1
|
Basu AP, Low K, Ratnaike T, Rowitch D. Genetic investigations in cerebral palsy. Dev Med Child Neurol 2025; 67:177-185. [PMID: 39208295 PMCID: PMC11695794 DOI: 10.1111/dmcn.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The original description of cerebral palsy (CP) contained case histories suggesting that perinatal environmental stressors resulted in brain injury and neurodevelopmental disability. While there are clear associations between environmental impact on brain development and CP, recent studies indicate an 11% to 40% incidence of monogenic conditions in patients given a diagnosis of CP. A genetic diagnosis supports the delivery of personalized medicine. In this review, we describe how the Wnt pathway exemplifies our understanding of pathophysiology related to a gene variant (CTNNB1) found in some children diagnosed with CP. We cover studies undertaken to establish the baseline prevalence of monogenic conditions in populations attending CP clinics. We list factors indicating increased likelihood of a genomic diagnosis; and we highlight the need for a comprehensive, accurate, genotype-phenotype reference data set to aid variant interpretation in CP cohorts. We also consider the wider societal implications of genomic management of CP including significance of the diagnostic label, benefits and pitfalls of a genetic diagnosis, logistics, and cost.
Collapse
Affiliation(s)
- Anna P. Basu
- Population Health Sciences Institute, Newcastle UniversityNewcastle upon TyneUK
- Paediatric NeurologyGreat North Children's HospitalNewcastle upon TyneUK
| | - Karen Low
- Centre for Academic Child HealthUniversity of BristolBristolUK
- Department of Clinical GeneticsUniversity Hospitals Bristol and Weston NHS TrustBristolUK
| | - Thiloka Ratnaike
- Department of PaediatricsUniversity of CambridgeCambridgeUK
- PaediatricsColchester Hospital, East Suffolk and North Essex NHS Foundation TrustColchesterUK
| | - David Rowitch
- Department of PaediatricsUniversity of CambridgeCambridgeUK
| |
Collapse
|
2
|
Hu M, Bai C, Zhao H, Wu J, Luan X. Research Progress on the Role of the Interleukin Family in the Pathogenesis of Cerebral Palsy in Children. J Integr Neurosci 2024; 23:213. [PMID: 39735959 DOI: 10.31083/j.jin2312213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 12/31/2024] Open
Abstract
Cerebral palsy (CP), a common neurological disorder in children, remains a significant research focus. The interleukin (IL) family, pivotal mediators in inflammatory responses, shows increased expression in various neuroinflammatory diseases, markedly influencing their onset and progression. Elevated IL levels in the brains of children with CP, in contrast to healthy peers, reflect similar elevations in neurological conditions linked to CP, indicating a strong association between CP and the IL family. Anti-inflammatory therapies, particularly those targeting ILs, have shown effectiveness in animal models, diverging from traditional CP management methods. This shift suggests IL modulation as a promising therapeutic strategy in pediatric CP. This review consolidates recent findings on the IL family's role in CP, illuminating their evolving relationship.
Collapse
Affiliation(s)
- Mingbo Hu
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| | - Chao Bai
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| | - Hong Zhao
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| | - Junjie Wu
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| | - Xinping Luan
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Jang DH, Kim J, Schwabe AL, Lotze TE. Genetics of Cerebral Palsy: Diagnosis, Differential Diagnosis, and Beyond. Ann Rehabil Med 2024; 48:369-376. [PMID: 39736497 DOI: 10.5535/arm.240081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Cerebral palsy (CP) is the most common motor disability in children, characterized by diverse clinical manifestations and often uncertain etiology, which has spurred increasing interest in genetic diagnostics. This review synthesizes findings from various studies to enhance understanding of CP's genetic underpinnings. The discussion is structured around five key areas: monogenic causes and copy number variants directly linked to CP, differential genetic disorders including atypical CP and mimics, ambiguous genetic influences, co-occurrence with other neurodevelopmental disorders, and polygenic risk factors. Case studies illustrate the clinical application of these genetic insights, underscoring the complexity of diagnosing CP due to the phenotypic overlap with other conditions and the potential for misdiagnosis. The review highlights the significant role of advanced genetic testing in distinguishing CP from similar neurodevelopmental disorders and assessing cases with unclear clinical presentations. Furthermore, it addresses the ongoing challenges in establishing a consensus on genetic contributors to CP, the need for comprehensive patient phenotyping, and the integration of rigorous genetic and functional studies to validate findings. This comprehensive examination of CP genetics aims to pave the way for more precise diagnostics and personalized treatment plans, urging continued research to overcome the current limitations and refine diagnostic criteria within this field.
