1
|
Galzerano D, Savo MT, Castaldi B, Kholaif N, Khaliel F, Pozza A, Aljheish S, Cattapan I, Martini M, Lassandro E, Cordoni G, Tansella D, Cozac DA, Alamro B, Di Salvo G. Transforming Heart Failure Management: The Power of Strain Imaging, 3D Imaging, and Vortex Analysis in Echocardiography. J Clin Med 2024; 13:5759. [PMID: 39407819 PMCID: PMC11476592 DOI: 10.3390/jcm13195759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Heart failure (HF) remains a critical global health challenge, necessitating advancements in diagnostic and therapeutic strategies. This review explores the evolution of imaging technologies and their impact on HF management, focusing on three-dimensional echocardiography (3DE), myocardial strain imaging, and vortex dynamics imaging. Three-dimensional echocardiography enhances traditional echocardiography by providing more accurate assessments of cardiac structures, while myocardial strain imaging offers the early detection of subclinical myocardial dysfunction, crucial in conditions such as chemotherapy-induced cardiotoxicity and ischemic heart disease. Vortex dynamics imaging, a novel technique, provides insights into intracardiac flow patterns, aiding in the evaluation of left ventricular function, valve diseases, and congenital heart anomalies. The integration of these advanced imaging modalities into clinical practice facilitates personalized treatment strategies, enabling the earlier diagnosis and more precise monitoring of disease progression. The ongoing refinement of these imaging techniques holds promise for improving patient outcomes and advancing the field of precision medicine in HF care.
Collapse
Affiliation(s)
- Domenico Galzerano
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (N.K.); (B.A.)
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11564, Saudi Arabia; (F.K.); (S.A.)
| | - Maria Teresa Savo
- Cardiology Unit, Cardio-Thoraco-Vascular and Public Health Department, Padova University Hospital, 35121 Padova, Italy; (M.T.S.); (M.M.); (E.L.); (G.C.); (D.T.)
| | - Biagio Castaldi
- Division of Pediatric Cardiology, Department for Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (B.C.); (I.C.); (G.D.S.)
| | - Naji Kholaif
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (N.K.); (B.A.)
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11564, Saudi Arabia; (F.K.); (S.A.)
| | - Feras Khaliel
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11564, Saudi Arabia; (F.K.); (S.A.)
| | - Alice Pozza
- Division of Pediatric Cardiology, Department for Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (B.C.); (I.C.); (G.D.S.)
| | - Saif Aljheish
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11564, Saudi Arabia; (F.K.); (S.A.)
| | - Irene Cattapan
- Division of Pediatric Cardiology, Department for Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (B.C.); (I.C.); (G.D.S.)
| | - Marika Martini
- Cardiology Unit, Cardio-Thoraco-Vascular and Public Health Department, Padova University Hospital, 35121 Padova, Italy; (M.T.S.); (M.M.); (E.L.); (G.C.); (D.T.)
| | - Eleonora Lassandro
- Cardiology Unit, Cardio-Thoraco-Vascular and Public Health Department, Padova University Hospital, 35121 Padova, Italy; (M.T.S.); (M.M.); (E.L.); (G.C.); (D.T.)
| | - Gabriele Cordoni
- Cardiology Unit, Cardio-Thoraco-Vascular and Public Health Department, Padova University Hospital, 35121 Padova, Italy; (M.T.S.); (M.M.); (E.L.); (G.C.); (D.T.)
| | - Donatella Tansella
- Cardiology Unit, Cardio-Thoraco-Vascular and Public Health Department, Padova University Hospital, 35121 Padova, Italy; (M.T.S.); (M.M.); (E.L.); (G.C.); (D.T.)
| | - Dan Alexandru Cozac
- Emergency Institute for Cardiovascular Diseases and Transplantation of Targu Mures, 540136 Targu Mures, Romania;
| | - Bandar Alamro
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (N.K.); (B.A.)
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11564, Saudi Arabia; (F.K.); (S.A.)
| | - Giovanni Di Salvo
- Division of Pediatric Cardiology, Department for Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (B.C.); (I.C.); (G.D.S.)
| |
Collapse
|
2
|
Darwish A, Papolla C, Rieu R, Kadem L. An Anatomically Shaped Mitral Valve for Hemodynamic Testing. Cardiovasc Eng Technol 2024; 15:374-381. [PMID: 38228812 DOI: 10.1007/s13239-024-00714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
In vitro modeling of the left heart relies on accurately replicating the physiological conditions of the native heart. The targeted physiological conditions include the complex fluid dynamics coming along with the opening and closing of the aortic and mitral valves. As the mitral valve possess a highly sophisticated apparatus, thence, accurately modeling it remained a missing piece in the perfect heart duplicator puzzle. In this study, we explore using a hydrogel-based mitral valve that offers a full representation of the mitral valve apparatus. The valve is tested using a custom-made mock circulatory loop to replicate the left heart. The flow analysis includes performing particle image velocimetry measurements in both left atrium and ventricle. The results showed the ability of the new mitral valve to replicate the real interventricular and atrial flow patterns during the whole cardiac cycle. Moreover, the investigated valve has a ventricular vortex formation time of 5.2, while the peak e- and a-wave ventricular velocities was 0.9 m/s and 0.4 m/s respectively.
