1
|
Llambrich S, Tielemans B, Saliën E, Atzori M, Wouters K, Van Bulck V, Platt M, Vanherp L, Gallego Fernandez N, Grau de la Fuente L, Poptani H, Verlinden L, Himmelreich U, Croitor A, Attanasio C, Callaerts-Vegh Z, Gsell W, Martínez-Abadías N, Vande Velde G. Pleiotropic effects of trisomy and pharmacologic modulation on structural, functional, molecular, and genetic systems in a Down syndrome mouse model. eLife 2024; 12:RP89763. [PMID: 38497812 PMCID: PMC10948151 DOI: 10.7554/elife.89763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Down syndrome (DS) is characterized by skeletal and brain structural malformations, cognitive impairment, altered hippocampal metabolite concentration and gene expression imbalance. These alterations were usually investigated separately, and the potential rescuing effects of green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG) provided disparate results due to different experimental conditions. We overcame these limitations by conducting the first longitudinal controlled experiment evaluating genotype and GTE-EGCG prenatal chronic treatment effects before and after treatment discontinuation. Our findings revealed that the Ts65Dn mouse model reflected the pleiotropic nature of DS, exhibiting brachycephalic skull, ventriculomegaly, neurodevelopmental delay, hyperactivity, and impaired memory robustness with altered hippocampal metabolite concentration and gene expression. GTE-EGCG treatment modulated most systems simultaneously but did not rescue DS phenotypes. On the contrary, the treatment exacerbated trisomic phenotypes including body weight, tibia microarchitecture, neurodevelopment, adult cognition, and metabolite concentration, not supporting the therapeutic use of GTE-EGCG as a prenatal chronic treatment. Our results highlight the importance of longitudinal experiments assessing the co-modulation of multiple systems throughout development when characterizing preclinical models in complex disorders and evaluating the pleiotropic effects and general safety of pharmacological treatments.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Birger Tielemans
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Ellen Saliën
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Marta Atzori
- Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Kaat Wouters
- Laboratory of Biological Psychology, KU LeuvenLeuvenBelgium
| | | | - Mark Platt
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Laure Vanherp
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Nuria Gallego Fernandez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Laura Grau de la Fuente
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, KU LeuvenLeuvenBelgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Anca Croitor
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | | | | | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | | |
Collapse
|
2
|
Fukami-Gartner A, Baburamani AA, Dimitrova R, Patkee PA, Ojinaga-Alfageme O, Bonthrone AF, Cromb D, Uus AU, Counsell SJ, Hajnal JV, O’Muircheartaigh J, Rutherford MA. Comprehensive volumetric phenotyping of the neonatal brain in Down syndrome. Cereb Cortex 2023; 33:8921-8941. [PMID: 37254801 PMCID: PMC10350827 DOI: 10.1093/cercor/bhad171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability with a wide range of neurodevelopmental outcomes. To date, there have been very few in vivo neuroimaging studies of the neonatal brain in DS. In this study we used a cross-sectional sample of 493 preterm- to term-born control neonates from the developing Human Connectome Project to perform normative modeling of regional brain tissue volumes from 32 to 46 weeks postmenstrual age, accounting for sex and age variables. Deviation from the normative mean was quantified in 25 neonates with DS with postnatally confirmed karyotypes from the Early Brain Imaging in DS study. Here, we provide the first comprehensive volumetric phenotyping of the neonatal brain in DS, which is characterized by significantly reduced whole brain, cerebral white matter, and cerebellar volumes; reduced relative frontal and occipital lobar volumes, in contrast with enlarged relative temporal and parietal lobar volumes; enlarged relative deep gray matter volume (particularly the lentiform nuclei); and enlargement of the lateral ventricles, amongst other features. In future, the ability to assess phenotypic severity at the neonatal stage may help guide early interventions and, ultimately, help improve neurodevelopmental outcomes in children with DS.