Collapse
Affiliation(s)
- Dae-Hyun Jang
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Medical Genetics/Rare Disease Center, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaewon Kim
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Medical Genetics/Rare Disease Center, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Aloysia Leisanne Schwabe
- Department of Physical Medicine and Rehabilitation, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Timothy Edward Lotze
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
4
|
Wilson YA, Garrity N, Smithers-Sheedy H, Goldsmith S, Karim T, Henry G, Paget S, Kyriagis M, Badawi N, Baynam G, Gecz J, McIntyre S. Clinically Relevant Genes Identified in Cerebral Palsy Cohorts Following Evaluation of the Clinical Description and Phenotype: A Systematic Review. J Child Neurol 2024; 39:500-509. [PMID: 39246294 DOI: 10.1177/08830738241277231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A growing number of genes have been identified in individuals with cerebral palsy (CP); however, many of these studies have poor compliance with the cerebral palsy clinical description. This systematic review aimed to assess the quality of the cerebral palsy clinical description/phenotype in cerebral palsy genetic studies published between 2010 and 2024 and report clinically relevant genes based on the quality of the cerebral palsy phenotype. An expert panel developed 6 criteria to review the reported cerebral palsy phenotype/description for each included study. Clinically relevant genes were extracted from each study and stratified into 2 tiers based on the quality. Eighteen studies were included. There was high confidence in the reported cerebral palsy description/phenotype from 8 studies. Of the initial 373 clinically relevant genes, 85 were tier II genes. Individual cerebral palsy motor disorder and phenotype data were absent for 349 of these individuals, limiting further analysis. The tier I gene list was composed of 6 genes: ATL1, COL4A1, GNAO1, KIF1A, SPAST, and TUBA1A. Bilateral spasticity was the most common motor disorder reported in individuals with variants in all 6 genes, and most individuals had accompanying conditions. Prioritizing the accurate reporting of motor and nonmotor phenotypes is crucial for future cerebral palsy genetic studies to further understand the underlying neurobiology.
Collapse
Affiliation(s)
- Yana A Wilson
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, Discipline of Child & Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Natasha Garrity
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Hayley Smithers-Sheedy
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Shona Goldsmith
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Tasneem Karim
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Georgina Henry
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Paget
- Child Population and Translational Health Research, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Maria Kyriagis
- Rehab2Kids, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Western Australia, Australia
- Rare Care Centre, Perth Children's Hospital, Perth, Western Australia, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Sarah McIntyre
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Clewes K, Hammond C, Dong Y, Meyer M, Lowe E, Rose J. Neuromuscular impairments of cerebral palsy: contributions to gait abnormalities and implications for treatment. Front Hum Neurosci 2024; 18:1445793. [PMID: 39359619 PMCID: PMC11445151 DOI: 10.3389/fnhum.2024.1445793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Identification of neuromuscular impairments in cerebral palsy (CP) is essential to providing effective treatment. However, clinical recognition of neuromuscular impairments in CP and their contribution to gait abnormalities is limited, resulting in suboptimal treatment outcomes. While CP is the most common childhood movement disorder, clinical evaluations often do not accurately identify and delineate the primary neuromuscular and secondary musculoskeletal impairments or their specific impact on mobility. Here we discuss the primary neuromuscular impairments of CP that arise from early brain injury and the progressive secondary musculoskeletal impairments, with a focus on spastic CP, the most common form of CP. Spastic CP is characterized by four primary interrelated neuromuscular impairments: 1. muscle weakness, 2. short muscle-tendon units due to slow muscle growth relative to skeletal growth, 3. muscle spasticity characterized by increased sensitivity to stretch, and 4. impaired selective motor control including flexor and extensor muscle synergies. Specific gait events are affected by the four primary neuromuscular impairments of spastic CP and their delineation can improve evaluation to guide targeted treatment, prevent deformities and improve mobility. Emerging information on neural correlates of neuromuscular impairments in CP provides the clinician with a more complete context with which to evaluate and develop effective treatment plans. Specifically, addressing the primary neuromuscular impairments and reducing secondary musculoskeletal impairments are important treatment goals. This perspective on neuromuscular mechanisms underlying gait abnormalities in spastic CP aims to inform clinical evaluation of CP, focus treatment more strategically, and guide research priorities to provide targeted treatments for CP.