Collapse
Affiliation(s)
- Ahmed Darwish
- Laboratory of Cardiovascular Fluid Dynamics, Concordia University, Montreal, QC, H3G 1M8, Canada.
- Mechanical Power Engineering Department, Assiut University, Assiut, 71515, Egypt.
| | - Chloé Papolla
- Laboratory of Cardiovascular Fluid Dynamics, Concordia University, Montreal, QC, H3G 1M8, Canada
- Aix-Marseille University, LBA UMR T24, Marseille, France
| | - Régis Rieu
- Aix-Marseille University, LBA UMR T24, Marseille, France
| | - Lyes Kadem
- Laboratory of Cardiovascular Fluid Dynamics, Concordia University, Montreal, QC, H3G 1M8, Canada
| |
Collapse
|
3
|
Chen X, Qiu F, Wang W, Qi Z, Lyu D, Xue K, Sun L, Song D. Vector flow mapping analysis of left ventricular vortex performance in type 2 diabetic patients with early chronic kidney disease. BMC Cardiovasc Disord 2023; 23:434. [PMID: 37658336 PMCID: PMC10474629 DOI: 10.1186/s12872-023-03474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Diabetes is the leading cause of chronic kidney disease (CKD) and contributes to an elevated incidence of diastolic dysfunction in the early stages of CKD. Intracardiac vortex is a novel hemodynamic index for perceiving cardiac status. Here, we visualized left ventricular (LV) vortex characteristics using vector flow mapping (VFM) in type 2 diabetic patients with early CKD. METHODS This cross-sectional study included 67 controls and 89 type 2 diabetic patients with stages 2-3a CKD. All subjects underwent transthoracic echocardiographic examination. LV anterior vortex during early diastole (E-vortex), atrial contraction (A-vortex) and systole (S-vortex) were assessed using VFM in the apical long-axis view. Its relation to glycemia or LV filling echocardiographic parameters were further analyzed using correlation analysis. RESULTS Type 2 diabetic patients with early CKD had a small area (439.94 ± 132.37 mm2 vs. 381.66 ± 136.85 mm2, P = 0.008) and weak circulation (0.0226 ± 0.0079 m2/s vs. 0.0195 ± 0.0070 m2/s, P = 0.013) of E-vortex, but a large area (281.52 ± 137.27 mm2 vs. 514.83 ± 160.33 mm2, P ˂ 0.001) and intense circulation (0.0149 ± 0.0069 m2/s vs. 0.0250 ± 0.0067 m2/s, P < 0.001) of A-vortex compared to controls. CKD patients with poorly controlled hyperglycemia had stronger A-vortex (area: 479.06 ± 146.78 mm2 vs. 559.96 ± 159.27 mm2, P = 0.015; circulation: 0.0221 ± 0.0058 m2/s vs. 0.0275 ± 0.0064 m2/s, P < 0.001) and S-vortex (area: 524.21 ± 165.52 mm2 vs. 607.87 ± 185.33 mm2, P = 0.029; circulation: 0.0174 ± 0.0072 m2/s vs. 0.0213 ± 0.0074 m2/s, P = 0.015), and a longer relative duration of S-vortex (0.7436 ± 0.0772 vs. 0.7845 ± 0.0752, P = 0.013) than those who had well-controlled hyperglycemia. Glycemia, and E/A (a LV filling parameter) were respectively found to had close correlation to the features of A-vortex and S-vortex (all P < 0.05). CONCLUSIONS Abnormal LV vortices were detected in type 2 diabetic patients with early CKD using VFM, especially in those who neglected hyperglycemic control. LV vortex might be a promising parameter to slow or halt the hyperglycemia-induced diastolic dysfunction in early CKD.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Ultrasound, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio- cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Fang Qiu
- Department of cardiology, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China
| | - Wei Wang
- Department of Cardiac Ultrasound, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Zhengqin Qi
- Department of Ultrasound, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China
| | - Damin Lyu
- Department of Ultrasound, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China
| | - Kun Xue
- Department of Ultrasound, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China
| | - Lijuan Sun
- Department of Ultrasound, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China
| | - Degang Song
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio- cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
- Department of neurology, First Hospital of Qinhuangdao, Hebei Medical University, No.258, Wenhua Road, Qinhuangdao, 066000, Hebei, China.
