1
|
Timmers M, Dirinck E, Lauwers P, Wuyts W, De Block C. ABCC8 variants in MODY12: Review of the literature and report of a case with severe complications. Diabetes Metab Res Rev 2021; 37:e3459. [PMID: 34014594 DOI: 10.1002/dmrr.3459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 11/10/2022]
Abstract
More than 1000 variants of the ATP-binding cassette transporter subfamily C member 8 (ABCC8) gene have been reported in neonatal diabetes mellitus. Up to now only 55 ABCC8 variants were associated with Maturity-Onset Diabetes of the Young 12 (MODY12). We present a c.3544C>T p.(Arg1182Trp) ABCC8 variant in a 35-year-old women who had pronounced microvascular diabetic complications and a charcot arthropathy necessitating a lower limb amputation. The unusual severity of the disease course prompted us to perform a systematic review of all genetic variants in MODY12. The present mutation has mostly been associated with neonatal diabetes and in only three papers reporting a MODY12. The 55 MODY12 variants show a large clinical heterogeneity, even in relatives with the same mutation, ranging from mild impaired glucose tolerance to severe insulin-dependent diabetes mellitus. HbA1c at diagnosis ranged from 5% to 14% and age at diagnosis ranged from 2 to 53 years. However, several case reports lack documentation of diabetic complications. Hence, more detailed reports remain necessary to improve insight in MODY12 pathophysiology and outcome. In this article current data regarding therapeutic management are provided, and key points to consider for the individual patient affected by MODY12 are presented.
Collapse
Affiliation(s)
- Marijke Timmers
- Department of Endocrinology, Diabetology, and Metabolism, Antwerp University Hospital, Edegem, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetology, and Metabolism, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Patrick Lauwers
- Department of Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Wim Wuyts
- Department of Medical Genetics, Antwerp University Hospital, Edegem, Belgium
| | - Christophe De Block
- Department of Endocrinology, Diabetology, and Metabolism, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Li M, Han X, Ji L. Clinical and Genetic Characteristics of ABCC8 Nonneonatal Diabetes Mellitus: A Systematic Review. J Diabetes Res 2021; 2021:9479268. [PMID: 34631896 PMCID: PMC8497126 DOI: 10.1155/2021/9479268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Diabetes mellitus (DM) is a major chronic metabolic disease in the world, and the prevalence has been increasing rapidly in recent years. The channel of KATP plays an important role in the regulation of insulin secretion. The variants in ABCC8 gene encoding the SUR1 subunit of KATP could cause a variety of phenotypes, including neonatal diabetes mellitus (ABCC8-NDM) and ABCC8-induced nonneonatal diabetes mellitus (ABCC8-NNDM). Since the features of ABCC8-NNDM have not been elucidated, this study is aimed at concluding the genetic features and clinical characteristics. METHODS We comprehensively reviewed the literature associated with ABCC8-NNDM in the following databases: MEDLINE, PubMed, and Web of Science to investigate the features of ABCC8-NNDM. RESULTS Based on a comprehensive literature search, we found that 87 probands with ABCC8-NNDM carried 71 ABCC8 genetic variant alleles, 24% of whom carried inactivating variants, 24% carried activating variants, and the remaining 52% carried activating or inactivating variants. Nine of these variants were confirmed to be activating or inactivating through functional studies, while four variants (p.R370S, p.E1506K, p.R1418H, and p.R1420H) were confirmed to be inactivating. The phenotypes of ABCC8-NNDM were variable and could also present with early hyperinsulinemia followed by reduced insulin secretion, progressing to diabetes later. They had a relatively high risk of microvascular complications and low prevalence of nervous disease, which is different from ABCC8-NDM. CONCLUSIONS Genetic testing is essential for proper diagnosis and appropriate treatment for patients with ABCC8-NNDM. And further studies are required to determine the complex mechanism of the variants of ABCC8-NNDM.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| |
Collapse
|
3
|
Qin X, Zhong J, Lan D. The use of glimepiride for the treatment of neonatal diabetes mellitus caused by a novel mutation of the ABCC8 gene. J Pediatr Endocrinol Metab 2020; 33:1605-1608. [PMID: 33035187 DOI: 10.1515/jpem-2020-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/06/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Neonatal diabetes mellitus (NDM) is a rare form of monogenic diabetes that is usually diagnosed in the first six months of life. CASE PRESENTATION We report on a male infant with neonatal diabetes who presented with diabetic ketoacidosis at two months and 16 days. A novel homozygous missense mutation (c.259T>G) was identified in the ABCC8 gene. In this case, insulin was replaced with glimepiride at a dosage of 0.49 mg/kg/day at five months, and this achieved metabolic control and satisfactory growth as observed at follow-up. CONCLUSIONS This report improves our understanding of the mutational spectrum of ABCC8, which is normally associated with NDM, and shows that the treatment regimen for this condition can be successfully switched from insulin therapy to the use of sulfonylurea.