Collapse
Affiliation(s)
- Kylie Clewes
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Medicine Children’s Health, Palo Alto, CA, United States
| | - Claire Hammond
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Medicine Children’s Health, Palo Alto, CA, United States
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Yiwen Dong
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Medicine Children’s Health, Palo Alto, CA, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Mary Meyer
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Medicine Children’s Health, Palo Alto, CA, United States
| | - Evan Lowe
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Medicine Children’s Health, Palo Alto, CA, United States
| | - Jessica Rose
- Motion and Gait Analysis Lab, Lucile Packard Children’s Hospital, Stanford Medicine Children’s Health, Palo Alto, CA, United States
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
6
|
Gmmash A, Alsobhi M, Alzahrani NM, Balamash LM, Alsubhi RM, Almaddah M. Diagnosis and referrals to physical therapy among caregivers of children with genetic disorders: a qualitative inquiry. Disabil Rehabil 2024; 46:1815-1824. [PMID: 37114504 DOI: 10.1080/09638288.2023.2206164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE Genetic disorders are common in Saudi Arabia. Impaired motor development is one of the major characteristics associated with genetic disorders. Early identifications and referrals are key to receiving physical therapy. This study aims to explore caregivers of children with genetic disorders' experience with early identification and referrals to physical therapy. MATERIALS AND METHODS An inductive qualitative design of 16 caregivers of children with genetic disorders was done to investigate the identification and referral process to physical therapy. A thematic analysis was used to analyze the data and multiple coders coded the data to increase the trustworthiness of the analysis. RESULTS The analysis led to emergence of four main themes. Caregivers revealed their struggle with the detection process. They struggled with the vague information related to their children's condition. They also expressed a desperate need for guidance to clarify the process for genetic testing, counseling, and rehabilitation. Although their overall experience with physical therapy was satisfactory, they encountered a number of issues related to scheduling appointments, delayed referrals, and unconfirmed diagnoses. CONCLUSION The results of this study could indicate that more efforts are required to expedite and elucidate the identification and referral of children with genetic disorders in Saudi Arabia.
Collapse
Affiliation(s)
- Afnan Gmmash
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mashael Alsobhi
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nouran Mohammed Alzahrani
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lama Mohammed Balamash
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahaf Mansour Alsubhi
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muataz Almaddah
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Fehlings DL, Zarrei M, Engchuan W, Sondheimer N, Thiruvahindrapuram B, MacDonald JR, Higginbotham EJ, Thapa R, Behlim T, Aimola S, Switzer L, Ng P, Wei J, Danthi PS, Pellecchia G, Lamoureux S, Ho K, Pereira SL, de Rijke J, Sung WWL, Mowjoodi A, Howe JL, Nalpathamkalam T, Manshaei R, Ghaffari S, Whitney J, Patel RV, Hamdan O, Shaath R, Trost B, Knights S, Samdup D, McCormick A, Hunt C, Kirton A, Kawamura A, Mesterman R, Gorter JW, Dlamini N, Merico D, Hilali M, Hirschfeld K, Grover K, Bautista NX, Han K, Marshall CR, Yuen RKC, Subbarao P, Azad MB, Turvey SE, Mandhane P, Moraes TJ, Simons E, Maxwell G, Shevell M, Costain G, Michaud JL, Hamdan FF, Gauthier J, Uguen K, Stavropoulos DJ, Wintle RF, Oskoui M, Scherer SW. Comprehensive whole-genome sequence analyses provide insights into the genomic architecture of cerebral palsy. Nat Genet 2024; 56:585-594. [PMID: 38553553 DOI: 10.1038/s41588-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.7%) as having variants of uncertain significance. Multiple classes of P/LP variants included single-nucleotide variants (SNVs)/indels (6.7%), copy number variations (3.4%) and mitochondrial mutations (1.5%). The COL4A1 gene had the most P/LP SNVs. We also analyzed two pediatric control cohorts (n = 203 trios and n = 89 sib-pair families) to provide a baseline for de novo mutation rates and genetic burden analyses, the latter of which demonstrated associations between de novo deleterious variants and genes related to the nervous system. An enrichment analysis revealed previously undescribed plausible candidate CP genes (SMOC1, KDM5B, BCL11A and CYP51A1). A multifactorial CP risk profile and substantial presence of P/LP variants combine to support WGS in the diagnostic work-up across all CP and related phenotypes.
