1
|
Akiba K, Zukeran H, Hasegawa Y, Fukami M. Initial clinical manifestations in a young male with RFX6-variant-associated diabetes. Clin Pediatr Endocrinol 2024; 33:224-228. [PMID: 39359667 PMCID: PMC11442700 DOI: 10.1297/cpe.2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/23/2024] [Indexed: 10/04/2024] Open
Abstract
To date, heterozygous loss-of-function variants of RFX6 have been identified in 13 families with diabetes. Here, we present initial clinical information regarding a young male with diabetes who carried a heterozygous nonsense variant of RFX6 (p.Arg377Ter) previously reported in his family with diabetes. At 11 yr and 7 mo of age, the patient experienced severe thirst and hyperglycemia (331-398 mg/dL). Laboratory tests revealed elevated levels of glycated hemoglobin (HbA1c) (47 mmol/mL, 6.5%) and the Homeostatic Model for Insulin Resistance (HOMA-IR) (3.4). Blood glucose self-monitoring demonstrated grossly normal blood glucose levels, together with occasional postprandial hyperglycemia, and a few episodes of hypoglycemia. An oral glucose tolerance test revealed mild hyperglycemia and a delayed peak insulin level. His laboratory indices improved over two years with self-control of diet and exercise. These results indicate that the initial presentation of RFX6-variant-associated diabetes includes occasional hyperglycemia and hypoglycemia in response to changes in lifestyle. The possible association between RFX6 variants and mild insulin resistance requires further validation in future studies.
Collapse
Affiliation(s)
- Kazuhisa Akiba
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hiroaki Zukeran
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
- Department of Pediatrics, Tama-Hokubu Medical Center, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
2
|
Marucci A, Menzaghi C, Dodesini AR, Albizzi M, Acquafredda A, Fini G, Trischitta V, Paola RD. Rare forms of monogenic diabetes in non-European individuals. First reports of CEL and RFX6 mutations from the Indian subcontinent. Acta Diabetol 2024:10.1007/s00592-024-02357-3. [PMID: 39190183 DOI: 10.1007/s00592-024-02357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/04/2024] [Indexed: 08/28/2024]
Abstract
AIMS Monogenic diabetes is one of the few examples in metabolic diseases in which a real precision medicine approach can be implemented in daily clinical work. Unfortunately, most of what is known today comes from studies in Whites, thus leaving much uncertainty about the genetics and the clinical presentation of monogenic diabetes in non-Europeans. To fill this gap, we report here two pedigrees from Bangladesh with CEL- and RFX6- diabetes, two rare types of monogenic diabetes which have never been described so far in individuals of the Indian subcontinent. METHODS Next generation, Sanger sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA) were performed. Variants' interpretation was according to the American College of Medical Genetics and Genomics guidelines. RESULTS In the pedigree with CEL-diabetes, a large and never described deletion of exon 2-11 of CEL (confirmed by MLPA) affecting the entire catalytic domain and being likely pathogenic (LP) was observed in both the proband (who had diabetes at 16) and his mother (diabetes at 31), but not in relatives with normoglycemia. In the pedigree with RFX6-diabetes, a LP protein truncation variant (PTV, p.Tyr192*) in RFX6 was found in both the proband (diabetes at 9) and his mother (diabetes at 30), thus suggesting high heterogeneity in disease onset. Normoglycemic relatives were not available for genetic testing. CONCLUSIONS We report genetic features and clinical presentation of the first two cases of CEL- and RFX6-diabetes from the Indian subcontinent, thus contributing to fill the gap of knowledge on monogenic diabetes in non-Europeans.
Collapse
Affiliation(s)
- Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Foggia, 71013, Italy
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Foggia, 71013, Italy
| | - Alessandro Roberto Dodesini
- Endocrine and Diabetology Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, 24127, Italy
| | - Mascia Albizzi
- Endocrine and Diabetology Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, 24127, Italy
- Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Angelo Acquafredda
- Unit of Pediatrics and Neonatology, "G. Tatarella" Hospital, Cerignola, Foggia, Italy
| | - Grazia Fini
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Foggia, 71013, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Foggia, 71013, Italy.
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Foggia, 71013, Italy.
| |
Collapse
|
3
|
Ibrahim H, Balboa D, Saarimäki-Vire J, Montaser H, Dyachok O, Lund PE, Omar-Hmeadi M, Kvist J, Dwivedi OP, Lithovius V, Barsby T, Chandra V, Eurola S, Ustinov J, Tuomi T, Miettinen PJ, Barg S, Tengholm A, Otonkoski T. RFX6 haploinsufficiency predisposes to diabetes through impaired beta cell function. Diabetologia 2024; 67:1642-1662. [PMID: 38743124 PMCID: PMC11343796 DOI: 10.1007/s00125-024-06163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
AIMS/HYPOTHESIS Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).