Collapse
Affiliation(s)
- Xiao Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jingzi Zhong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Dan Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Letourneau LR, Greeley SAW. Precision Medicine: Long-Term Treatment with Sulfonylureas in Patients with Neonatal Diabetes Due to KCNJ11 Mutations. Curr Diab Rep 2019; 19:52. [PMID: 31250216 PMCID: PMC6894166 DOI: 10.1007/s11892-019-1175-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW The goal of this review is to provide updates on the safety and efficacy of long-term sulfonylurea use in patients with KCNJ11-related diabetes. Publications from 2004 to the present were reviewed with an emphasis on literature since 2014. RECENT FINDINGS Sulfonylureas, often taken at high doses, have now been utilized effectively in KCNJ11 patients for over 10 years. Mild-moderate hypoglycemia can occur, but in two studies with a combined 975 patient-years on sulfonylureas, no severe hypoglycemic events were reported. Improvements in neurodevelopment and motor function after transition to sulfonylureas continue to be described. Sulfonylureas continue to be an effective, sustainable, and safe treatment for KCNJ11-related diabetes. Ongoing follow-up of patients in research registries will allow for deeper understanding of the facilitators and barriers to long-term sustainability. Further understanding of the effect of sulfonylurea on long-term neurodevelopmental outcomes, and the potential for adjunctive therapies, is needed.
Collapse
Affiliation(s)
- Lisa R Letourneau
- Section of Pediatric and Adult Endocrinology, Diabetes, and Metabolism Kovler Diabetes Center, University of Chicago, 5841 S. Maryland Ave., MC1027-N235, Chicago, IL, 60637, USA
| | - Siri Atma W Greeley
- Section of Pediatric and Adult Endocrinology, Diabetes, and Metabolism Kovler Diabetes Center, University of Chicago, 5841 S. Maryland Ave., MC1027-N235, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Bowman P, Day J, Torrens L, Shepherd MH, Knight BA, Ford TJ, Flanagan SE, Chakera A, Hattersley AT, Zeman A. Cognitive, Neurological, and Behavioral Features in Adults With KCNJ11 Neonatal Diabetes. Diabetes Care 2019; 42:215-224. [PMID: 30377186 PMCID: PMC6354912 DOI: 10.2337/dc18-1060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/22/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Central nervous system (CNS) features in children with permanent neonatal diabetes (PNDM) due to KCNJ11 mutations have a major impact on affected families. Sulfonylurea therapy achieves outstanding metabolic control but only partial improvement in CNS features. The effects of KCNJ11 mutations on the adult brain and their functional impact are not well understood. We aimed to characterize the CNS features in adults with KCNJ11 PNDM compared with adults with INS PNDM. RESEARCH DESIGN AND METHODS Adults with PNDM due to KCNJ11 mutations (n = 8) or INS mutations (n = 4) underwent a neurological examination and completed standardized neuropsychological tests/questionnaires about development/behavior. Four individuals in each group underwent a brain MRI scan. Test scores were converted to Z scores using normative data, and outcomes were compared between groups. RESULTS In individuals with KCNJ11 mutations, neurological examination was abnormal in seven of eight; predominant features were subtle deficits in coordination/motor sequencing. All had delayed developmental milestones and/or required learning support/special schooling. Half had features and/or a clinical diagnosis of autism spectrum disorder. KCNJ11 mutations were also associated with impaired attention, working memory, and perceptual reasoning and reduced intelligence quotient (IQ) (median IQ KCNJ11 vs. INS mutations 76 vs. 111, respectively; P = 0.02). However, no structural brain abnormalities were noted on MRI. The severity of these features was related to the specific mutation, and they were absent in individuals with INS mutations. CONCLUSIONS KCNJ11 PNDM is associated with specific CNS features that are not due to long-standing diabetes, persist into adulthood despite sulfonylurea therapy, and represent the major burden from KCNJ11 mutations.