Collapse
Affiliation(s)
- Darcy L Fehlings
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Neal Sondheimer
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Jeffrey R MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edward J Higginbotham
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ritesh Thapa
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Tarannum Behlim
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Sabrina Aimola
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Lauren Switzer
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Pamela Ng
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - John Wei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Prakroothi S Danthi
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sylvia Lamoureux
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karen Ho
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sergio L Pereira
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jill de Rijke
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wilson W L Sung
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alireza Mowjoodi
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer L Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roozbeh Manshaei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Siavash Ghaffari
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joseph Whitney
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rohan V Patel
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Omar Hamdan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rulan Shaath
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shannon Knights
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Grandview Children's Centre, Oshawa, Ontario, Canada
| | - Dawa Samdup
- Department of Pediatrics, Queen's University, Kingston, Ontario, Canada
| | - Anna McCormick
- Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Carolyn Hunt
- Grandview Children's Centre, Oshawa, Ontario, Canada
| | - Adam Kirton
- Department of Pediatrics, Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Anne Kawamura
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ronit Mesterman
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Jan Willem Gorter
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Nomazulu Dlamini
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniele Merico
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Deep Genomics Inc., Toronto, Ontario, Canada
- Vevo Therapeutics Inc., San Francisco, CA, USA
| | - Murto Hilali
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kyle Hirschfeld
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kritika Grover
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nelson X Bautista
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kara Han
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian R Marshall
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan K C Yuen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Padmaja Subbarao
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piush Mandhane
- Faculty of Medicine & Dentistry, Pediatrics Department, University of Alberta, Edmonton, Alberta, Canada
| | - Theo J Moraes
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Translation Medicine & Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, Section of Allergy and Clinical Immunology, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - George Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - Michael Shevell
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Departments of Pediatrics and Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Gregory Costain
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacques L Michaud
- Departments of Pediatrics and Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada
| | - Fadi F Hamdan
- CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada
| | - Julie Gauthier
- CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada
| | - Kevin Uguen
- CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maryam Oskoui
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Departments of Pediatrics and Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Huang S, Liu L, Huang Y, Fu C, Peng T, Yang X, Zhou H, Zhao Y, Xu Y, Zeng X, Zeng P, Tang H, He L, Xu K. Potential optimized route for mesenchymal stem cell transplantation in a rat model of cerebral palsy. Exp Cell Res 2023; 430:113734. [PMID: 37532123 DOI: 10.1016/j.yexcr.2023.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Cerebral palsy (CP) is a movement and posture disorder that affects over 50 million people worldwide. Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) transplantation has emerged as an attractive therapeutic strategy for CP. The administration route appears to be crucial for hUC-MSC to provide adequate neuroprotection. Wistar rats were given hypoxia-ischemia to make the CP model on postnatal day 5. On postnatal day 21, DiR-labeled hUC-MSC were transplanted into the CP rats by intravenous, intrathecal, and lateral ventricle for cell tracking. Uninfused CP rats served as the negative control. The motor behavioral and pathological alteration was analyzed 11, 25, and 39 days after transplantation to assess motor function, immune inflammation, neurotrophy, and endogenous repair. In vivo imaging tracking techniques revealed that intravenous infusion resulted in fewer transplanted cells in the target brain than intrathecal and lateral ventricle infusion (p<0.05). Three different routes of hUC-MSC infusion improved the motor function of CP rats (p<0.05). At 11 days post-infusion, intrathecal infusion outperformed intravenous with a significant neurotrophic and oligodendrocyte maturation effect (p<0.05). Intrathecal infusion equaled lateral ventricle infusion after 25 days. At 39 days post-infusion, lateral ventricle infusion exceeded intravenous and intrathecal infusion with a significant immunosuppressive effect (p<0.05). Considering the improved effect and less trauma shown early in the intrathecal infusion, repeated intrathecal administration may ultimately lead to the greatest benefit.
Collapse
Affiliation(s)
- Shiya Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China; School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China
| | - Yuan Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China; School of Medicine, South China University of Technology, Guangzhou, 510655, China
| | - Chaoqiong Fu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China; School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China
| | - Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China
| | - Yiting Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China
| | - Yi Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China
| | - Xiaoli Zeng
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, 510120, China
| | - Peishan Zeng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China.
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510120, China.
| |
Collapse
|
9
|
van Eyk CL, Fahey MC, Gecz J. Redefining cerebral palsies as a diverse group of neurodevelopmental disorders with genetic aetiology. Nat Rev Neurol 2023; 19:542-555. [PMID: 37537278 DOI: 10.1038/s41582-023-00847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and language disorders and autism. Here we review the current state of genomic testing in cerebral palsy, highlighting the benefits for personalized medicine and the imperative to consider aetiology during clinical diagnosis. With earlier clinical diagnosis now possible, we emphasize the opportunity for comprehensive and early genomic testing as a crucial component of the routine diagnostic work-up in people with cerebral palsy.