| |
Collapse
|
4
|
Jafarzadeh E, Démoré CE, Burns PN, Goertz DE. Spatially segmented SVD clutter filtering in cardiac blood flow imaging with diverging waves. ULTRASONICS 2023; 132:107006. [PMID: 37116399 DOI: 10.1016/j.ultras.2023.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/29/2023]
Abstract
Ultrafast ultrasound imaging enables the visualization of rapidly changing blood flow dynamics in the chambers of the heart. Singular value decomposition (SVD) filters outperform conventional high pass clutter rejection filters for ultrafast blood flow imaging of small and shallow fields of view (e.g., functional imaging of brain activity). However, implementing SVD filters can be challenging in cardiac imaging due to the complex spatially and temporally varying tissue characteristics. To address this challenge, we describe a method that involves excluding the proximal portion of the image (near the chest wall) and divides the reduced field of view into overlapped segments, within which tissue signals are expected to be spatially and temporally coherent. SVD filtering with automatic selection of cut-off singular vector orders to remove tissue and noise signals is implemented for each segment. Auto-thresholding is based on the coherence of spatial singular vectors, delineating tissue, blood, and noise subspaces within a spatial similarity matrix calculated for each segment. Filtered blood flow signals from the segments are reconstructed and then combined and Doppler processing is used to form a set of blood flow images. Preliminary experimental results suggest that the spatially segmented approach improves the separation of the tissue and blood subsets in the spatial similarity matrix so that automatic thresholding is significantly improved, and tissue clutter can then be rejected more effectively in cardiac ultrafast imaging, compared to using the full field of view. In the case studied, spatially segmented SVD improved the rate of correct automatic selection of thresholds from 78% to 98.7% for the investigated cases and improved the post-filter power of blood signals by an average of more than 10 dB during a cardiac cycle.
Collapse
Affiliation(s)
- Ehsan Jafarzadeh
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada.
| | - Christine Em Démoré
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada.
| | - Peter N Burns
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada.
| | - David E Goertz
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada.
| |
Collapse
|
5
|
Zheng AS, Yu HX. Value of clinical applications of differential pressure and relative pressure imaging in the left ventricle. World J Clin Cases 2023; 11:3967-3975. [PMID: 37388805 PMCID: PMC10303603 DOI: 10.12998/wjcc.v11.i17.3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 06/12/2023] Open
Abstract
Regional pressure differences between sites within the left ventricular cavity have long been identified, and the potential clinical value of diastolic and systolic intraventricular pressure differences (IVPDs) is of increasing interest. This study concluded that the IVPD plays an important role in ventricular filling and emptying and is a reliable indicator of ventricular relaxation, elastic recoil, diastolic pumping, and effective left ventricular filling. Relative pressure imaging, as a novel and potentially clinically applicable measure of left IVPDs, enables early and more comprehensive identification of the temporal and spatial characteristics of IVPD. In the future, as research related to relative pressure imaging continues, this measurement method has the possibility to become more refined and serve as an additional clinical aid that can replace the gold standard cardiac catheterization technique for the diagnosis of diastolic dysfunction.
Collapse
Affiliation(s)
- An-Sheng Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China
| | - Hong-Xia Yu
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China
| |
Collapse
|
6
|
Xiao Q, Zhao X, Yang R, Li Z, Li D, Xie Y, Mao X, Wang Y, Yin L, Li C, Zuo M, Meng Q, Li W, Liu X, Li Z, Zhang Q, Deng Y. Assessment of left ventricular energy loss in patients with mild coronary artery stenosis by using vector flow mapping combined with exercise stress echocardiography. Echocardiography 2023. [PMID: 37178387 DOI: 10.1111/echo.15591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
OBJECTIVES To evaluate the left ventricular energy loss (EL), energy loss reserve (EL-r), and energy loss reserve rate in patients with mild coronary artery stenosis by using vector flow mapping (VFM) combined with exercise stress echocardiography. METHODS A total of 34 patients (case group) with mild coronary artery stenosis and 36 sex and age matched patients (control group) without coronary artery stenosis according to coronary angiogram were prospectively enrolled. The total energy loss (ELt), basal segment energy loss (ELb), middle segment energy loss (ELm), apical segment energy loss (ELa), energy loss reserve (EL-r), and energy loss reserve rate were recorded in the isovolumic systolic period (S1), rapid ejection period (S2), slow ejection period (S3), isovolumic diastolic period (D1), rapid filling period (D2), slow filling period (D3), and atrial contraction period (D4). RESULTS Compared with the control group, some of the EL in the resting case group were higher; some of the EL in the case group were lower after exercise, and those during D1 ELb and D3 ELb were higher. Compared with the resting state, the total EL and the EL within the time segment in the control group were higher after exercise, except during D2 ELb. In the case group, except for during D1 ELt, ELb and D2 ELb, the total and segmental EL of each phase was mostly higher after exercise (p < .05). Compared with the control group, most of the EL-r and EL reserve rates in the case group were lower (p < .05). CONCLUSION The EL, EL-r, and energy loss reserve rate have a certain value in the evaluation of cardiac function in patients with mild coronary artery stenosis.