Collapse
Affiliation(s)
- Pamela Bowman
- University of Exeter Medical School, Exeter, U.K. .,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Jacob Day
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Lorna Torrens
- Kent Neuropsychology Service, Kent and Medway NHS and Social Care Partnership Trust, Gillingham, U.K
| | - Maggie H Shepherd
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Bridget A Knight
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | | | | | - Ali Chakera
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Andrew T Hattersley
- University of Exeter Medical School, Exeter, U.K.,Exeter National Institute for Health Research Clinical Research Facility, Exeter, U.K
| | - Adam Zeman
- University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
6
|
Letourneau LR, Greeley SAW. Congenital forms of diabetes: the beta-cell and beyond. Curr Opin Genet Dev 2018; 50:25-34. [PMID: 29454299 DOI: 10.1016/j.gde.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
The majority of patients diagnosed with diabetes less than 6 months of age, and many cases diagnosed between 6 and 12 months of age, have a gene mutation that causes permanent or transient hyperglycemia. Recent research advances have allowed for the discovery of new causes of congenital diabetes, including genes involved in pancreatic development (GATA4, NKX2-2, MNX1) and monogenic causes of autoimmune dysregulation (STAT3, LRBA). Ongoing follow-up of patients with KCNJ11 and ABCC8 mutations has supported the safety and efficacy of sulfonylureas, as well as the use of insulin pumps and continuous glucose monitors in infants with insulin-requiring forms of monogenic diabetes. Future studies are needed to improve clinical care and outcomes for these patients and their families.
Collapse
Affiliation(s)
- Lisa R Letourneau
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, 5841 S. Maryland Ave. MC 1027, Chicago, IL 60637, USA
| | - Siri Atma W Greeley
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, 5841 S. Maryland Ave. MC 1027, Chicago, IL 60637, USA; Department of Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, 5841 S. Maryland Ave. MC 1027, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
McDonald TJ, Besser RE, Perry M, Babiker T, Knight BA, Shepherd MH, Ellard S, Flanagan SE, Hattersley AT. Screening for neonatal diabetes at day 5 of life using dried blood spot glucose measurement. Diabetologia 2017; 60:2168-2173. [PMID: 28779213 PMCID: PMC5907681 DOI: 10.1007/s00125-017-4383-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/23/2017] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS The majority of infants with neonatal diabetes mellitus present with severe ketoacidosis at a median of 6 weeks. The treatment is very challenging and can result in severe neurological sequelae or death. The genetic defects that cause neonatal diabetes are present from birth. We aimed to assess if neonatal diabetes could be diagnosed earlier by measuring glucose in a dried blood spot collected on day 5 of life. METHODS In this retrospective case-control study we retrieved blood spot cards from 11 infants with genetically confirmed neonatal diabetes (median age of diagnosis 6 [range 2-112] days). For each case we also obtained one (n = 5) or two (n = 6) control blood spot cards collected on the same day. Glucose was measured on case and control blood spot cards. We established a normal range for random glucose at day 5 of life in 687 non-diabetic neonates. RESULTS All 11 neonates with diabetes had hyperglycaemia present on day 5 of life, with blood glucose levels ranging from 10.2 mmol/l to >30 mmol/l (normal range 3.2-6.0 mmol/l). In six of these neonates the diagnosis of diabetes was made after screening at day 5, with the latest diagnosis made at 16 weeks. CONCLUSIONS/INTERPRETATION Neonatal diabetes can be detected on day 5 of life, preceding conventional diagnosis in most cases. Earlier diagnosis by systematic screening could lead to prompt genetic diagnosis and targeted treatment, thereby avoiding the most severe sequelae of hyperglycaemia in neonates.