Collapse
Affiliation(s)
- Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
10
|
Cooper MS, Fahey MC, Mackay MT. Making waves: The changing tide of cerebral palsy. J Paediatr Child Health 2022; 58:1929-1934. [PMID: 36066306 PMCID: PMC9826445 DOI: 10.1111/jpc.16186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
Cerebral palsy (CP) is a broad diagnosis unbound by aetiology and is based on a clinical examination demonstrating abnormalities of movement or posture. CP represents a static neurological condition, provided that neurodegenerative conditions, leukoencephalopathies and neuromuscular disorders are excluded. In paediatrics, the genetic conditions associated with CP are rapidly increasing, with primary and overlapping neurodevelopmental conditions perhaps better categorised by the predominant clinical feature such as CP, intellectual disability, autism spectrum disorder or epilepsy. Progress in molecular genetics may challenge what constitutes CP, but a genetic diagnosis does not negate the CP diagnosis. As clinicians working in the field, we discuss the changing tide of CP. Neuroimaging provides essential information through pattern recognition and demonstration of static brain changes. We present examples of children where a layered clinical diagnosis or dual aetiologies are appropriate. We also present examples of children with genetic causes of CP to highlight the challenges and limitations of neuroimaging to provide an aetiological diagnosis. In consultation with a geneticist, access to genomic testing (exome or genome sequencing) is now available in Australia under Medicare billing for children under the age of 10 with dysmorphic features, one or more major structural organ anomalies, (an evolving) intellectual disability or global developmental delay. We encourage the uptake of genomic testing in CP, because it can be difficult to tell whether a child has an environmental or genetic cause for CP. A specific genetic diagnosis may change patient management, reduce guilt and enable more distinctive research in the future to assist with understanding disease mechanisms.
Collapse
Affiliation(s)
- Monica S Cooper
- Department of Neurodevelopment & DisabilityRoyal Children's HospitalMelbourneVictoriaAustralia,Neurodisability and RehabilitationMurdoch Children's Research InstituteMelbourneVictoriaAustralia,Department of PaediatricsThe University of MelbourneMelbourneVictoriaAustralia
| | - Michael C Fahey
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
| | - Mark T Mackay
- Department of PaediatricsThe University of MelbourneMelbourneVictoriaAustralia,Department of NeurologyRoyal Children's HospitalMelbourneVictoriaAustralia,NeuroscienceMurdoch Children's Research InstituteMelbourneVictoriaAustralia
| |
Collapse
|
11
|
Wang B, Wang F, Wu D, Xu X, Yang L, Zhu J, Yuan J, Tang J. Relationship Between TNF-α and the Risk of Cerebral Palsy: A Systematic Review and Meta-Analysis. Front Neurol 2022; 13:929280. [PMID: 35769363 PMCID: PMC9234274 DOI: 10.3389/fneur.2022.929280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveWe performed a meta-analysis to investigate the relationship between blood tumor necrosis factor-alpha (TNF-α) levels and the risk of cerebral palsy (CP) in children.MethodsPubMed, Web of Science, Cochrane Library and Ovid databases were searched from the date of database inception to 26 April 2022. Data were extracted and pooled from observational studies related to TNF-α and the risk of CP in children. Quality was assessed using the Newcastle-Ottawa Scale. We used the inverse variance method with a random-effects model to estimate the odds ratios with 95% confidence intervals (CIs), and stratified analyses and sensitivity analysis were utilized to analyse heterogeneity.ResultsNine studies with 1,117 cases and 3,563 controls were included in our meta-analysis. The quality of the literature was good, and no publication bias was noted. According to the random-effects model, blood TNF-α levels were associated with the risk of CP (OR 1.82; 95% CI, 1.25–2.66) in a heterogeneous set of studies (I2 = 81.2%, p = 0.000).ConclusionOur findings indicate that elevated TNF-α levels in the blood are associated with an increased risk of CP. The association of TNF-α with CP requires further investigation.
Collapse
|
12
|
Hauptman AJ, Barkoudah E. [The role of neuropsychiatry in the care of children and adults with cerebral palsy]. BJPsych Open 2022; 8:e99. [PMID: 35642355 PMCID: PMC9230546 DOI: 10.1192/bjo.2022.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neuropsychiatric symptoms are commonly reported in cerebral palsy. These symptoms interact in complex ways with the core motoric features of cerebral palsy, and require specialised care. We argue for increased awareness of these symptoms by clinicians, and the need for greater integration of neuropsychiatric specialists into the core teams involved in multidisciplinary care for individuals with cerebral palsy and their families.
