1
|
Curry HN, Huynh R, Rouhana L. Melastatin subfamily Transient Receptor Potential channels support spermatogenesis in planarian flatworms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.01.610670. [PMID: 39282438 PMCID: PMC11398416 DOI: 10.1101/2024.09.01.610670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Transient Receptor Potential superfamily of proteins (TRPs) form cation channels that are abundant in animal sensory systems. Amongst TRPs, the Melastatin-related subfamily (TRPMs) is composed of members that respond to temperature, pH, sex hormones, and various other stimuli. Some TRPMs exhibit enriched expression in gonads of vertebrate and invertebrate species, but their contributions to germline development remain to be determined. We identified twenty-one potential TRPMs in the planarian flatworm Schmidtea mediterranea and analyzed their anatomical distribution of expression by whole-mount in situ hybridization. Enriched expression of two TRPMs (Smed-TRPM-c and Smed-TRPM-l) was detected in testis, whereas eight TRPM genes had detectable expression in patterns representative of neuronal and/or sensory cell types. Functional analysis of TRPM homologs by RNA-interference (RNAi) revealed that disruption of Smed-TRPM-c expression results in reduced sperm development, indicating a role for this receptor in supporting spermatogenesis. Smed-TRPM-l RNAi did not result in a detectable phenotype, but it increased sperm development deficiencies when combined with Smed-TRPM-c RNAi. Fluorescence in situ hybridization revealed expression of Smed-TRPM-c in early spermatogenic cells within testes, suggesting cell-autonomous regulatory functions in germ cells for this gene. In addition, Smed-TRPM-c RNAi resulted in reduced numbers of presumptive germline stem cell clusters in asexual planarians, suggesting that Smed-TRPM-c supports establishment, maintenance, and/or expansion of spermatogonial germline stem cells. While further research is needed to identify the factors that trigger Smed-TRPM-c activity, these findings reveal one of few known examples for TRPM function in direct regulation of sperm development.
Collapse
Affiliation(s)
- Haley Nicole Curry
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA
| | - Roger Huynh
- Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125-3393, USA
| | - Labib Rouhana
- Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125-3393, USA
| |
Collapse
|
2
|
Grohme MA, Frank O, Rink JC. Preparing Planarian Cells for High-Content Fluorescence Microscopy Using RNA in Situ Hybridization and Immunocytochemistry. Methods Mol Biol 2023; 2680:121-155. [PMID: 37428375 DOI: 10.1007/978-1-0716-3275-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
High-content fluorescence microscopy combines the efficiency of high-throughput techniques with the ability to extract quantitative information from biological systems. Here we describe a modular collection of assays adapted for fixed planarian cells that enable multiplexed measurements of biomarkers in microwell plates. These include protocols for RNA fluorescent in situ hybridization (RNA FISH) as well as immunocytochemical protocols for quantifying proliferating cells targeting phosphorylated histone H3 as well as 5-bromo-2'-deoxyuridine (BrdU) incorporated into the nuclear DNA. The assays are compatible with planarians of virtually any size, as the tissue is disaggregated into a single-cell suspension before fixation and staining. By sharing many reagents with established planarian whole-mount staining protocols, preparation of samples for high-content microscopy adoption requires little additional investment.
Collapse
Affiliation(s)
- Markus A Grohme
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Olga Frank
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jochen C Rink
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
3
|
Inoue T, Agata K. Quantification of planarian behaviors. Dev Growth Differ 2021; 64:16-37. [PMID: 34866186 DOI: 10.1111/dgd.12765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 11/30/2022]
Abstract
Research on individual behaviors can help to reveal the processes and mechanisms that mediate an animal's habits and interactions with the environment. Importantly, individual behaviors arise as outcomes of genetic programs, morphogenesis, physiological processes, and neural functions; thus, behavioral analyses can be used to detect disorders in these processes. Planarians belong to an early branching bilateral group of organisms that possess a simple central nervous system. Furthermore, planarians display various behavioral responses to the environment via their nervous system. Planarians also have remarkable regenerative abilities, including whole-brain regeneration. Therefore, the combination of planarians' phylogenetic position, behavioral properties, regenerative ability, and genetic accessibility provides a unique opportunity to understand the basic mechanisms underlying the anatomical properties of neural morphogenesis and the dynamic physiological processes and neural function. Here, we describe a step-by-step protocol for conducting simple behavioral analyses in planarians with the aim of helping to introduce researchers to the utility of performing behavioral analyses in planarians. Since the conditions of planarians impact experimental results and reproducibility, this protocol begins with a method for maintaining planarians. Next, we introduce the behavioral tests as well as the methods for quantifying them using minimal and cost-effective equipment and materials. Finally, we present a unique RNAi technique that enables conditional silencing of neural activity in the brain of planarians.
