1
|
Piau O, Brunet-Manquat M, L'Homme B, Petit L, Birebent B, Linard C, Moeckes L, Zuliani T, Lapillonne H, Benderitter M, Douay L, Chapel A, Guyonneau-Harmand L, Jaffredo T. Generation of transgene-free hematopoietic stem cells from human induced pluripotent stem cells. Cell Stem Cell 2023; 30:1610-1623.e7. [PMID: 38065068 DOI: 10.1016/j.stem.2023.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
Hematopoietic stem cells (HSCs) are the rare cells responsible for the lifelong curative effects of hematopoietic cell (HC) transplantation. The demand for clinical-grade HSCs has increased significantly in recent decades, leading to major difficulties in treating patients. A promising but not yet achieved goal is the generation of HSCs from pluripotent stem cells. Here, we have obtained vector- and stroma-free transplantable HSCs by differentiating human induced pluripotent stem cells (hiPSCs) using an original one-step culture system. After injection into immunocompromised mice, cells derived from hiPSCs settle in the bone marrow and form a robust multilineage hematopoietic population that can be serially transplanted. Single-cell RNA sequencing shows that this repopulating activity is due to a hematopoietic population that is transcriptionally similar to human embryonic aorta-derived HSCs. Overall, our results demonstrate the generation of HSCs from hiPSCs and will help identify key regulators of HSC production during human ontogeny.
Collapse
Affiliation(s)
- Olivier Piau
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 9 Quai St-Bernard, 75005 Paris, France
| | - Mathias Brunet-Manquat
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, 94017 Créteil, France
| | - Bruno L'Homme
- Laboratoire de radiobiologie des expositions médicales (LRMed), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | - Laurence Petit
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 9 Quai St-Bernard, 75005 Paris, France
| | - Brigitte Birebent
- EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, 94017 Créteil, France
| | - Christine Linard
- Laboratoire de radiobiologie des expositions médicales (LRMed), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | - Laetitia Moeckes
- Etablissement Français du Sang - Atlantic Bio GMP - 2, rue Aronnax, 44800 Saint-Herblain, France
| | - Thomas Zuliani
- Etablissement Français du Sang - Atlantic Bio GMP - 2, rue Aronnax, 44800 Saint-Herblain, France
| | - Hélène Lapillonne
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; AP-HP, Hôpital St Antoine/Trousseau, Service d'Hématologie Biologique, 75012 Paris, France
| | - Marc Benderitter
- Laboratoire de radiobiologie des expositions médicales (LRMed), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | - Luc Douay
- AP-HP, Hôpital St Antoine/Trousseau, Service d'Hématologie Biologique, 75012 Paris, France
| | - Alain Chapel
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; Laboratoire de radiobiologie des expositions médicales (LRMed), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | - Laurence Guyonneau-Harmand
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, 94017 Créteil, France.
| | - Thierry Jaffredo
- EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, 94017 Créteil, France.
| |
Collapse
|
2
|
Bruschi M, Vanzolini T, Sahu N, Balduini A, Magnani M, Fraternale A. Functionalized 3D scaffolds for engineering the hematopoietic niche. Front Bioeng Biotechnol 2022; 10:968086. [PMID: 36061428 PMCID: PMC9428512 DOI: 10.3389/fbioe.2022.968086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a subzone of the bone marrow (BM) defined as the hematopoietic niche where, via the interplay of differentiation and self-renewal, they can give rise to immune and blood cells. Artificial hematopoietic niches were firstly developed in 2D in vitro cultures but the limited expansion potential and stemness maintenance induced the optimization of these systems to avoid the total loss of the natural tissue complexity. The next steps were adopted by engineering different materials such as hydrogels, fibrous structures with natural or synthetic polymers, ceramics, etc. to produce a 3D substrate better resembling that of BM. Cytokines, soluble factors, adhesion molecules, extracellular matrix (ECM) components, and the secretome of other niche-resident cells play a fundamental role in controlling and regulating HSC commitment. To provide biochemical cues, co-cultures, and feeder-layers, as well as natural or synthetic molecules were utilized. This review gathers key elements employed for the functionalization of a 3D scaffold that demonstrated to promote HSC growth and differentiation ranging from 1) biophysical cues, i.e., material, topography, stiffness, oxygen tension, and fluid shear stress to 2) biochemical hints favored by the presence of ECM elements, feeder cell layers, and redox scavengers. Particular focus is given to the 3D systems to recreate megakaryocyte products, to be applied for blood cell production, whereas HSC clinical application in such 3D constructs was limited so far to BM diseases testing.
