1
|
Grevé ME, Marx MT, Eilmus S, Ernst M, Herrmann JD, Baden CU, Maus C. Insect Decline-Evaluation of Potential Drivers of a Complex Phenomenon. INSECTS 2024; 15:1021. [PMID: 39769623 PMCID: PMC11676483 DOI: 10.3390/insects15121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
The decline of insects is a global concern, yet identifying the factors behind it remains challenging due to the complexity of potential drivers and underlying processes, and the lack of quantitative historical data on insect populations. This study assesses 92 potential drivers of insect decline in West Germany, where significant declines have been observed. Using data from federal statistical offices and market surveys, the study traces changes in landscape structure and agricultural practices over 33 years. Over the years, the region underwent major landscape changes, including reduced cropland and grassland and increased urbanization and forest areas. Potential detected drivers of insect decline include: (1) urban expansion, reducing insect habitats as urban areas increased by 25%; (2) intensified grassland management; (3) shifts in arable land use towards bioenergy and feed crop cultivation, particularly corn, driven by dairy farming intensification and renewable energy policies. While the toxic load of pesticide application has decreased, land-use changes, most likely driven by market demands and shifts in national and EU policies, have reduced habitat availability and suitability for insects. This study highlights how these landscape and land management changes over the past 33 years align with the observed decline in insect biomass in the region.
Collapse
|
2
|
Bowler DE, Callaghan CT, Felappi JF, Mason BM, Hutchinson R, Kumar P, Jones L. Evidence-base for urban green-blue infrastructure to support insect diversity. Urban Ecosyst 2024; 28:1-14. [PMID: 39655238 PMCID: PMC11625076 DOI: 10.1007/s11252-024-01649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Green-blue urban infrastructures potentially offer win-win benefits for people and nature in urban areas. Given increasing evidence of widespread declines of insects, as well as their ecological importance, there is a need to better understand the potential role of green-blue urban infrastructure for insect conservation. In this review, we evaluated 201 studies about the ability of green-blue infrastructure to support insect diversity. Most studies were focused on the role of local and landscape-level characteristics of green-blue infrastructure. Fewer studies explicitly compared one type of infrastructure to another, and even fewer compared insect communities between green-blue infrastructure and traditional infrastructure. Overall, the body of research highlights the importance of plant diversity and reduced intensity of management (e.g., mowing) for most insect taxon groups. While local characteristics seem to be generally more important than landscape factors, insect communities within green-blue infrastructures can also depend on their connectivity and landscape context. Some infrastructure types are generally more beneficial than others; for instance, ground-level habitats tend to support more insects than green roofs. Few studies simultaneously studied synergies or trade-offs with other services provided by green-blue infrastructure, but environmental variables, such as tree cover and plant diversity, that affect insects are likely to also affect the provision of other services such as improving thermal comfort and the well-being of people. Our review offers some initial evidence for how green-blue infrastructure could be designed for multifunctionality with insects in mind. Supplementary Information The online version contains supplementary material available at 10.1007/s11252-024-01649-4.
Collapse
Affiliation(s)
- Diana E. Bowler
- Biodiversity Monitoring & Analysis, UK Centre for Ecology & Hydrology, Wallingford, UK
| | - Corey T. Callaghan
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Gainesville, FL USA
| | | | - Brittany M. Mason
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Gainesville, FL USA
| | - Robin Hutchinson
- Biodiversity Monitoring & Analysis, UK Centre for Ecology & Hydrology, Wallingford, UK
| | - Prashant Kumar
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, GU2 7XH UK
- Institute for Sustainability, University of Surrey, Guildford, GU2 7XH UK
| | - Laurence Jones
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, LL57 2UW UK
- Department of Geography and Environmental Science, Liverpool Hope University, Hope Park, Liverpool, L16 9JD UK
| |
Collapse
|
3
|
Hart JD, Pandolfi A, Jones T, Jenkins DG. Ground-Based Pyrethroid Adulticides Reduce Mosquitoes But Not Nontarget Insects in Central Florida. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:125-136. [PMID: 38978491 DOI: 10.2987/24-7177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
As stewards of public and environmental health, mosquito control agencies are rightfully concerned about impacts on nontarget organisms. This study examined the impact of a modern, pyrethroid based ground adulticide program using ultra-low volume applications in a metropolitan county in central Florida. Nontarget insects and mosquitoes were collected in a before-after control-impact design at 21 sites over 1.5 years. While mosquitoes were reduced, we found no evidence for reduction of nontarget insects, regardless of taxon. Night-flying Lepidoptera may experience greater risk than other nontarget taxa, but overall effects of adulticide missions on this group were low and inconsistent. Instead, meteorology, habitat, and phenology dominate patterns of nontarget abundance. Mosquito reduction was more clearly observed and corrected post-mission reduction was consistent with results expected in complex urban and suburban treatment zones.
