1
|
Miao K, Zhao Y, Xue N. Gkongensin A, an HSP90β inhibitor, improves hyperlipidemia, hepatic steatosis, and insulin resistance. Heliyon 2024; 10:e29367. [PMID: 38655315 PMCID: PMC11036013 DOI: 10.1016/j.heliyon.2024.e29367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
The prevalence of obesity and its primary associated comorbidities, such as type 2 diabetes and fatty liver disease, has reached epidemic proportions, with no successful treatment available at present. Heat shock protein 90 (HSP90), a crucial chaperone, plays a key role in de novo lipogenesis (DNL) by stabilizing and maintaining sterol regulatory element binding protein (SREBP) activity. Kongensin A (KA), derived from Croton kongensis, inhibits RIP3-mediated necrosis, showing promise as an anti-necrotic and anti-inflammatory agent. It is not yet clear if KA, acting as an HSP90 inhibitor, can enhance hyperlipidemia, hepatic steatosis, and insulin resistance in obese individuals by controlling lipid metabolism. In this study, we first found that KA can potentially decrease lipid content at the cellular level. C57BL/6J mice were given a high-fat diet (HFD) and received KA and lovastatin through oral administration for 7 weeks. KA improved hyperlipidemia, fatty liver, and insulin resistance, as well as reduced body weight in diet-induced obese (DIO) mice, with no significant alteration in food intake. In vitro, KA suppressed DNL and reduced the amounts of mSREBPs. KA promoted mSREBP degradation via the FBW7-mediated ubiquitin-proteasome pathway. KA decreased the level of p-Akt Ser308, and p-GSK3β Ser9 by inhibiting the interaction between HSP90β and Akt. Overall, KA enhanced hyperlipidemia, hepatic steatosis, and insulin resistance by blocking SREBP activity, thereby impacting the FBW7-controlled ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Kun Miao
- Department of Hand Surgery, Fuzhou Second General Hospital, 350007, Fuzhou, Fujian, China
| | - Yawei Zhao
- Department of Pharmacy, Jurong Hospital Affiliated to Jiangsu University, Jurong, 212400, Jiangsu, China
| | - Ning Xue
- Department of Acupuncture, Jurong Hospital Affiliated to Jiangsu University, Jurong, 212400, Jiangsu, China
| |
Collapse
|
2
|
Jeon J, Lee D, Kim B, Park BY, Oh CJ, Kim MJ, Jeon JH, Lee IK, Park O, Baek S, Lim CW, Ryu D, Fang S, Auwerx J, Kim KT, Jung HY. CycloZ Improves Hyperglycemia and Lipid Metabolism by Modulating Lysine Acetylation in KK-Ay Mice. Diabetes Metab J 2023; 47:653-667. [PMID: 37098411 PMCID: PMC10555534 DOI: 10.4093/dmj.2022.0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/03/2022] [Indexed: 04/27/2023] Open
Abstract
BACKGRUOUND CycloZ, a combination of cyclo-His-Pro and zinc, has anti-diabetic activity. However, its exact mode of action remains to be elucidated. METHODS KK-Ay mice, a type 2 diabetes mellitus (T2DM) model, were administered CycloZ either as a preventive intervention, or as a therapy. Glycemic control was evaluated using the oral glucose tolerance test (OGTT), and glycosylated hemoglobin (HbA1c) levels. Liver and visceral adipose tissues (VATs) were used for histological evaluation, gene expression analysis, and protein expression analysis. RESULTS CycloZ administration improved glycemic control in KK-Ay mice in both prophylactic and therapeutic studies. Lysine acetylation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, liver kinase B1, and nuclear factor-κB p65 was decreased in the liver and VATs in CycloZ-treated mice. In addition, CycloZ treatment improved mitochondrial function, lipid oxidation, and inflammation in the liver and VATs of mice. CycloZ treatment also increased the level of β-nicotinamide adenine dinucleotide (NAD+), which affected the activity of deacetylases, such as sirtuin 1 (Sirt1). CONCLUSION Our findings suggest that the beneficial effects of CycloZ on diabetes and obesity occur through increased NAD+ synthesis, which modulates Sirt1 deacetylase activity in the liver and VATs. Given that the mode of action of an NAD+ booster or Sirt1 deacetylase activator is different from that of traditional T2DM drugs, CycloZ would be considered a novel therapeutic option for the treatment of T2DM.