Collapse
Affiliation(s)
- Qiuyu Xiao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Zhao
- Department of Ultrasound, Chengdu Second People's Hospital, Chengdu, China
| | - Rui Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zizhuo Li
- Chengdu Medical College, Chengdu, China
| | - Dongmei Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Xinyue Mao
- North Sichuan Medical University, Nanchong, China
| | - Yi Wang
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lixue Yin
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunmei Li
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingliang Zuo
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qingguo Meng
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenhua Li
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuebing Liu
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhaohuan Li
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qingfeng Zhang
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Deng
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Chan JSK, Lau DHH, Fan Y, Lee APW. Fragmented Vortex in Heart Failure With Reduced Ejection Fraction: A Prospective Vector Flow Mapping Study. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:982-988. [PMID: 36581516 DOI: 10.1016/j.ultrasmedbio.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Heart failure with reduced ejection fraction (HFrEF) is associated with structural and functional left ventricular changes. We compared intracardiac vortices between patients with HFrEF and normal participants using echocardiographic vector flow mapping, a novel intracardiac vortex analysis technology. METHODS Transthoracic echocardiography was performed on 20 patients with HFrEF (age: 61 ± 15 y, 15 men) and 20 normal participants (age: 59 ± 12 y, 12 men) age- and sex-balanced at the cohort level. Systolic and diastolic energy loss, area (indexed by left ventricular end-diastolic diameter), circulation (reflects vortex strength) and relative positions of the largest vortex during systole (S-vortex), early (E-vortex) and late (A-vortex) diastole and maximal number of vortices in a single frame (MNV) were assessed. DISCUSSION Patients with HFrEF had disproportionately sized vortices with smaller indexed vortex areas (p < 0.0001), and more fragmented vortices with higher MNV during both systole (p = 0.030) and diastole (p < 0.0001). These accompanied higher diastolic energy loss (p = 0.001). Additionally, the E-vortex (p = 0.002) and A-vortex (p < 0.0001) were more apically positioned, and the S-vortex was weaker (p = 0.033) in patients with HFrEF. More severe fragmentation (higher MNV) correlated with worse energy efficiency (higher energy loss). CONCLUSION Patients with HFrEF had more fragmented intracardiac vortices and lower energy efficiency predominantly during diastole.
Collapse
Affiliation(s)
- Jeffrey Shi Kai Chan
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China; Laboratory of Cardiac Imaging and 3D Printing, Li Ka Shing Institute of Health Sciences, Hong Kong, China
| | - Dawnie Ho Hei Lau
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China; Laboratory of Cardiac Imaging and 3D Printing, Li Ka Shing Institute of Health Sciences, Hong Kong, China
| | - Yiting Fan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xu Hui District, Shanghai, China
| | - Alex Pui-Wai Lee
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China; Laboratory of Cardiac Imaging and 3D Printing, Li Ka Shing Institute of Health Sciences, Hong Kong, China.
| |
Collapse
|
8
|
Pugliese NR, Colli A, Falcetta G, Del Punta L, Puccinelli C, Fiocco A, Petronio AS, Taddei S, Masi S, Besola L. Flow dynamic assessment of native mitral valve, mitral valve repair and mitral valve replacement using vector flow mapping intracardiac flow dynamic in mitral valve regurgitation. Front Cardiovasc Med 2023; 10:1047244. [PMID: 37034321 PMCID: PMC10080047 DOI: 10.3389/fcvm.2023.1047244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Objectives The present study aims to assess and describe the intracardiac blood flow dynamic in patients with mitral regurgitation (MR), repaired mitral valves (MV) and mitral valve prostheses using vector flow mapping (VFM). Methods Patients with different MV pathologies and MV disease treatments were analysed. All patients underwent 2D transthoracic echocardiography, and images for flow visualization were acquired in VFM mode in an apical three-chamber view and four-chamber view. Vectors and vortices were qualitatively analyzed. Results thirty-two (32) patients underwent 2D transthoracic echocardiography (TTE) with VFM analysis. We evaluated intracardiac flow dynamics in 3 healthy subjects, 10 patients with MR (5 degenerative, 5 functional), 4 patients who underwent MV repair, 5 who underwent MV replacement (3 biological, 2 mechanical), 2 surgically implanted transcatheter heart valve (THV), 2 transcatheter edge-to-edge MV repair with MitraClip (TEER), 3 transcatheter MV replacement (TMVR) and 3 transapical off-pump MV repair with NeoChord implantation. Blood flow patterns are significantly altered in patients with MV disease and MV repair compared to control patients. MV repair is superior to replacement in restoring more physiologicalpatterns, while TMVR reproducesan intraventricular flowcloser to normal than surgical MVR and TEER. Conclusions Intracardiac flow patterns can be clearly defined using VFM. Restoration of a physiological blood flow pattern inside the LV directly depends on the procedure used to address MV disease.