Collapse
|
4
|
van Dijk LJA, Fisher BL, Miraldo A, Goodsell RM, Iwaszkiewicz-Eggebrecht E, Raharinjanahary D, Rajoelison ET, Łukasik P, Andersson AF, Ronquist F, Roslin T, Tack AJM. Temperature and water availability drive insect seasonality across a temperate and a tropical region. Proc Biol Sci 2024; 291:20240090. [PMID: 38889793 DOI: 10.1098/rspb.2024.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
The more insects there are, the more food there is for insectivores and the higher the likelihood for insect-associated ecosystem services. Yet, we lack insights into the drivers of insect biomass over space and seasons, for both tropical and temperate zones. We used 245 Malaise traps, managed by 191 volunteers and park guards, to characterize year-round flying insect biomass in a temperate (Sweden) and a tropical (Madagascar) country. Surprisingly, we found that local insect biomass was similar across zones. In Sweden, local insect biomass increased with accumulated heat and varied across habitats, while biomass in Madagascar was unrelated to the environmental predictors measured. Drivers behind seasonality partly converged: In both countries, the seasonality of insect biomass differed between warmer and colder sites, and wetter and drier sites. In Sweden, short-term deviations from expected season-specific biomass were explained by week-to-week fluctuations in accumulated heat, rainfall and soil moisture, whereas in Madagascar, weeks with higher soil moisture had higher insect biomass. Overall, our study identifies key drivers of the seasonal distribution of flying insect biomass in a temperate and a tropical climate. This knowledge is key to understanding the spatial and seasonal availability of insects-as well as predicting future scenarios of insect biomass change.
Collapse
Affiliation(s)
- Laura J A van Dijk
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 114 18, Sweden
| | - Brian L Fisher
- Entomology, California Academy of Sciences, San Francisco, CA 94118, USA
- Madagascar Biodiversity Center, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo 101, Madagascar
| | - Andreia Miraldo
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 114 18, Sweden
| | - Robert M Goodsell
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 114 18, Sweden
| | | | - Dimby Raharinjanahary
- Madagascar Biodiversity Center, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo 101, Madagascar
| | | | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anders F Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm 171 21, Sweden
| | - Fredrik Ronquist
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 114 18, Sweden
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 114 19 Stockholm, Sweden
| |
Collapse
|
5
|
Müller J, Hothorn T, Yuan Y, Seibold S, Mitesser O, Rothacher J, Freund J, Wild C, Wolz M, Menzel A. Weather explains the decline and rise of insect biomass over 34 years. Nature 2024; 628:349-354. [PMID: 37758943 DOI: 10.1038/s41586-023-06402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 07/04/2023] [Indexed: 09/29/2023]
Abstract
Insects have a pivotal role in ecosystem function, thus the decline of more than 75% in insect biomass in protected areas over recent decades in Central Europe1 and elsewhere2,3 has alarmed the public, pushed decision-makers4 and stimulated research on insect population trends. However, the drivers of this decline are still not well understood. Here, we reanalysed 27 years of insect biomass data from Hallmann et al.1, using sample-specific information on weather conditions during sampling and weather anomalies during the insect life cycle. This model explained variation in temporal decline in insect biomass, including an observed increase in biomass in recent years, solely on the basis of these weather variables. Our finding that terrestrial insect biomass is largely driven by complex weather conditions challenges previous assumptions that climate change is more critical in the tropics5,6 or that negative consequences in the temperate zone might only occur in the future7. Despite the recent observed increase in biomass, new combinations of unfavourable multi-annual weather conditions might be expected to further threaten insect populations under continuing climate change. Our findings also highlight the need for more climate change research on physiological mechanisms affected by annual weather conditions and anomalies.
Collapse
Affiliation(s)
- Jörg Müller
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany.