Collapse
Affiliation(s)
- Jongsu Jeon
- R&D Center, NovMetaPharma Co., Ltd., Seoul, Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Dohyun Lee
- R&D Center, NovMetaPharma Co., Ltd., Seoul, Korea
| | - Bobae Kim
- R&D Center, NovMetaPharma Co., Ltd., Seoul, Korea
| | - Bo-Yoon Park
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Korea
| | - Chang Joo Oh
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Korea
| | - Min-Ji Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Korea
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Onyu Park
- R&D Center, NovMetaPharma Co., Ltd., Seoul, Korea
- School of Life Science, Handong Global University, Pohang, Korea
| | - Seoyeong Baek
- R&D Center, NovMetaPharma Co., Ltd., Seoul, Korea
- School of Life Science, Handong Global University, Pohang, Korea
| | - Chae Won Lim
- Department of Medicine, Graduate School, Daegu Catholic University, Gyeongsan, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Sungsoon Fang
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Graduate School of Medical Science, Brain Korea Project, Yonsei University College of Medicine, Seoul, Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Hoe-Yune Jung
- R&D Center, NovMetaPharma Co., Ltd., Seoul, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
3
|
Zhao J, Sun Y, Yuan C, Li T, Liang Y, Zou H, Zhang J, Ren L. Quercetin ameliorates hepatic fat accumulation in high-fat diet-induced obese mice via PPARs. Food Funct 2023; 14:1674-1684. [PMID: 36691903 DOI: 10.1039/d2fo03013f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As a natural pigment in food, quercetin possesses multiple biological activities and plays a crucial role in regulating metabolic syndrome. Herein, we aim to explore the potential mechanism of quercetin to ameliorate hepatic fat accumulation. In vivo experiments showed that quercetin significantly relieved inflammation response by decreasing the serum TNF-α and IL-6 levels and also improved high-fat diet-induced hepatic steatosis without other organ injuries. Quercetin can effectively reduce lipid aggregation and down-regulate the protein expression of PCK1 in HepG2 cells induced by oleic acid and palmitic acid, indicating that inhibiting gluconeogenesis leads to hepatic fat accumulation reduction. Furthermore, molecular docking results suggested that quercetin can bind to both PPARα and PPARγ, with an even more potent binding affinity than indeglitazar, a pan-agonist of PPARs. In conclusion, quercetin may regulate gluconeogenesis to ameliorate hepatic fat accumulation via targeting PPARα/γ.
Collapse
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuiping Yuan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Balakumar P, Mahadevan N, Sambathkumar R. A Contemporary Overview of PPARα/γ Dual Agonists for the Management of Diabetic Dyslipidemia. Curr Mol Pharmacol 2020; 12:195-201. [PMID: 30636619 PMCID: PMC6875865 DOI: 10.2174/1874467212666190111165015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 01/11/2023]
Abstract
Background: Diabetes mellitus and concomitant dyslipidemia, being referred to as ‘diabetic dyslipidemia’, are the foremost detrimental factors documented to play a pivotal role in cardiovascular illness. Diabetic dyslipidemia is associated with insulin resistance, high plasma triglyceride levels, low HDL-cholesterol concentration and elevated small dense LDL-cholesterol particles. Maintaining an optimal glucose and lipid levels in patients afflicted with diabetic dyslipidemia could be a major task that might require a well-planned diet-management system and regular physical activity, or otherwise an intake of combined antidiabetic and antihyperlipidemic medications. Synchronized treatment which efficiently controls insulin resistance-associated diabetes mellitus and co-existing dyslipidemia could indeed be a fascinating therapeutic option in the management of diabetic dyslipidemia. Peroxisome proliferator-activated receptors α/γ (PPARα/γ) dual agonists are such kind of drugs which possess therapeutic potentials to treat diabetic dyslipidemia. Nevertheless, PPARα/γ dual agonists like muraglitazar, naveglitazar, tesaglitazar, ragaglitazar and aleglitazar have been reported to have undesirable adverse effects, and their developments have been halted at various stages. On the other hand, a recently introduced PPARα/γ dual agonist, saroglitazar is an emerging therapeutic agent of glitazar class approved in India for the management of diabetic dyslipidemia, and its treatment has been reported to be generally safe and well tolerated. Conclusion: Some additional and new compounds, at initial and preclinical stages, have been recently reported to possess PPARα/γ dual agonistic potentials with considerable therapeutic efficacy and reduced adverse profile. This review sheds light on the current status of various PPARα/γ dual agonists for the management of diabetic dyslipidemia.