Collapse
Affiliation(s)
| | - Andrea Colli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Correspondence: Andrea Colli
| | - Giosuè Falcetta
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Lavinia Del Punta
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlo Puccinelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Fiocco
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Anna Sonia Petronio
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Besola
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Sun Q, Jiang S, Wang X, Zhang J, Li Y, Tian J, Li H. A prediction model for major adverse cardiovascular events in patients with heart failure based on high-throughput echocardiographic data. Front Cardiovasc Med 2022; 9:1022658. [PMID: 36386363 PMCID: PMC9649658 DOI: 10.3389/fcvm.2022.1022658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background Heart failure (HF) is a serious end-stage condition of various heart diseases with increasing frequency. Few studies have combined clinical features with high-throughput echocardiographic data to assess the risk of major cardiovascular events (MACE) in patients with heart failure. In this study, we assessed the relationship between these factors and heart failure to develop a practical and accurate prognostic dynamic nomogram model to identify high-risk groups of heart failure and ultimately provide tailored treatment options. Materials and methods We conducted a prospective study of 468 patients with heart failure and established a clinical predictive model. Modeling to predict risk of MACE in heart failure patients within 6 months after discharge obtained 320 features including general clinical data, laboratory examination, 2-dimensional and Doppler measurements, left ventricular (LV) and left atrial (LA) speckle tracking echocardiography (STE), and left ventricular vector flow mapping (VFM) data, were obtained by building a model to predict the risk of MACE within 6 months of discharge for patients with heart failure. In addition, the addition of machine learning models also confirmed the necessity of increasing the STE and VFM parameters. Results Through regular follow-up 6 months after discharge, MACE occurred in 156 patients (33.3%). The prediction model showed good discrimination C-statistic value, 0.876 (p < 0.05), which indicated good identical calibration and clinical efficacy. In multiple datasets, through machine learning multi-model comparison, we found that the area under curve (AUC) of the model with VFM and STE parameters was higher, which was more significant with the XGboost model. Conclusion In this study, we developed a prediction model and nomogram to estimate the risk of MACE within 6 months of discharge among patients with heart failure. The results of this study can provide a reference for clinical physicians for detection of the risk of MACE in terms of clinical characteristics, cardiac structure and function, hemodynamics, and enable its prompt management, which is a convenient, practical and effective clinical decision-making tool for providing accurate prognosis.
Collapse
Affiliation(s)
- Qinliang Sun
- Department of Ultrasound Imaging, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuangquan Jiang
- Department of Ultrasound Imaging, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Wang
- Department of Ultrasound Imaging, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingchun Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Heilongjiang Provincial Hospital Affiliated to Harbin Institute of Technology, Harbin, China
| | - Yi Li
- Department of Ultrasound Imaging, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Tian
- Department of Ultrasound Imaging, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jiawei Tian,
| | - Hairu Li
- Department of Ultrasound Imaging, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Hairu Li,
| |
Collapse
|
10
|
Age-Related Changes in Left Ventricular Vortex Formation and Flow Energetics. J Clin Med 2021; 10:jcm10163619. [PMID: 34441914 PMCID: PMC8397127 DOI: 10.3390/jcm10163619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
Analysis of the cardiac vortex has been used for a deeper understanding of the pathophysiology in heart diseases. However, physiological changes of the cardiac vortex with normal aging are incompletely defined. Vector flow mapping (VFM) is a novel echocardiographic technique based on Doppler and speckle tracking for analysis of the cardiac vortex. Transthoracic echocardiography and VFM analysis were performed in 100 healthy adults (33 men; age = 18–67 years). The intracardiac flow was assessed throughout the cardiac cycle. The size (cross-sectional area) and circulation (equivalent to the integral of normal component of vorticity) of the largest vortices in systole (S-vortex), early diastole (E-vortex), and late diastole (A-vortex) were measured. Peak energy loss (EL) was calculated from information of the velocity vector of intracardiac flow in systole and diastole. With normal aging, the circulation (p = 0.049) of the E-vortex decreased, while that of the A-vortex increased (both p < 0.001). E-vortex circulation correlated directly to e’ (p = 0.003), A-vortex circulation correlated directly to A and a’ (both p < 0.001), and S-vortex circulation correlated directly to s’ (p = 0.032). Despite changes in vortex patterns, energy loss was not significantly different in older individuals. Normal aging is associated with altered intracardiac vortex patterns throughout the cardiac cycle, with the late-diastolic A-vortex becoming physiologically more dominant. Maintained energy efficiency accompanies changes in vortex patterns in aging hearts.