Collapse
Affiliation(s)
- Aaron J Hauptman
- Department of Psychiatry, Kennedy Krieger Institute, Maryland, USA; and Department of Psychiatry, Johns Hopkins University School of Medicine, Maryland, USA
| | - Elizabeth Barkoudah
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Massachusetts, USA
| |
Collapse
|
13
|
Kiebzak W, Żurawski A, Głuszek S, Kosztołowicz M, Białek WA. Cortisol Levels in Infants with Central Coordination Disorders during Vojta Therapy. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121113. [PMID: 34943309 PMCID: PMC8700341 DOI: 10.3390/children8121113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
Background: Due to the decrease in the percentage of perinatal mortality, which is one of the Millennium Development Goals, the number of children with a central coordination disorder (CCD) has increased, present in up to 40% of premature babies. Neurodevelopmental disorders detected in the diagnostic process require early interventions that will eliminate or overcome existing dysfunctions. These treatments often cause discomfort in the infant, which induces insecurity and activation of basic defense mechanisms. The aim of the work is to assess changes in cortisol concentration in infants treated with the Vojta method. Methods and findings: The study included 35 children with CCD aged between three and nine months. The participants had no comorbidities that could have affected the obtained results. The activities were planned to occur in three stages: 1. Collection of a saliva sample directly before the physiotherapy appointment. 2. Collection of saliva immediately after rehabilitation. 3. Collection of saliva 20 min after the end of rehabilitation. The physiotherapeutic intervention included the assessment of seven reactions of the body position in space according to Vojta and the conduct of a therapeutic session consisting of the first phase of rotation and creeping reflex according to Vojta. The concentration of free cortisol in saliva was assessed with LC-MS/MS. In the first measurement, none of the children presented an excess of the normative concentration of cortisol. The cortisol measurement performed directly after rehabilitation showed above-normative values in three children. In the third measurement, all of the children presented a decreased concentration of free cortisol. The analysis (paired two-tailed t-test, p < 0.05) showed statistically significant differences between particular stages of the measurements. The analysis of the scores obtained in the second measurement showed the concentration of scores in the area of “normal” at a level of 0.83 (normal concentration) and the area “above normal” at the level of 0.005 (very weak concentration). Based on the analysis of significance of the obtained scores, it was found that the result was not accidental, and the Vojta method used in the treatment of children with CCD was suitable. Conclusions: Here, for the first time, we presented how Vojta therapy was correlated with cortisol levels among children with a central coordination disorder.
Collapse
Affiliation(s)
- Wojciech Kiebzak
- Institute of Health Science, Collegium Medicum, Jan Kochanowski University, 25-369 Kielce, Poland;
| | - Arkadiusz Żurawski
- Institute of Health Science, Collegium Medicum, Jan Kochanowski University, 25-369 Kielce, Poland;
- Correspondence: ; Tel.: +48-787-339222
| | - Stanisław Głuszek
- Laboratory of Medical Genetics, Department of Surgical Medicine, Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (S.G.); (W.A.B.)
| | - Michał Kosztołowicz
- Sandomierskie Towarzystwo Naukowe, 27-600 Sandomierz, Poland;
- Kieleckie Towarzystwo Naukowe, 25-303 Kielce, Poland
| | - Wioletta Adamus Białek
- Laboratory of Medical Genetics, Department of Surgical Medicine, Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (S.G.); (W.A.B.)
| |
Collapse
|
14
|
Precision Autism: Genomic Stratification of Disorders Making Up the Broad Spectrum May Demystify Its "Epidemic Rates". J Pers Med 2021; 11:jpm11111119. [PMID: 34834471 PMCID: PMC8620644 DOI: 10.3390/jpm11111119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
In the last decade, Autism has broadened and often shifted its diagnostics criteria, allowing several neuropsychiatric and neurological disorders of known etiology. This has resulted in a highly heterogeneous spectrum with apparent exponential rates in prevalence. I ask if it is possible to leverage existing genetic information about those disorders making up Autism today and use it to stratify this spectrum. To that end, I combine genes linked to Autism in the SFARI database and genomic information from the DisGeNET portal on 25 diseases, inclusive of non-neurological ones. I use the GTEx data on genes’ expression on 54 human tissues and ask if there are overlapping genes across those associated to these diseases and those from SFARI-Autism. I find a compact set of genes across all brain-disorders which express highly in tissues fundamental for somatic-sensory-motor function, self-regulation, memory, and cognition. Then, I offer a new stratification that provides a distance-based orderly clustering into possible Autism subtypes, amenable to design personalized targeted therapies within the framework of Precision Medicine. I conclude that viewing Autism through this physiological (Precision) lens, rather than viewing it exclusively from a psychological behavioral construct, may make it a more manageable condition and dispel the Autism epidemic myth.