- Bavarian Forest National Park, Grafenau, Germany.
| | - Torsten Hothorn
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Ye Yuan
- Ecoclimatology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Sebastian Seibold
- Ecosystem Dynamics and Forest Management Research Group, School of Life Sciences, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
- Forest Zoology, TUD Dresden University of Technology, Tharandt, Germany
| | - Oliver Mitesser
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Julia Rothacher
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Julia Freund
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Clara Wild
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Marina Wolz
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Annette Menzel
- Ecoclimatology, School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
6
|
Russo-Petrick K, Root KV. Factors impacting bat activity and species richness in protected parks in the oak openings region of Northwest Ohio. ENVIRONMENTAL MANAGEMENT 2023; 72:1086-1098. [PMID: 37368019 DOI: 10.1007/s00267-023-01849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Protected areas are important for wildlife, especially in heavily developed areas. Bats are one group utilizing protected areas, but it is unclear what makes an ideal place for bats to live in parks, especially since preferences vary between open and forest foraging species and at different scales. The main objective of this study was to determine the landscape and vegetation factors at multiple scales most associated with higher bat activity and species richness in protected parks. Total bat activity, species richness, and activity for open and forested foraging species were compared to small-scale data vegetation structure collected in the field and larger-scale landscape data calculated in ArcGIS and FRAGSTATS. Bat activity and species richness increased with higher percentages of dry and open land cover types such as sand barrens, savanna, cropland, and upland prairie and decreased with higher percentages of forest and wet prairies. Patch richness, understory height, and clutter at the 3-6.5 m level were negatively associated with total bat activity. The most important variables for bats differed depending on spatial scale measured and if species were open or forest adapted. When managing for bats in parks, it would be advantageous to restore open land cover types such as savanna and mid-level clutter, and excessive fragmentation. Whether species are open or forest adapted and scale-specific differences should also be considered.
Collapse
Affiliation(s)
- Kelly Russo-Petrick
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Karen V Root
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
7
|
Svenningsen CS, Bowler DE, Hecker S, Bladt J, Grescho V, Dam NM, Dauber J, Eichenberg D, Ejrnæs R, Fløjgaard C, Frenzel M, Frøslev TG, Hansen AJ, Heilmann‐Clausen J, Huang Y, Larsen JC, Menger J, Nayan NLBM, Pedersen LB, Richter A, Dunn RR, Tøttrup AP, Bonn A. Flying insect biomass is negatively associated with urban cover in surrounding landscapes. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Diana E. Bowler
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Friedrich Schiller University Jena Institute of Biodiversity Jena Germany
- Department of Ecosystem Services Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Susanne Hecker
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Ecosystem Services Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Jesper Bladt
- Department of Bioscience – Biodiversity and Conservation Aarhus University Aarhus Denmark
| | - Volker Grescho
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Ecosystem Services Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Nicole M. Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Friedrich Schiller University Jena Institute of Biodiversity Jena Germany
| | - Jens Dauber
- Thünen‐Institute of Biodiversity Braunschweig Germany
| | - David Eichenberg
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Ecosystem Services Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Rasmus Ejrnæs
- Department of Bioscience – Biodiversity and Conservation Aarhus University Aarhus Denmark
| | - Camilla Fløjgaard
- Department of Bioscience – Biodiversity and Conservation Aarhus University Aarhus Denmark
| | - Mark Frenzel
- Department of Community Ecology Helmholtz Centre for Environmental Research – UFZ Halle Germany
| | - Tobias G. Frøslev
- Centre for GeoGenetics GLOBE Institute University of Copenhagen Copenhagen Denmark
| | - Anders J. Hansen
- Centre for GeoGenetics GLOBE Institute University of Copenhagen Copenhagen Denmark
| | - Jacob Heilmann‐Clausen
- Centre for Macroecology, Evolution and Climate GLOBE Institute University of Copenhagen Copenhagen Denmark
| | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Ecosystem Services Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Jonas C. Larsen
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Juliana Menger
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Ecosystem Services Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
- Coordenação de Biodiversidade Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| | - Nur L. B. M. Nayan
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Ecosystem Services Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Lene B. Pedersen
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Anett Richter
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Ecosystem Services Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
- Thünen‐Institute of Biodiversity Braunschweig Germany
| | - Robert R. Dunn
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Department of Applied Ecology North Carolina State University Raleigh North Carolina USA
| | - Anders P. Tøttrup
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Friedrich Schiller University Jena Institute of Biodiversity Jena Germany
- Department of Ecosystem Services Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| |
Collapse
|