Collapse
Affiliation(s)
- Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- *Correspondence: Michela Bruschi,
| | - Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Neety Sahu
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | |
Collapse
|
3
|
Fidanza A, Forrester LM. Progress in the production of haematopoietic stem and progenitor cells from human pluripotent stem cells. ACTA ACUST UNITED AC 2021; 13:100050. [PMID: 34405125 PMCID: PMC8350141 DOI: 10.1016/j.regen.2021.100050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Cell therapies are currently used to treat many haematological diseases. These treatments range from the long-term reconstitution of the entire haematopoietic system using the most potent haematopoietic stem cells (HSCs) to the short-term rescue with mature functional end cells such as oxygen-carrying red blood cells and cells of the immune system that can fight infection and repair tissue. Limitations in supply and the risk of transmitting infection has prompted the design of protocols to produce some of these cell types from human pluripotent stem cells (hPSCs). Although it has proven challenging to generate the most potent HSCs directly from hPSCs, significant progress has been made in the development of differentiation protocols that can successfully produce haematopoietic progenitor cells and most of the mature cell lineages. We review the key steps used in the production of haematopoietic stem and progenitor cells (HSPCs) from hPSCs and the cell surface markers and reporter strategies that have been used to define specific transitions. Most studies have relied on the use of known markers that define HSPC production in vivo but more recently single cell RNA sequencing has allowed a less biased approach to their characterisation. Transcriptional profiling has identified new markers for naïve and committed hPSC-derived HSPC populations and trajectory analyses has provided novel insights into their lineage potential. Direct comparison of in vitro- and in vivo-derived RNA single cell sequencing datasets has highlights similarities and differences between the two systems and this deeper understanding will be key to the design and the tracking of improved and more efficient differentiation protocols.
Collapse
Affiliation(s)
- Antonella Fidanza
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Lesley M Forrester
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
4
|
Ikeya M, Toyooka Y, Eiraku M. Pluripotent stem cells in developmental biology (part 2). Dev Growth Differ 2021; 63:103. [PMID: 33666222 DOI: 10.1111/dgd.12720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yayoi Toyooka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Institute for Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Nakamura S, Sugimoto N, Eto K. Development of platelet replacement therapy using human induced pluripotent stem cells. Dev Growth Differ 2021; 63:178-186. [PMID: 33507533 PMCID: PMC8048793 DOI: 10.1111/dgd.12711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/13/2022]
Abstract
In the body, platelets mainly work as a hemostatic agent, and the lack of platelets can cause serious bleeding. Induced pluripotent stem (iPS) cells potentially allow for a stable supply of platelets that are independent of donors and eliminate the risk of infection. However, a major challenge in iPS cell-based systems is producing the number of platelets required for a single transfusion (more than 200 billion in Japan). Thus, development in large-scale culturing technology is required. In previous studies, we generated a self-renewable, immortalized megakaryocyte cell line by transfecting iPS cell-derived hematopoietic progenitor cells with c-MYC, BMI1, and BCL-XL genes. Optimization of the culture conditions, including the discovery of a novel fluid-physical factor, turbulence, in the production of platelets in vivo, and the development of bioreactors that apply turbulence have enabled us to generate platelets of clinical quality and quantity. We have further generated platelets deleted of HLA class I expression by using genetic modification technology for patients suffering from alloimmune transfusion refractoriness, since these patients are underserved by current blood donation systems. In this review, we highlight current research and our recent work on iPS cell-derived platelet induction.
Collapse
Affiliation(s)
- Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|