Collapse
|
11
|
Avesani M, Degrelle B, Di Salvo G, Thambo JB, Iriart X. Vector flow mapping: A review from theory to practice. Echocardiography 2021; 38:1405-1413. [PMID: 34259359 DOI: 10.1111/echo.15154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The interest in intra-cardiac blood flow analysis is rapidly growing, and it has encouraged the development of different non-invasive imaging techniques. Among these, Vector Flow Mapping (VFM), combing Color-Doppler imaging and speckle tracking data, seems to be a promising approach, feasible in adult and children population. AIM OF THE REVIEW The aim of this review is to give a historical perspective on the development of VFM method and a summary of the current algorithms and parameters potentially evaluable. Then, we will present the current state-of-the-art of VFM with an overview of clinical studies and applications of this technique.
Collapse
Affiliation(s)
- Martina Avesani
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France.,Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Bastien Degrelle
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France
| | - Giovanni Di Salvo
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Jean-Benoit Thambo
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France.,Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, Bordeaux, France
| | - Xavier Iriart
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France.,Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, Bordeaux, France
| |
Collapse
|
12
|
Blood Flow Quantification in Peripheral Arterial Disease: Emerging Diagnostic Techniques in Vascular Surgery. Surg Technol Int 2021. [PMID: 33970476 DOI: 10.52198/21.sti.38.cv1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The assessment of local blood flow patterns in patients with peripheral arterial disease is clinically relevant, since these patterns are related to atherosclerotic disease progression and loss of patency in stents placed in peripheral arteries, through mechanisms such as recirculating flow and low wall shear stress (WSS). However, imaging of vascular flow in these patients is technically challenging due to the often complex flow patterns that occur near atherosclerotic lesions. While several flow quantification techniques have been developed that could improve the outcomes of vascular interventions, accurate 2D or 3D blood flow quantification is not yet used in clinical practice. This article provides an overview of several important topics that concern the quantification of blood flow in patients with peripheral arterial disease. The hemodynamic mechanisms involved in the development of atherosclerosis and the current clinical practice in the diagnosis of this disease are discussed, showing the unmet need for improved and validated flow quantification techniques in daily clinical practice. This discussion is followed by a showcase of state-of-the-art blood flow quantification techniques and how these could be used before, during and after treatment of stenotic lesions to improve clinical outcomes. These techniques include novel ultrasound-based methods, Phase-Contrast Magnetic Resonance Imaging (PC-MRI) and Computational Fluid Dynamics (CFD). The last section discusses future perspectives, with advanced (hybrid) imaging techniques and artificial intelligence, including the implementation of these techniques in clinical practice.
Collapse
|
13
|
Engelhard S, van de Velde L, Jebbink E, Jain K, Westenberg J, Zeebregts C, Versluis M, Reijnen M. Blood Flow Quantification in Peripheral Arterial Disease: Emerging Diagnostic Techniques in Vascular Surgery. Surg Technol Int 2021. [DOI: https:/doi.org/10.52198/21.sti.38.cv1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The assessment of local blood flow patterns in patients with peripheral arterial disease is clinically relevant, since these patterns are related to atherosclerotic disease progression and loss of patency in stents placed in peripheral arteries, through mechanisms such as recirculating flow and low wall shear stress (WSS). However, imaging of vascular flow in these patients is technically challenging due to the often complex flow patterns that occur near atherosclerotic lesions. While several flow quantification techniques have been developed that could improve the outcomes of vascular interventions, accurate 2D or 3D blood flow quantification is not yet used in clinical practice. This article provides an overview of several important topics that concern the quantification of blood flow in patients with peripheral arterial disease. The hemodynamic mechanisms involved in the development of atherosclerosis and the current clinical practice in the diagnosis of this disease are discussed, showing the unmet need for improved and validated flow quantification techniques in daily clinical practice. This discussion is followed by a showcase of state-of-the-art blood flow quantification techniques and how these could be used before, during and after treatment of stenotic lesions to improve clinical outcomes. These techniques include novel ultrasound-based methods, Phase-Contrast Magnetic Resonance Imaging (PC-MRI) and Computational Fluid Dynamics (CFD). The last section discusses future perspectives, with advanced (hybrid) imaging techniques and artificial intelligence, including the implementation of these techniques in clinical practice.