Collapse
Affiliation(s)
- Takeshi Inoue
- Division of Adaptation Physiology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kiyokazu Agata
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
4
|
Auwal MA, Kashima M, Nishimura O, Hosoda K, Motoishi M, Kamimura A, Okumura A, Agata K, Umesono Y. Identification and characterization of a fibroblast growth factor gene in the planarian Dugesia japonica. Dev Growth Differ 2020; 62:527-539. [PMID: 33080046 DOI: 10.1111/dgd.12696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022]
Abstract
Planarians belong to the phylum Platyhelminthes and can regenerate their missing body parts after injury via activation of somatic pluripotent stem cells called neoblasts. Previous studies suggested that fibroblast growth factor (FGF) signaling plays a crucial role in the regulation of head tissue differentiation during planarian regeneration. To date, however, no FGF homologues in the Platyhelminthes have been reported. Here, we used a planarian Dugesia japonica model and identified an fgf gene termed Djfgf, which encodes a putative secreted protein with a core FGF domain characteristic of the FGF8/17/18 subfamily in bilaterians. Using Xenopus embryos, we found that DjFGF has FGF activity as assayed by Xbra induction. We next examined Djfgf expression in non-regenerating intact and regenerating planarians. In intact planarians, Djfgf was expressed in the auricles in the head and the pharynx. In the early process of regeneration, Djfgf was transiently expressed in a subset of differentiated cells around wounds. Notably, Djfgf expression was highly induced in the process of head regeneration when compared to that in the tail regeneration. Furthermore, assays of head regeneration from tail fragments revealed that combinatorial actions of the anterior extracellular signal-regulated kinase (ERK) and posterior Wnt/ß-catenin signaling restricted Djfgf expression to a certain anterior body part. This is the region where neoblasts undergo active proliferation to give rise to their differentiating progeny in response to wounding. The data suggest the possibility that DjFGF may act as an anterior counterpart of posteriorly localized Wnt molecules and trigger neoblast responses involved in planarian head regeneration.
Collapse
Affiliation(s)
| | - Makoto Kashima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Osamu Nishimura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutaka Hosoda
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo, Japan
| | - Minako Motoishi
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo, Japan
| | - Akifumi Kamimura
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo, Japan
| | - Akinori Okumura
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Department of Life Science, Faculty of Science Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo, Japan
| |
Collapse
|
5
|
Miyamoto M, Hattori M, Hosoda K, Sawamoto M, Motoishi M, Hayashi T, Inoue T, Umesono Y. The pharyngeal nervous system orchestrates feeding behavior in planarians. SCIENCE ADVANCES 2020; 6:eaaz0882. [PMID: 32285000 PMCID: PMC7141820 DOI: 10.1126/sciadv.aaz0882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/14/2020] [Indexed: 05/06/2023]
Abstract
Planarians exhibit traits of cephalization but are unique among bilaterians in that they ingest food by means of goal-directed movements of a trunk-positioned pharynx, following protrusion of the pharynx out of the body, raising the question of how planarians control such a complex set of body movements for achieving robust feeding. Here, we use the freshwater planarian Dugesia japonica to show that an isolated pharynx amputated from the planarian body self-directedly executes its entire sequence of feeding functions: food sensing, approach, decisions about ingestion, and intake. Gene-specific silencing experiments by RNA interference demonstrated that the pharyngeal nervous system (PhNS) is required not only for feeding functions of the pharynx itself but also for food-localization movements of individual animals, presumably via communication with the brain. These findings reveal an unexpected central role of the PhNS in the linkage between unique morphological phenotypes and feeding behavior in planarians.
Collapse
Affiliation(s)
- Mai Miyamoto
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Miki Hattori
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Kazutaka Hosoda
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Mika Sawamoto
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Minako Motoishi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
- Corresponding author. (Y.U.); (T.I.)