Collapse
Affiliation(s)
- Abi Fukami-Gartner
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
| | - Ana A Baburamani
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | - Prachi A Patkee
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Olatz Ojinaga-Alfageme
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Alena U Uus
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
| |
Collapse
|
3
|
Llambrich S, González R, Albaigès J, Wouters J, Marain F, Himmelreich U, Sharpe J, Dierssen M, Gsell W, Martínez-Abadías N, Vande Velde G. Multimodal in vivo Imaging of the Integrated Postnatal Development of Brain and Skull and Its Co-modulation With Neurodevelopment in a Down Syndrome Mouse Model. Front Med (Lausanne) 2022; 9:815739. [PMID: 35223915 PMCID: PMC8874331 DOI: 10.3389/fmed.2022.815739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
The brain and skeletal systems are intimately integrated during development through common molecular pathways. This is evidenced by genetic disorders where brain and skull dysmorphologies are associated. However, the mechanisms underlying neural and skeletal interactions are poorly understood. Using the Ts65Dn mouse model of Down syndrome (DS) as a case example, we performed the first longitudinal assessment of brain, skull and neurobehavioral development to determine alterations in the coordinated morphogenesis of brain and skull. We optimized a multimodal protocol combining in vivo micro-computed tomography (μCT) and magnetic resonance imaging (μMRI) with morphometric analyses and neurodevelopmental tests to longitudinally monitor the different systems' development trajectories during the first postnatal weeks. We also explored the impact of a perinatal treatment with green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG), which can modulate cognition, brain and craniofacial development in DS. Our analyses quantified alterations associated with DS, with skull dysmorphologies appearing before brain anomalies, reduced integration and delayed acquisition of neurodevelopmental traits. Perinatal GTE-EGCG induced disparate effects and disrupted the magnitude of integration and covariation patterns between brain and skull. Our results exemplify how a longitudinal research approach evaluating the development of multiple systems can reveal the effect of morphological integration modulating the response of pathological phenotypes to treatment, furthering our understanding of complex genetic disorders.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - Rubèn González
- Grup de Recerca en Antropologia Biológica (GREAB), Department of Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona, Barcelona, Spain
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Julia Albaigès
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Jens Wouters
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - Fopke Marain
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - James Sharpe
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
| | - Mara Dierssen
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - Neus Martínez-Abadías
- Grup de Recerca en Antropologia Biológica (GREAB), Department of Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona, Barcelona, Spain
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
- *Correspondence: Neus Martínez-Abadías
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
- Greetje Vande Velde
| |
Collapse
|
4
|
Abstract
Hydrocephalus, the abnormal accumulation and impaired circulation/clearance of cerebrospinal fluid, occurs as a common phenotypic feature of a diverse group of genetic syndromes. In this review, we outline the genetic mutations, pathogenesis, and accompanying symptoms underlying syndromic hydrocephalus in the context of: L1 syndrome, syndromic craniosynostoses, achondroplasia, NF 1/2, Down's syndrome, tuberous sclerosis, Walker-Warburg syndrome, primary ciliary dyskinesia, and osteogenesis imperfecta. Further, we discuss emerging genetic variants associated with syndromic hydrocephalus.
Collapse
Affiliation(s)
- Kaamya Varagur
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sai Anusha Sanka
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
5
|
Marano M, Pompucci A, Motolese F, Rossi M, Coletta E, Di Lazzaro V, Fasano A, Petrella G. Normal Pressure Hydrocephalus in Down Syndrome: The Report of Two Cases. J Alzheimers Dis 2021; 77:979-984. [PMID: 32804139 DOI: 10.3233/jad-200409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Down syndrome (DS) is the most common cause of intellectual disability in infants and has a well-known relationship with the Alzheimer's disease. The association between DS and the other pathologies of senescence, such as normal pressure hydrocephalus (NPH), has been poorly investigated. This series included two DS patients with NPH. In both cases, NPH symptoms were initially misdiagnosed as DS associated senescence. Patients were treated with ventricular-peritoneal shunt, showing a sustained improvement (1 and 4 years of follow-up). To our knowledge, this is the first description of the occurrence of NPH in adult patients with DS and surgical outcomes.
Collapse
Affiliation(s)
- Massimo Marano
- Neurology, Neurophysiology and Neurobiology unit, Department of Medicine, University Campus Bio-Medico of Rome, Italy
| | - Angelo Pompucci
- Department of Neurosurgery, S. Maria Goretti Hospital, Latina, Italy
| | - Francesco Motolese
- Neurology, Neurophysiology and Neurobiology unit, Department of Medicine, University Campus Bio-Medico of Rome, Italy
| | - Mariagrazia Rossi
- Neurology, Neurophysiology and Neurobiology unit, Department of Medicine, University Campus Bio-Medico of Rome, Italy
| | | | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology unit, Department of Medicine, University Campus Bio-Medico of Rome, Italy
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Centre and the, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | | |
Collapse
|
6
|
Llambrich S, Wouters J, Himmelreich U, Dierssen M, Sharpe J, Gsell W, Martínez-Abadías N, Vande Velde G. ViceCT and whiceCT for simultaneous high-resolution visualization of craniofacial, brain and ventricular anatomy from micro-computed tomography. Sci Rep 2020; 10:18772. [PMID: 33128010 PMCID: PMC7599226 DOI: 10.1038/s41598-020-75720-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Up to 40% of congenital diseases present disturbances of brain and craniofacial development resulting in simultaneous alterations of both systems. Currently, the best available method to preclinically visualize the brain and the bones simultaneously is to co-register micro-magnetic resonance (µMR) and micro-computed tomography (µCT) scans of the same specimen. However, this requires expertise and access to both imaging techniques, dedicated software and post-processing knowhow. To provide a more affordable, reliable and accessible alternative, recent research has focused on optimizing a contrast-enhanced µCT protocol using iodine as contrast agent that delivers brain and bone images from a single scan. However, the available methods still cannot provide the complete visualization of both the brain and whole craniofacial complex. In this study, we have established an optimized protocol to diffuse the contrast into the brain that allows visualizing the brain parenchyma and the complete craniofacial structure in a single ex vivo µCT scan (whiceCT). In addition, we have developed a new technique that allows visualizing the brain ventricles using a bilateral stereotactic injection of iodine-based contrast (viceCT). Finally, we have tested both techniques in a mouse model of Down syndrome, as it is a neurodevelopmental disorder with craniofacial, brain and ventricle defects. The combined use of viceCT and whiceCT provides a complete visualization of the brain and bones with intact craniofacial structure of an adult mouse ex vivo using a single imaging modality.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Jens Wouters
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Willy Gsell
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Neus Martínez-Abadías
- GREAB-Research Group in Biological Anthropology. Department of Evolutionary Biology, Ecology and Environmental Sciences, BEECA. Universitat de Barcelona, Barcelona, Spain
| | - Greetje Vande Velde
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium.
| |
Collapse
|