Collapse
Affiliation(s)
- Stefan Engelhard
- Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands
| | | | - Erik Jebbink
- Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands
| | - Kartik Jain
- Department of Thermal and Fluid Engineering, University of Twente, Enschede, The Netherlands
| | - Jos Westenberg
- Department of Radiology, Cardiovascular Imaging Group, Leiden University Medical Center, Leiden, The Netherlands
| | - Clark Zeebregts
- Department of Surgery (Division of Vascular Surgery), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
| | - Michel Reijnen
- Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands
| |
Collapse
|
14
|
Sarashina-Motoi M, Iwano H, Motoi K, Ishizaka S, Chiba Y, Tsujinaga S, Murayama M, Nakabachi M, Yokoyama S, Nishino H, Okada K, Kaga S, Anzai T. Functional significance of intra-left ventricular vortices on energy efficiency in normal, dilated, and hypertrophied hearts. JOURNAL OF CLINICAL ULTRASOUND : JCU 2021; 49:358-367. [PMID: 33098167 DOI: 10.1002/jcu.22938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE To investigate the influence of changes in vortices within the left ventricle (LV) on energy efficiency (EE) in normal and diseased hearts. METHODS We performed vector flow mapping echocardiography in 36 normal participants (N), 36 patients with dilated cardiomyopathy (D), and 36 patients with LV hypertrophy (H). The circulation of the main anterior vortex was measured as a parameter of vortex strength. Energy loss (EL) was measured for one cardiac cycle, and EE was calculated as EL divided by stroke work (SW), which represents the loss of kinetic energy per unit of LV external work. RESULTS Circulation increased in the order of N, H, and D (N: 15 ± 4, D: 19 ± 8, H: 17 ± 6 × 10-3 m2 /s; analysis of variance [ANOVA] P < .01). Conversely, EE increased in the order of N, D, and H (N: 0.22 ± 0.07, D: 0.26 ± 0.16, H: 0.30 ± 0.16 10-5 J/mm Hg mL m s; ANOVA P = .04), suggesting worst EE in group H. We found a positive correlation between circulation and SW only in group N, and positive correlation between circulation and EE only in diseased groups (D: R = 0.55, P < .01; H: R = 0.44, P < .01). Multivariable analyses revealed that circulation was the independent determinant of EE in groups D and H. CONCLUSIONS Enhanced vortices could be associated with effective increase in LV external work in normal hearts. Conversely, they were associated with loss of EE without an optimal increase in external work in failing hearts, regardless of the LV morphology.
Collapse
Affiliation(s)
- Miwa Sarashina-Motoi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Iwano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ko Motoi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Suguru Ishizaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Chiba
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Tsujinaga
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michito Murayama
- Diagnostic Center for Sonography, Hokkaido University Hospital, Sapporo, Japan
| | - Masahiro Nakabachi
- Division of Clinical Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Shinobu Yokoyama
- Division of Clinical Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Hisao Nishino
- Division of Clinical Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Kazunori Okada
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sanae Kaga
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Arakawa Y, Fukaya H, Kakizaki R, Oikawa J, Saito D, Sato T, Matsuura G, Kobayashi S, Shirakawa Y, Nishinarita R, Horiguchi A, Ishizue N, Nabeta T, Kishihara J, Niwano S, Ako J. Energy loss by right ventricular pacing: Patients with versus without hypertrophic cardiomyopathy. J Arrhythm 2021; 37:203-211. [PMID: 33664904 PMCID: PMC7896474 DOI: 10.1002/joa3.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Right ventricular (RV) pacing causes left ventricular (LV) dyssynchrony sometimes resulting in pacing-induced cardiomyopathy. However, RV pacing for hypertrophic obstructive cardiomyopathy is one of the treatment options. LV flow energy loss (EL) using vector flow mapping (VFM) is a novel hemodynamic index for assessing cardiac function. Our study aimed to elucidate the impact of RV pacing on EL in normal LV function and hypertrophic cardiomyopathy (HCM) patients. METHODS A total of 36 patients with dual-chamber pacemakers for sick sinus syndrome or implantable cardioverter defibrillators for fatal ventricular tachyarrhythmias were enrolled. All patients were divided into two groups: 16 patients with HCM (HCM group) and others (non-HCM group). The absolute changes in EL under AAI (without RV pacing) and DDD (with RV pacing) modes were assessed using VFM on color Doppler echocardiography. RESULTS In the non-HCM group, the mean systolic EL significantly increased from the AAI to DDD modes (14.0 ± 7.7 to 17.0 ± 8.6 mW/m, P = .003), whereas the mean diastolic EL did not change (19.0 ± 12.3 to 17.0 ± 14.8 mW/m, P = .231). In the HCM group, the mean systolic EL significantly decreased from the AAI to DDD modes (26.7 ± 14.2 to 21.6 ± 11.9 mW/m, P < .001), whereas the mean diastolic EL did not change (28.7 ± 16.4 to 23.9 ± 19.7 mW/m, P = .130). CONCLUSIONS RV pacing increased the mean systolic EL in patients without HCM. Conversely, RV pacing decreased the mean systolic EL in patients with HCM.
