in the Guatemalan Caribbean, the warmest part of its distribution range, and collated the new information with published data in a latitudinal analysis extending between 18°S and 30°N. Longevity was estimated at 11 years, and von Bertalanffy growth parameters were asymptotic length (Linf) 45.6 and 42.2 cm for females and males, respectively, the growth coefficient (K) was 0.1 year-1 and the theoretical age at zero length (t0 ) was -4.4 years. Lane snapper grew slowest in April, prior to the rainy season, and at the onset of the reproductive season, which lasted from May to October. Fifty percent of female and male lane snappers matured at 23 and 17 cm, corresponding to 3.5 and 2.4 years of age respectively. A regional multivariate analysis found seawater temperature to be an important driver of life-history variation. Lane snapper lifespan was shorter at the warm edge of its distribution range, and maximum size and peak reproductive investment were negatively related to sea surface temperature. The trade-offs in lane snapper life-history traits and phenology likely enhance its fitness to differing environments. Interpolation from the present regional estimates to less-studied regions of the Caribbean is useful for preliminary understanding of reaction norms and harvest potentials.
Collapse
Affiliation(s)
- Hector Andrade
- Institute of Marine Research, Tromsø, Norway
- Faculty for Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
- Akvaplan-niva AS, Tromsø, Norway
| | | | - Jorge Santos
- Faculty for Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| |
Collapse
|
3
|
Crona BI, Wassénius E, Jonell M, Koehn JZ, Short R, Tigchelaar M, Daw TM, Golden CD, Gephart JA, Allison EH, Bush SR, Cao L, Cheung WWL, DeClerck F, Fanzo J, Gelcich S, Kishore A, Halpern BS, Hicks CC, Leape JP, Little DC, Micheli F, Naylor RL, Phillips M, Selig ER, Springmann M, Sumaila UR, Troell M, Thilsted SH, Wabnitz CCC. Four ways blue foods can help achieve food system ambitions across nations. Nature 2023; 616:104-112. [PMID: 36813964 PMCID: PMC10076219 DOI: 10.1038/s41586-023-05737-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 01/17/2023] [Indexed: 02/24/2023]
Abstract
Blue foods, sourced in aquatic environments, are important for the economies, livelihoods, nutritional security and cultures of people in many nations. They are often nutrient rich1, generate lower emissions and impacts on land and water than many terrestrial meats2, and contribute to the health3, wellbeing and livelihoods of many rural communities4. The Blue Food Assessment recently evaluated nutritional, environmental, economic and justice dimensions of blue foods globally. Here we integrate these findings and translate them into four policy objectives to help realize the contributions that blue foods can make to national food systems around the world: ensuring supplies of critical nutrients, providing healthy alternatives to terrestrial meat, reducing dietary environmental footprints and safeguarding blue food contributions to nutrition, just economies and livelihoods under a changing climate. To account for how context-specific environmental, socio-economic and cultural aspects affect this contribution, we assess the relevance of each policy objective for individual countries, and examine associated co-benefits and trade-offs at national and international scales. We find that in many African and South American nations, facilitating consumption of culturally relevant blue food, especially among nutritionally vulnerable population segments, could address vitamin B12 and omega-3 deficiencies. Meanwhile, in many global North nations, cardiovascular disease rates and large greenhouse gas footprints from ruminant meat intake could be lowered through moderate consumption of seafood with low environmental impact. The analytical framework we provide also identifies countries with high future risk, for whom climate adaptation of blue food systems will be particularly important. Overall the framework helps decision makers to assess the blue food policy objectives most relevant to their geographies, and to compare and contrast the benefits and trade-offs associated with pursuing these objectives.
Collapse
Affiliation(s)
- Beatrice I Crona
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Science, Stockholm, Sweden.