Collapse
Affiliation(s)
- Timothy J McDonald
- Blood Sciences, Template A2, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK.
- National Institute for Health Research (NIHR) Exeter Clinical Research Facility, University of Exeter, Exeter, UK.
| | - Rachel E Besser
- National Institute for Health Research (NIHR) Exeter Clinical Research Facility, University of Exeter, Exeter, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Mandy Perry
- Blood Sciences, Template A2, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Tarig Babiker
- National Institute for Health Research (NIHR) Exeter Clinical Research Facility, University of Exeter, Exeter, UK
| | - Bridget A Knight
- National Institute for Health Research (NIHR) Exeter Clinical Research Facility, University of Exeter, Exeter, UK
| | - Maggie H Shepherd
- National Institute for Health Research (NIHR) Exeter Clinical Research Facility, University of Exeter, Exeter, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew T Hattersley
- National Institute for Health Research (NIHR) Exeter Clinical Research Facility, University of Exeter, Exeter, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
8
|
Day JO, Flanagan SE, Shepherd MH, Patrick AW, Abid N, Torrens L, Zeman AJ, Patel KA, Hattersley AT. Hyperglycaemia-related complications at the time of diagnosis can cause permanent neurological disability in children with neonatal diabetes. Diabet Med 2017; 34:1000-1004. [PMID: 28173619 PMCID: PMC5488205 DOI: 10.1111/dme.13328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Children with neonatal diabetes often present with diabetic ketoacidosis and hence are at risk of cerebral oedema and subsequent long-term neurological deficits. These complications are difficult to identify because neurological features can also occur as a result of the specific genetic aetiology causing neonatal diabetes. CASE REPORTS We report two cases of neonatal diabetes where ketoacidosis-related cerebral oedema was the major cause of their permanent neurological disability. Case 1 (male, 18 years, compound heterozygous ABCC8 mutation) and case 2 (female, 29 years, heterozygous KCNJ11 mutation) presented with severe diabetic ketoacidosis at 6 and 16 weeks of age. Both had reduced consciousness, seizures and required intensive care for cerebral oedema. They subsequently developed spastic tetraplegia. Neurological examination in adulthood confirmed spastic tetraplegia and severe disability. Case 1 is wheelchair-bound and needs assistance for transfers, washing and dressing, whereas case 2 requires institutional care for all activities of daily living. Both cases have first-degree relatives with the same mutation with diabetes, who did not have ketoacidosis at diagnosis and do not have neurological disability. DISCUSSION Ketoacidosis-related cerebral oedema at diagnosis in neonatal diabetes can cause long-term severe neurological disability. This will give additional neurological features to those directly caused by the genetic aetiology of the neonatal diabetes. Our cases highlight the need for increased awareness of neonatal diabetes and earlier and better initial treatment of the severe hyperglycaemia and ketoacidosis often seen at diagnosis of these children.
Collapse
Affiliation(s)
- J. O. Day
- Royal Devon and Exeter NHS Foundation TrustExeterUK
| | - S. E. Flanagan
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| | - M. H. Shepherd
- Royal Devon and Exeter NHS Foundation TrustExeterUK
- National Institute for Health Research (NIHR) Exeter Clinical Research FacilityExeterUK
| | - A. W. Patrick
- Edinburgh Centre for Endocrinology and DiabetesNHS LothianEdinburghUK
| | - N. Abid
- Royal Belfast Hospital for Sick ChildrenBelfastUK
| | | | - A. J. Zeman
- Royal Devon and Exeter NHS Foundation TrustExeterUK
- Cognitive and Behavioural NeurologyUniversity of Exeter Medical SchoolExeterUK
| | - K. A. Patel
- Royal Devon and Exeter NHS Foundation TrustExeterUK
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
- National Institute for Health Research (NIHR) Exeter Clinical Research FacilityExeterUK
| | - A. T. Hattersley
- Royal Devon and Exeter NHS Foundation TrustExeterUK
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
- National Institute for Health Research (NIHR) Exeter Clinical Research FacilityExeterUK
| |
Collapse
|