Collapse
|
15
|
Yield of clinically reportable genetic variants in unselected cerebral palsy by whole genome sequencing. NPJ Genom Med 2021; 6:74. [PMID: 34531397 PMCID: PMC8445947 DOI: 10.1038/s41525-021-00238-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral palsy (CP) is the most common cause of childhood physical disability, with incidence between 1/500 and 1/700 births in the developed world. Despite increasing evidence for a major contribution of genetics to CP aetiology, genetic testing is currently not performed systematically. We assessed the diagnostic rate of genome sequencing (GS) in a clinically unselected cohort of 150 singleton CP patients, with CP confirmed at >4 years of age. Clinical grade GS was performed on the proband and variants were filtered, and classified according to American College of Medical Genetics and Genomics–Association for Molecular Pathology (ACMG-AMP) guidelines. Variants classified as pathogenic or likely pathogenic (P/LP) were further assessed for their contribution to CP. In total, 24.7% of individuals carried a P/LP variant(s) causing or increasing risk of CP, with 4.7% resolved by copy number variant analysis and 20% carrying single nucleotide or indel variants. A further 34.7% carried one or more rare, high impact variants of uncertain significance (VUS) in variation intolerant genes. Variants were identified in a heterogeneous group of genes, including genes associated with hereditary spastic paraplegia, clotting and thrombophilic disorders, small vessel disease, and other neurodevelopmental disorders. Approximately 1/2 of individuals were classified as likely to benefit from changed clinical management as a result of genetic findings. In addition, no significant association between genetic findings and clinical factors was detectable in this cohort, suggesting that systematic sequencing of CP will be required to avoid missed diagnoses.
Collapse
|
16
|
Beysen D, De Cordt C, Dielman C, Ogunjimi B, Dandelooy J, Reyniers E, Janssens K, Meuwissen MME. Genetic Testing Contributes to Diagnosis in Cerebral Palsy: Aicardi-Goutières Syndrome as an Example. Front Neurol 2021; 12:617813. [PMID: 33967934 PMCID: PMC8100223 DOI: 10.3389/fneur.2021.617813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral palsy (CP) is a non-progressive neurodevelopmental disorder characterized by motor impairments, often accompanied by co-morbidities such as intellectual disability, epilepsy, visual and hearing impairment and speech and language deficits. Despite the established role of hypoxic–ischemic injury in some CP cases, several studies suggest that birth asphyxia is actually an uncommon cause, accounting for <10% of CP cases. For children with CP in the absence of traditional risk factors, a genetic basis to their condition is increasingly suspected. Several recent studies indeed confirm copy number variants and single gene mutations with large genetic heterogeneity as an etiology in children with CP. Here, we report three patients with spastic cerebral palsy and a genetically confirmed diagnosis of Aicardi-Goutières syndrome (AGS), with highly variable phenotypes ranging from clinically suggestive to non-specific symptomatology. Our findings suggest that AGS may be a rather common cause of CP, that frequently remains undiagnosed without additional genetic testing, as in only one case a clinical suspicion of AGS was raised. Our data show that a diagnosis of AGS must be considered in cases with spastic CP, even in the absence of characteristic brain abnormalities. Importantly, a genetic diagnosis of AGS may have significant therapeutic consequences, as targeted therapies are being developed for type 1 interferonopathies, the group of diseases to which AGS belongs. Our findings demonstrate the importance of next generation sequencing in CP patients without an identifiable cause, since targeted diagnostic testing is hampered by the often non-specific presentation.
Collapse
Affiliation(s)
- Diane Beysen
- Department of Pediatric Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Chania De Cordt
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Charlotte Dielman
- Department of Pediatric Neurology, Ziekenhuis Netwerk Antwerpen Queen Paola Children's Hospital, Wilrijk, Belgium
| | - Benson Ogunjimi
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium.,Center for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Department of Pediatrics, Ziekenhuis Netwerk Antwerpen Paola Children's Hospital, Wilrijk, Belgium
| | - Julie Dandelooy
- Department of Dermatology, Antwerp University Hospital, Edegem, Belgium
| | - Edwin Reyniers
- Center for Medical Genetics, Antwerp University Hospital, Edegem, Belgium
| | - Katrien Janssens
- Center for Medical Genetics, University of Antwerp, Wilrijk, Belgium
| | - Marije M E Meuwissen
- Center for Medical Genetics, Antwerp University Hospital, Edegem, Belgium.,Center for Medical Genetics, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
17
|
Abstract
Current societal and technological changes have added to the ethical issues faced by people with cerebral palsy. These include new representations of disability, and the current International Classification of Functioning, Disability, and Health, changes in legislation and international conventions, as well as applications of possibilities offered by robotics, brain–computer interface devices, muscles and brain stimulation techniques, wearable sensors, artificial intelligence, genetics, and more for diagnostic, therapeutic, or other purposes. These developments have changed the way we approach diagnosis, set goals for intervention, and create new opportunities. This review examines those influences on clinical practice from an ethical perspective and highlights how a principled approach to clinical bioethics can help the clinician to address ethical dilemmas that occur in practice. It also points to implications of those changes on research priorities.