Collapse
Affiliation(s)
- Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Eric Lund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Om P Dwivedi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Solja Eurola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Finland
- Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Päivi J Miettinen
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
4
|
Lezzi M, Aloi C, Salina A, Fragola M, Bassi M, Strati MF, d’Annunzio G, Minuto N, Maghnie M. Diabetes Mellitus Diagnosed in Childhood and Adolescence With Negative Autoimmunity: Results of Genetic Investigation. Front Endocrinol (Lausanne) 2022; 13:894878. [PMID: 35769090 PMCID: PMC9235348 DOI: 10.3389/fendo.2022.894878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Monogenic diabetes is a rare form of diabetes, accounting for approximately 1% to 6% of pediatric diabetes patients. Some types of monogenic diabetes can be misdiagnosed as type 1 diabetes in children or adolescents because of similar clinical features. Identification of the correct etiology of diabetes is crucial for clinical, therapeutic, and prognostic issues. Our main objective was to determine the prevalence of monogenic diabetes in patients with diabetes mellitus, diagnosed in childhood or in adolescence, and negative autoimmunity. We retrospectively analyzed clinical data of 275 patients diagnosed with insulin-dependent diabetes at age <18yr in the last 10 years. 8.4% of subjects has negative autoimmunity. Their DNA was sequenced by NGS custom panel composed by 45 candidate genes involved in glucose metabolism disorder. Two novel heterozygous pathogenic or likely pathogenic variants (10,5% of autoantibody negative subjects) were detected: the frameshift variant c.617_618insA in NEUROD1 exon 2 and the missense change c.116T>C in INS exon 2. Our study corroborates previous results of other reports in literature. NGS assays are useful methods for a correct diagnosis of monogenic diabetes, even of rarest forms, highlighting mechanisms of pediatric diabetes pathogenesis.
Collapse
Affiliation(s)
- Marilea Lezzi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Concetta Aloi
- LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Salina
- LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Fragola
- Department of Hematology and Oncology, Epidemiology and Biostatistics Section, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Bassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marina Francesca Strati
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Nicola Minuto
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- *Correspondence: Nicola Minuto,
| | - Mohamad Maghnie
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
5
|
Kim GL, Kwak SH, Yu J. A case of monogenic diabetes mellitus caused by a novel heterozygous RFX6 nonsense mutation in a 14-year-old girl. J Pediatr Endocrinol Metab 2021; 34:1619-1622. [PMID: 34416793 DOI: 10.1515/jpem-2021-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/26/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Monogenic diabetes mellitus (DM) is a single gene disorder, primarily characterized by impairment in the development or function of pancreatic beta cells. CASE PRESENTATION A 14-year-old girl was initially diagnosed with type 2 DM. The patient did not have any anti-islet autoantibody and showed acanthosis nigricans. She was managed with long-acting insulin and oral hypoglycemic agent, but HbA1c was still 9.3% after 1 year of management. Her mother already had type 2 DM at 46-year-old and was on medication. Under the possibility of familial monogenic DM, targeted exome sequencing was performed which included 29 genes associated with monogenic DM. Nonsense mutation of the gene RFX6 (c.2661T>A, p.Tyr887∗) was found. After adding Glucagon-like peptide-1 (GLP-1) receptor agonist, HbA1c improved from 8.8 to 6.8% and body mass index (BMI) also improved from 31.0 to 29.2 kg/m2. CONCLUSIONS It may be worth investigating genetic etiology in early-onset autoantibody-negative DM for specific genetic diagnosis and better management.
Collapse
Affiliation(s)
- Goo Lyeon Kim
- Department of Pediatrics, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jeesuk Yu
- Department of Pediatrics, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
6
|
Son J, Ding H, Farb TB, Efanov AM, Sun J, Gore JL, Syed SK, Lei Z, Wang Q, Accili D, Califano A. BACH2 inhibition reverses β cell failure in type 2 diabetes models. J Clin Invest 2021; 131:153876. [PMID: 34907913 DOI: 10.1172/jci153876] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with defective insulin secretion and reduced β cell mass. Available treatments provide a temporary reprieve, but secondary failure rates are high, making insulin supplementation necessary. Reversibility of β cell failure is a key translational question. Here, we reverse engineered and interrogated pancreatic islet-specific regulatory networks to discover T2D-specific subpopulations characterized by metabolic inflexibility and endocrine progenitor/stem cell features. Single-cell gain- and loss-of-function and glucose-induced Ca2+ flux analyses of top candidate master regulatory (MR) proteins in islet cells validated transcription factor BACH2 and associated epigenetic effectors as key drivers of T2D cell states. BACH2 knockout in T2D islets reversed cellular features of the disease, restoring a nondiabetic phenotype. BACH2-immunoreactive islet cells increased approximately 4-fold in diabetic patients, confirming the algorithmic prediction of clinically relevant subpopulations. Treatment with a BACH inhibitor lowered glycemia and increased plasma insulin levels in diabetic mice, and restored insulin secretion in diabetic mice and human islets. The findings suggest that T2D-specific populations of failing β cells can be reversed and indicate pathways for pharmacological intervention, including via BACH2 inhibition.