Collapse
Affiliation(s)
| | - Nanjaian Mahadevan
- College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | | |
Collapse
|
5
|
Liu YY, Ding TT, Feng XY, Xu WR, Cheng XC. Virtual identification of novel peroxisome proliferator-activated receptor (PPAR) α/δ dual antagonist by 3D-QSAR, molecule docking, and molecule dynamics simulation. J Biomol Struct Dyn 2019; 38:4143-4161. [PMID: 31556349 DOI: 10.1080/07391102.2019.1673211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The therapeutic potential of PPARs antagonists extends beyond diabetes. PPARs antagonists represent a new drug class that holds promise as a broadly applicable therapeutic approach for cancer treatment. Thus, there is a strong need to develop a rational design strategy for creating PPARs antagonists. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) models of PPARα receptor (CoMFA-1, q 2 = 0.636, r 2 = 0.953; CoMSIA-1, q 2 = 0.779, r 2 = 0.999) and PPARδ receptor (CoMFA-2, q 2 = 0.624, r 2 = 0.906; CoMSIA-2, q 2 = 0.627, r 2 = 0.959) were successfully constructed using 35 triazolone ring derivatives. Contour map analysis revealed that the electrostatic and hydrophobic fields played vital roles in the bioactivity of dual antagonists. Molecular docking studies suggested that the hydrogen bonding, electrostatic and hydrophobic interactions all influenced the binding of receptor-ligand complex. Based on the information obtained above, we designed a series of compounds. The docking results were mutually validated with 3D-QSAR results. Three-dimensional-QSAR and absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions indicated that 19 newly designed compounds possessed excellent biological activity and physicochemical properties. In summary, this research could provide theoretical guidance for the structural optimization of novel PPARα and δ dual antagonists. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ya-Ya Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ting-Ting Ding
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiao-Yan Feng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Liu YY, Feng XY, Jia WQ, Jing Z, Xu WR, Cheng XC. Virtual identification of novel PPARα/γ dual agonists by 3D-QSAR, molecule docking and molecular dynamics studies. J Biomol Struct Dyn 2019; 38:2672-2685. [DOI: 10.1080/07391102.2019.1656110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ya-Ya Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiao-Yan Feng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wen-Qing Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Zhi Jing
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Bermejo A, Collado A, Barrachina I, Marqués P, El Aouad N, Franck X, Garibotto F, Dacquet C, Caignard DH, Suvire FD, Enriz RD, Piqueras L, Figadère B, Sanz MJ, Cabedo N, Cortes D. Polycerasoidol, a Natural Prenylated Benzopyran with a Dual PPARα/PPARγ Agonist Activity and Anti-inflammatory Effect. JOURNAL OF NATURAL PRODUCTS 2019; 82:1802-1812. [PMID: 31268307 DOI: 10.1021/acs.jnatprod.9b00003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dual peroxisome proliferator-activated receptor-α/γ (PPARα/γ) agonists regulate both lipid and glucose homeostasis under different metabolic conditions and can exert anti-inflammatory activity. We investigated the potential dual PPARα/γ agonism of prenylated benzopyrans polycerasoidol (1) and polycerasoidin (2) and their derivatives for novel drug development. Nine semisynthetic derivatives were prepared from the natural polycerasoidol (1) and polycerasoidin (2), which were evaluated for PPARα, -γ, -δ and retinoid X receptor-α activity in transactivation assays. Polycerasoidol (1) exhibited potent dual PPARα/γ agonism and low cytotoxicity. Structure-activity relationship studies revealed that a free phenol group at C-6 and a carboxylic acid at C-9' were key features for dual PPARα/γ agonism activity. Molecular modeling indicated the relevance of these groups for optimal ligand binding to the PPARα and PPARγ domains. In addition, polycerasoidol (1) exhibited a potent anti-inflammatory effect by inhibiting mononuclear leukocyte adhesion to the dysfunctional endothelium in a concentration-dependent manner via RXRα/PPARγ interactions. Therefore, polycerasoidol (1) can be considered a hit-to-lead molecule for the further development of novel dual PPARα/γ agonists capable of preventing cardiovascular events associated with metabolic disorders.
Collapse
Affiliation(s)
- Almudena Bermejo
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Center of Citriculture and Vegetal Production , IVIA , Moncada, 46100 Valencia , Spain
| | - Aida Collado
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
| | - Isabel Barrachina
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
| | - Patrice Marqués
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Institute of Health Research-INCLIVA , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | | | - Xavier Franck
- UMR CNRS 6014/FR 3038, COBRA, Université de Rouen , Mont-Saint-Aignan 76821 , France
| | - Francisco Garibotto
- Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis-IMIBIO-SL-CONICET , Chacabuco 915 , San Luis , Argentina
| | - Catherine Dacquet
- Départament des Sciences Expérimentales , Institut de Recherches Servier , Suresnes 92150 , France
| | - Daniel H Caignard
- Départament des Sciences Expérimentales , Institut de Recherches Servier , Suresnes 92150 , France
| | - Fernando D Suvire
- Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis-IMIBIO-SL-CONICET , Chacabuco 915 , San Luis , Argentina
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis-IMIBIO-SL-CONICET , Chacabuco 915 , San Luis , Argentina
| | - Laura Piqueras
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Institute of Health Research-INCLIVA , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | - Bruno Figadère
- UMR CNRS 8076, LERMIT , Université Paris-Sud, UFR de Pharmacie , Châtenay-Malabry 92290 , France
| | - María-Jesús Sanz
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Institute of Health Research-INCLIVA , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | - Nuria Cabedo
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Institute of Health Research-INCLIVA , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | - Diego Cortes
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
| |
Collapse
|