Collapse
Affiliation(s)
- Bernard Dan
- Université libre de Bruxelles, Brussels, Belgium.,Inkendaal Rehabilitation Hospital, Vlezenbeek, Belgium
| |
Collapse
|
18
|
Horber V, Grasshoff U, Sellier E, Arnaud C, Krägeloh-Mann I, Himmelmann K. The Role of Neuroimaging and Genetic Analysis in the Diagnosis of Children With Cerebral Palsy. Front Neurol 2021; 11:628075. [PMID: 33633660 PMCID: PMC7900404 DOI: 10.3389/fneur.2020.628075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Cerebral magnetic resonance imaging (MRI) is considered an important tool in the assessment of a child with cerebral palsy (CP), as it is abnormal in more than 80% of children with CP, disclosing the pathogenic pattern responsible for the neurological condition. MRI, therefore, is recommended as the first diagnostic step after medical history taking and neurological examination. With the advances in genetic diagnostics, the genetic contribution to CP is increasingly discussed, and the question arises about the role of genetic testing in the diagnosis of cerebral palsy. The paper gives an overview on genetic findings reported in CP, which are discussed with respect to the underlying brain pathology according to neuroimaging findings. Surveillance of Cerebral Palsy in Europe (SCPE) classifies neuroimaging findings in CP into five categories, which help to stratify decisions concerning genetic testing. Predominant white and gray matter injuries are by far predominant (accounting for around 50 and 20% of the findings). They are considered to be acquired. Here, predisposing genetic factors may play a role to increase vulnerability (and should especially be considered, when family history is positive and/or causative external factors are missing). In maldevelopments and normal findings (around 11% each), monogenic causes are more likely, and thus, genetic testing is clearly recommended. In the miscellaneous category, the precise nature of the MRI finding has to be considered as it could indicate a genetic origin.
Collapse
Affiliation(s)
- Veronka Horber
- Department of Paediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University Hospital, Tübingen, Germany
| | - Elodie Sellier
- Grenoble Alpes University, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, Grenoble, France.,Registre des Handicaps de l'Enfant et Observatoire Périnatal, Grenoble, France
| | - Catherine Arnaud
- CERPOP, SPHERE Team, University of Toulouse, Inserm, UPS, Toulouse, France.,Clinical Epidemiology Unit, Toulouse University Hospital, Toulouse, France
| | | | - Kate Himmelmann
- Department of Pediatrics, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Lewis SA, Shetty S, Wilson BA, Huang AJ, Jin SC, Smithers-Sheedy H, Fahey MC, Kruer MC. Insights From Genetic Studies of Cerebral Palsy. Front Neurol 2021; 11:625428. [PMID: 33551980 PMCID: PMC7859255 DOI: 10.3389/fneur.2020.625428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Cohort-based whole exome and whole genome sequencing and copy number variant (CNV) studies have identified genetic etiologies for a sizable proportion of patients with cerebral palsy (CP). These findings indicate that genetic mutations collectively comprise an important cause of CP. We review findings in CP genomics and propose criteria for CP-associated genes at the level of gene discovery, research study, and clinical application. We review the published literature and report 18 genes and 5 CNVs from genomics studies with strong evidence of for the pathophysiology of CP. CP-associated genes often disrupt early brain developmental programming or predispose individuals to known environmental risk factors. We discuss the overlap of CP-associated genes with other neurodevelopmental disorders and related movement disorders. We revisit diagnostic criteria for CP and discuss how identification of genetic etiologies does not preclude CP as an appropriate diagnosis. The identification of genetic etiologies improves our understanding of the neurobiology of CP, providing opportunities to study CP pathogenesis and develop mechanism-based interventions.
Collapse
Affiliation(s)
- Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Sheetal Shetty
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Bryce A Wilson
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Aris J Huang
- Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Hayley Smithers-Sheedy
- Cerebral Palsy Alliance, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States.,Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
20
|
Leviton A. Identifying cerebral palsy phenotypes objectively. Dev Med Child Neurol 2020; 62:1006. [PMID: 32597500 DOI: 10.1111/dmcn.14604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Alan Leviton
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|