Collapse
Affiliation(s)
- Jinsook Son
- Department of Medicine and.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Hongxu Ding
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Thomas B Farb
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Alexander M Efanov
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jiajun Sun
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Julie L Gore
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Samreen K Syed
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Zhigang Lei
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Qidi Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Domenico Accili
- Department of Medicine and.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
7
|
Rafique I, Mir A, Siddiqui S, Saqib MAN, Fawwad A, Marchand L, Adnan M, Naeem M, Basit A, Polychronakos C. Comprehensive genetic screening reveals wide spectrum of genetic variants in monogenic forms of diabetes among Pakistani population. World J Diabetes 2021; 12:1957-1966. [PMID: 34888019 PMCID: PMC8613659 DOI: 10.4239/wjd.v12.i11.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monogenic forms of diabetes (MFD) are single gene disorders. Their diagnosis is challenging, and symptoms overlap with type 1 and type 2 diabetes.
AIM To identify the genetic variants responsible for MFD in the Pakistani population and their frequencies.
METHODS A total of 184 patients suspected of having MFD were enrolled. The inclusion criterion was diabetes with onset below 25 years of age. Brief demographic and clinical information were taken from the participants. The maturity-onset diabetes of the young (MODY) probability score was calculated, and glutamate decarboxylase ELISA was performed. Antibody negative patients and features resembling MODY were selected (n = 28) for exome sequencing to identify the pathogenic variants.
RESULTS A total of eight missense novel or very low-frequency variants were identified in 7 patients. Three variants were found in genes for MODY, i.e. HNF1A (c.169C>A, p.Leu57Met), KLF11 (c.401G>C, p.Gly134Ala), and HNF1B (c.1058C>T, p.Ser353Leu). Five variants were found in genes other than the 14 known MODY genes, i.e. RFX6 (c.919G>A, p.Glu307Lys), WFS1 (c.478G>A, p.Glu160Lys) and WFS1 (c.517G>A, p.Glu173Lys), RFX6 (c.1212T>A, p.His404Gln) and ZBTB20 (c.1049G>A, p.Arg350His).
CONCLUSION The study showed wide spectrum of genetic variants potentially causing MFD in the Pakistani population. The MODY genes prevalent in European population (GCK, HNF1A, and HNF4a) were not found to be common in our population. Identification of novel variants will further help to understand the role of different genes causing the pathogenicity in MODY patient and their proper management and diagnosis.
Collapse
Affiliation(s)
- Ibrar Rafique
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
- Research Development and Coordination, Pakistan Health Research Council, Islamabad 44000, Pakistan
| | - Asif Mir
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Shajee Siddiqui
- Department of Medicine, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan, Pakistan
| | | | - Asher Fawwad
- Department of Biochemistry, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi 74600, Sindh, Pakistan
| | - Luc Marchand
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
| | - Muhammad Adnan
- PHRC Research Centre, FJMU, Pakistan Health Research Council, Lahore 54000, Pakistan
| | - Muhammad Naeem
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Abdul Basit
- Department of Medicine, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi 74600, Sindh, Pakistan
| | - Constantin Polychronakos
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
| |
Collapse
|
8
|
Tosur M, Soler-Alfonso C, Chan KM, Khayat MM, Jhangiani SN, Meng Q, Refaey A, Muzny D, Gibbs RA, Murdock DR, Posey JE, Balasubramanyam A, Redondo MJ, Sabo A. Exome sequencing in children with clinically suspected maturity-onset diabetes of the young. Pediatr Diabetes 2021; 22:960-968. [PMID: 34387403 PMCID: PMC8530905 DOI: 10.1111/pedi.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Commercial gene panels identify pathogenic variants in as low as 27% of patients suspected to have MODY, suggesting the role of yet unidentified pathogenic variants. We sought to identify novel gene variants associated with MODY. RESEARCH DESIGN AND METHODS We recruited 10 children with a clinical suspicion of MODY but non-diagnostic commercial MODY gene panels. We performed exome sequencing (ES) in them and their parents. RESULTS Mean age at diabetes diagnosis was 10 (± 3.8) years. Six were females; 4 were non-Hispanic white, 5 Hispanic, and 1 Asian. Our variant prioritization analysis identified a pathogenic, de novo variant in INS (c.94G > A, p.Gly32Ser), confirmed by Sanger sequencing, in a proband who was previously diagnosed with "autoantibody-negative type 1 diabetes (T1D)" at 3 y/o. This rare variant, absent in the general population (gnomAD database), has been reported previously in neonatal diabetes. We also identified a frameshift deletion (c.2650delC, p.Gln884AsnfsTer57) in RFX6 in a child with a previous diagnosis of "autoantibody-negative T1D" at 12 y/o. The variant was inherited from the mother, who was diagnosed with "thin type 2 diabetes" at 25 y/o. Heterozygous protein-truncating variants in RFX6 gene have been recently reported in individuals with MODY. CONCLUSIONS We diagnosed two patients with MODY using ES in children initially classified as "T1D". One has a likely pathogenic novel gene variant not previously associated with MODY. We demonstrate the clinical utility of ES in patients with clinical suspicion of MODY.