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- Corresponding author. (Y.U.); (T.I.)
| |
Collapse
|
6
|
Mori M, Narahashi M, Hayashi T, Ishida M, Kumagai N, Sato Y, Bagherzadeh R, Agata K, Inoue T. Calcium ions in the aquatic environment drive planarians to food. ZOOLOGICAL LETTERS 2019; 5:31. [PMID: 31720007 PMCID: PMC6836377 DOI: 10.1186/s40851-019-0147-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/21/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Even subtle changes in environmental factors can exert behavioral effects on creatures, which may alter interspecific interactions and eventually affect the ecosystem. However, how changes in environmental factors impact complex behaviors regulated by neural processes is largely unknown. The freshwater planarian Dugesia japonica, a free-living flatworm, displays distinct behavioral traits mediated by sensitive perception of environmental cues. Planarians are thus useful organisms for examining interactions between environmental changes and specific behaviors of animals. RESULTS Here we found that feeding behavior was suppressed when the concentration of ions in the breeding water was low, while other behaviors were unaffected, resulting in differences in population size. Notably, the decline in feeding behavior was reversed in an ion-concentration-dependent manner soon after the planarians were moved to ion-containing water, which suggests that ions in environmental water rapidly promote feeding behavior in planarians. Moreover, the concentration of ions in the environmental water affected the feeding behavior by modulating the sensitivity of the response to foods. Finally, we found that calcium ions in the aquatic environment were required for the feeding behavior, and exposure to higher levels of calcium ions enhanced the feeding behavior, showing that there was a good correlation between the concentration of calcium ions and the responsiveness of planarians to foods. CONCLUSIONS Environmental calcium ions are indispensable for and potentiate the activity level of the feeding behavior of planarians. Our findings suggest that the ions in the aquatic environment profoundly impact the growth and survival of aquatic animals via modulating their neural activities and behaviors.
Collapse
Affiliation(s)
- Masato Mori
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| | - Maria Narahashi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - Miyuki Ishida
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| | - Nobuyoshi Kumagai
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| | - Yuki Sato
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
| | - Reza Bagherzadeh
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Banihashem, Tehran, Iran
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
- National Institute for Basic Biology, National Institutes of Natural Science, 38 Nishigonaka, Myodaiji, Okazaki, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| |
Collapse
|
7
|
Hosoda K, Motoishi M, Kunimoto T, Nishimura O, Hwang B, Kobayashi S, Yazawa S, Mochii M, Agata K, Umesono Y. Role of MEKK1 in the anterior-posterior patterning during planarian regeneration. Dev Growth Differ 2018; 60:341-353. [PMID: 29900546 DOI: 10.1111/dgd.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 11/29/2022]
Abstract
Planarians have established a unique body pattern along the anterior-posterior (AP) axis, which consists of at least four distinct body regions arranged in an anterior to posterior sequence: head, prepharyngeal, pharyngeal (containing a pharynx), and tail regions, and possess high regenerative ability. How they reconstruct the regional continuity in a head-to-tail sequence after amputation still remains unknown. We use as a model planarian Dugesia japonica head regeneration from tail fragments, which involves dynamic rearrangement of the body regionality of preexisting tail tissues along the AP axis, and show here that RNA interference of the gene D. japonica mek kinase 1 (Djmekk1) caused a significant anterior shift in the position of pharynx regeneration at the expense of the prepharyngeal region, while keeping the head region relatively constant in size, and accordingly led to development of a relatively longer tail region. Our data suggest that DjMEKK1 regulates anterior extracellular signal-regulated kinase (ERK) and posterior β-catenin signaling pathways in a positive and negative manner, respectively, to establish a proper balance resulting in the regeneration of planarian's scale-invariant trunk-to-tail patterns across individuals. Furthermore, we demonstrated that DjMEKK1 negatively modulates planarian β-catenin activity via its serine/threonine kinase domain, but not its PHD/RING finger domain, by testing secondary axis formation in Xenopus embryos. The data suggest that Djmekk1 plays an instructive role in the coordination between the establishment of the prepharyngeal region and posteriorizing of pharynx formation by balancing the two opposing morphogenetic signals along the AP axis during planarian regeneration.
Collapse
Affiliation(s)
- Kazutaka Hosoda
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Minako Motoishi
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Takuya Kunimoto
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Osamu Nishimura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Byulnim Hwang
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Sumire Kobayashi
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Shigenobu Yazawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Makoto Mochii
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Department of Life Science, Faculty of Science Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| |
Collapse
|