| | - Emmy Wassénius
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Science, Stockholm, Sweden
| | - Malin Jonell
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Science, Stockholm, Sweden
| | - J Zachary Koehn
- Stanford Center for Ocean Solutions, Stanford University, Stanford, CA, USA
| | - Rebecca Short
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | | | - Tim M Daw
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Christopher D Golden
- Dept. of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dept. of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dept. of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessica A Gephart
- Dept. of Environmental Science, American University, Washington, DC, USA
| | | | - Simon R Bush
- Wageningen University and Research, Wageningen, The Netherlands
| | - Ling Cao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - William W L Cheung
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jessica Fanzo
- Bloomberg School of Public Health, Berman Institute of Bioethics, Johns Hopkins University, Washington DC, USA
- Nitze School of Advanced International Studies, Johns Hopkins University, Washington, DC, USA
| | - Stefan Gelcich
- Instituto Milenio en Socio-Ecologia Costera, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Avinash Kishore
- International Food Policy Research Institute (IFPRI), New Delhi, India
| | - Benjamin S Halpern
- National Center for Ecological Analysis and Synthesis, UC Santa Barbara, Santa Barbara, CA, USA
- Bren School of Environmental Science and Management, UC Santa Barbara, Santa Barbara, CA, USA
| | | | - James P Leape
- Stanford Center for Ocean Solutions, Stanford University, Stanford, CA, USA
| | - David C Little
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Fiorenza Micheli
- Stanford Center for Ocean Solutions, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Oceans Department, Stanford University, Pacific Grove, CA, USA
| | - Rosamond L Naylor
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
| | | | - Elizabeth R Selig
- Stanford Center for Ocean Solutions, Stanford University, Stanford, CA, USA
| | - Marco Springmann
- Oxford Martin Programme on the Future of Food, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - U Rashid Sumaila
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
- School of Public Policy and Global Affairs, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Max Troell
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Science, Stockholm, Sweden
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Science, Stockholm, Sweden
| | | | - Colette C C Wabnitz
- Stanford Center for Ocean Solutions, Stanford University, Stanford, CA, USA
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Begum M, Masud MM, Alam L, Mokhtar MB, Amir AA. The impact of climate variables on marine fish production: an empirical evidence from Bangladesh based on autoregressive distributed lag (ARDL) approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87923-87937. [PMID: 35819668 DOI: 10.1007/s11356-022-21845-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Several studies have highlighted the significant impact of climate change on agriculture. However, there have been little empirical enquiries into the impact of climate change on marine fish production, particularly in Bangladesh. Hence, this study aims to investigate the impact of climate change on marine fish production in Bangladesh using data from 1961 to 2019. Data were obtained from the Food and Agriculture Organization, Bangladesh Meteorological Department, the World Development Indicators, and the National Oceanic and Atmospheric Administration. The autoregressive distributed lag (ARDL) model was used to describe the dynamic link between CO2 emissions, average temperature, Sea Surface Temperature (SST), rainfall, sunshine, wind and marine fish production. The ARDL approach to cointegration revealed that SST (β = 0.258), rainfall (β =0.297), and sunshine (β =0.663) significantly influence marine fish production at 1% and 10% levels in the short run and at 1% level in the long run. The results also found that average temperature has a significant negative impact on fish production in both short and long runs. On the other hand, CO2 emissions have a negative impact on marine fish production in the short run. Specifically, for every 1% rise in CO2 emissions, marine fish production will decline by 0.11%. The findings of this study suggest that policymakers formulate better policy frameworks for climate change adaptation and sustainable management of marine fisheries at the national level. Research and development in Bangladesh's fisheries sector should also focus on marine fish species that can resist high sea surface temperatures, CO2 emissions, and average temperatures.
Collapse
Affiliation(s)
- Mahfuza Begum
- The Institute for Environment and Development (LESTARI), The National University of Malaysia, Bangi, Selangor, Malaysia
| | - Muhammad Mehedi Masud
- Department of Development Studies, Faculty of Business and Economics, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lubna Alam
- The Institute for Environment and Development (LESTARI), The National University of Malaysia, Bangi, Selangor, Malaysia.