Collapse
Affiliation(s)
- Mustafa Tosur
- Department of Pediatrics, The Section of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Katie M Chan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Michael M Khayat
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - David R Murdock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ashok Balasubramanyam
- Baylor College of Medicine, Division of Diabetes, Endocrinology and Metabolism, Houston, TX, USA
| | - Maria J Redondo
- Department of Pediatrics, The Section of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Trott J, Alpagu Y, Tan EK, Shboul M, Dawood Y, Elsy M, Wollmann H, Tano V, Bonnard C, Eng S, Narayanan G, Junnarkar S, Wearne S, Strutt J, Kumar A, Tomaz LB, Goy PA, Mzoughi S, Jennings R, Hagoort J, Eskin A, Lee H, Nelson SF, Al-Kazaleh F, El-Khateeb M, Fathallah R, Shah H, Goeke J, Langley SR, Guccione E, Hanley N, De Bakker BS, Reversade B, Dunn NR. Mitchell-Riley syndrome iPSCs exhibit reduced pancreatic endoderm differentiation due to a mutation in RFX6. Development 2020; 147:dev194878. [PMID: 33033118 DOI: 10.1242/dev.194878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Mitchell-Riley syndrome (MRS) is caused by recessive mutations in the regulatory factor X6 gene (RFX6) and is characterised by pancreatic hypoplasia and neonatal diabetes. To determine why individuals with MRS specifically lack pancreatic endocrine cells, we micro-CT imaged a 12-week-old foetus homozygous for the nonsense mutation RFX6 c.1129C>T, which revealed loss of the pancreas body and tail. From this foetus, we derived iPSCs and show that differentiation of these cells in vitro proceeds normally until generation of pancreatic endoderm, which is significantly reduced. We additionally generated an RFX6HA reporter allele by gene targeting in wild-type H9 cells to precisely define RFX6 expression and in parallel performed in situ hybridisation for RFX6 in the dorsal pancreatic bud of a Carnegie stage 14 human embryo. Both in vitro and in vivo, we find that RFX6 specifically labels a subset of PDX1-expressing pancreatic endoderm. In summary, RFX6 is essential for efficient differentiation of pancreatic endoderm, and its absence in individuals with MRS specifically impairs formation of endocrine cells of the pancreas head and tail.
Collapse
Affiliation(s)
- Jamie Trott
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Yunus Alpagu
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ee Kim Tan
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Mohammad Shboul
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 2210, Jordan
| | - Yousif Dawood
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Michael Elsy
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Heike Wollmann
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Carine Bonnard
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Shermaine Eng
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Gunaseelan Narayanan
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Seetanshu Junnarkar
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Stephen Wearne
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - James Strutt
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Aakash Kumar
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Lucian B Tomaz
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Pierre-Alexis Goy
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Slim Mzoughi
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Rachel Jennings
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Grafton Street, Manchester M13 9WU, UK
| | - Jaco Hagoort
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ascia Eskin
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, CA 90095, USA
| | - Fawaz Al-Kazaleh
- Department of Obstetrics and Gynecology, University of Jordan, Amman 19241, Jordan
| | - Mohammad El-Khateeb
- National Center for Diabetes, Endocrinology and Genetics, Amman 19241, Jordan
| | - Rajaa Fathallah
- National Center for Diabetes, Endocrinology and Genetics, Amman 19241, Jordan
| | - Harsha Shah
- Department of Obstetrics and Gynaecology, Queen Charlotte's & Chelsea Hospital, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Jonathan Goeke
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Neil Hanley
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Grafton Street, Manchester M13 9WU, UK
| | - Bernadette S De Bakker
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Bruno Reversade
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
- Department of Paediatrics, National University of Singapore, Yong Loo Lin School of Medicine, 1E Kent Ridge Road, NUHS Tower Block, Level 12, 119228, Singapore
- Koç University School of Medicine, Medical Genetics Department, Istanbul 34450, Turkey
| | - N Ray Dunn
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| |
Collapse
|