| | - Mazlin Bin Mokhtar
- The Institute for Environment and Development (LESTARI), The National University of Malaysia, Bangi, Selangor, Malaysia
| | - Ahmad Aldrie Amir
- The Institute for Environment and Development (LESTARI), The National University of Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
5
|
Wang Y, Zhou X, Chen J, Xie B, Huang L. Climate-induced habitat suitability changes intensify fishing impacts on the life history of large yellow croaker ( Larimichthys crocea). Ecol Evol 2022; 12:e9342. [PMID: 36203636 PMCID: PMC9526033 DOI: 10.1002/ece3.9342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Intense fishing pressure and climate change are major threats to the fish population and coastal fisheries. Larimichthys crocea (large yellow croaker) is a long-lived fish, which performs seasonal migrations from its spawning and nursery grounds along the coast of the East China Sea (ECS) to overwintering grounds offshore. This study used length-based analysis and habitat suitability index (HSI) model to evaluate the current life-history parameters and overwintering habitat suitability of L. crocea, respectively. We compared recent (2019) and historical (1971-1982) life-history parameters and overwintering HSI to analyze the fishing pressure and climate change effects on the overall population and overwintering phase of L. crocea. The length-based analysis indicated serious overfishing of L. crocea, characterized by reduced catch, size truncation, constrained distribution, and advanced maturation causing a recruitment bottleneck. The overwintering HSI modeling results indicated that climate change has led to decreased sea surface temperature during L. crocea overwintering phase over the last half-century, which in turn led to area decrease and an offshore-oriented shifting of optimal overwintering habitat of L. crocea. The fishing-caused size truncation may have constrained the migratory ability, and distribution of L. crocea subsequently led to the mismatch of the optimal overwintering habitat against climate change background, namely habitat bottleneck. Hence, while heavy fishing was the major cause of L. crocea collapse, climate-induced overwintering habitat suitability may have intensified the fishery collapse of L. crocea population. It is important for management to consider both overfishing and climate change issues when developing stock enhancement activities and policy regulations, particularly for migratory long-lived fish that share a similar life history to L. crocea. Combined with China's current restocking and stock enhancement initiatives, we propose recommendations for the future restocking of L. crocea in China.
Collapse
Affiliation(s)
- Ya Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental StudiesXiamen UniversityXiamenChina
| | - Xijie Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental StudiesXiamen UniversityXiamenChina
| | - Jiajie Chen
- Scientific Observing and Experimental Station of Fisheries Resources and Environment of East China Sea and Yangtze EstuaryMinistry of Agriculture; East China Sea Fisheries Research Institute,Chinese Academy of Fishery SciencesShanghaiChina
| | - Bin Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental StudiesXiamen UniversityXiamenChina
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental StudiesXiamen UniversityXiamenChina
| |
Collapse
|
6
|
Kuo C, Ko C, Lai Y. Assessing warming impacts on marine fishes by integrating physiology‐guided distribution projections, life‐history changes, and food web dynamics. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chi‐Yun Kuo
- Department of Biomedical Sciences and Environmental Biology Kaohsiung Medical University Kaohsiung, 80708 Taiwan
| | - Chia‐Ying Ko
- Institute of Fisheries Science National Taiwan University Taipei 10617 Taiwan
| | - Yin‐Zheng Lai
- Institute of Fisheries Science National Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
7
|
Cruz VP, Adachi AML, Oliveira PH, Ribeiro GS, Paim FG, Souza BC, Rodrigues AS, Vianna M, Delpiani SM, Díaz de Astarloa JM, Rotundo MM, Mendonça FF, Oliveira C, Lessa RP, Foresti F. Genetic diversity in two threatened species of guitarfish (Elasmobranchii: Rhinobatidae) from the Brazilian and Argentinian coasts: an alert for conservation. NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2021-0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The guitarfishes Pseudobatos horkelii and Pseudobatos percellens meet the criteria for threatened status as Critically Endangered (CR) and Endangered (EN), respectively. Both species occur in the Southern Atlantic Ocean. Considering the lack of data on the genetic structure of these species, the present study evaluated the genetic variability and population structure of the P. horkelii and P. percellens in the southern region of Brazil and the northern coast of Argentina, based on sequences of mitochondrial DNA, Control Region (D-loop). Samples of P. horkelii (n = 135) were analyzed in six localities situated in Northern Argentina, along the Brazilian states’ coast. The mean of nucleotide diversity was 0.0053, the ΦST was 0.4277 and demographic analysis of P. horkelii suggests the existence of stability of the populations, with D = 0.9929, FS = 2.0155, SSD = 0.0817, R = 0.2153. In P. percellens (n = 101) were analyzed from six Brazilian localities along the coast of Santa Catarina, Paraná, and São Paulo. The mean nucleotide diversity was 0.0014 and ΦST value of 0.2921, the demographic analysis indicates a high migration rate of P. percellens among the localities evaluated, with D = 0.5222, FS = 0.3528, SSD = 0.01785, R = 0.3890.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sergio M. Delpiani
- Instituto de Investigaciones Marinas y Costeras, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Juan Martín Díaz de Astarloa
- Instituto de Investigaciones Marinas y Costeras, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | | | | | | | | | | |
Collapse
|