Collapse
Affiliation(s)
- Yuki Arakawa
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Hidehira Fukaya
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Ryota Kakizaki
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Jun Oikawa
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Daiki Saito
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Tetsuro Sato
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Gen Matsuura
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Shuhei Kobayashi
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Yuki Shirakawa
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Ryo Nishinarita
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Ai Horiguchi
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Naruya Ishizue
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Takeru Nabeta
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Jun Kishihara
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Shinichi Niwano
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| | - Junya Ako
- Department of Cardiovascular MedicineKitasato University School of MedicineSagamiharaJapan
| |
Collapse
|
16
|
Impact of Mitral Regurgitation on the Flow in a Model of a Left Ventricle. Cardiovasc Eng Technol 2020; 11:708-718. [DOI: 10.1007/s13239-020-00490-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/24/2020] [Indexed: 11/25/2022]
|
17
|
Chen X, Wang Y, Wang W, Yuan L, Qi Z, Song D. Assessment of left ventricular energy loss using vector flow mapping in patients with stages 1-3 chronic kidney disease. BMC Cardiovasc Disord 2020; 20:355. [PMID: 32741356 PMCID: PMC7397582 DOI: 10.1186/s12872-020-01640-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) experience abnormality of intracardiac blood flow status during early-stages of disease. Left ventricular energy loss (EL) derived from vector flow mapping (VFM) represents fluid energy lost as heat in left ventricle and had been used to detect intracardiac blood flow efficiency. We aimed to evaluate the left ventricular EL in stage 1-3 CKD patients, and explored whether hypertension, a main cardiovascular risk, deteriorate the abnormality of intracardiac blood flow status. METHODS Transthoracic echocardiography was performed in 41 controls and 48 patients with stages 1-3 CKD. CKD patients consisted a subgroup with no hypertension, a subgroup with well-controlled hypertension and a subgroup with poorly controlled hypertension. The EL were calculated in the left ventricle using VFM analysis from the apical 3-chamber view. Furthermore, the correlation and stepwise multiple regression analysis were used to explore the potential independent predictors of left ventricular EL. RESULTS Compared with controls, stage 1-3 CKD patients showed increased left ventricular EL during total diastole, late diastole, total systole, isovolumic contraction and ejection. CKD patients with poorly controlled hypertension had higher left ventricular EL compared to the other CKD subgroups. Additionally, the ratio of mitral early filling wave peak velocity and early mitral annular peak velocity on septal side, mitral early filling wave peak velocity, and left ventricular mass index were independent predictors of the diastolic EL; whereas systolic blood pressure and left ventricular mass index were independent predictors of the systolic EL. CONCLUSIONS Left ventricular EL was a useful echocardiographic parameter to evaluate the impaired intracardiac blood flow efficiency in patients with stages 1-3 CKD. Hypertension was a crucial contributor for intracardiac blood flow abnormality. This study might provide valuable clinical data to discern cardiac dysfunction and reduce the cardiovascular risk in early-stage CKD.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Cardiac Ultrasound, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Yueheng Wang
- Department of Cardiac Ultrasound, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
| | - Wei Wang
- Department of Cardiac Ultrasound, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Lijun Yuan
- Department of Cardiac Ultrasound, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Zhengqin Qi
- First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Degang Song
- First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| |
Collapse
|
18
|
Cho JS, Shrestha S, Kagiyama N, Hu L, Ghaffar YA, Casaclang-Verzosa G, Zeb I, Sengupta PP. A Network-Based "Phenomics" Approach for Discovering Patient Subtypes From High-Throughput Cardiac Imaging Data. JACC Cardiovasc Imaging 2020; 13:1655-1670. [PMID: 32762883 DOI: 10.1016/j.jcmg.2020.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The authors present a method that focuses on cohort matching algorithms for performing patient-to-patient comparisons along multiple echocardiographic parameters for predicting meaningful patient subgroups. BACKGROUND Recent efforts in collecting multiomics data open numerous opportunities for comprehensive integration of highly heterogenous data to classify a patient's cardiovascular state, eventually leading to tailored therapies. METHODS A total of 42 echocardiography features, including 2-dimensional and Doppler measurements, left ventricular (LV) and atrial speckle-tracking, and vector flow mapping data, were obtained in 297 patients. A similarity network was developed to delineate distinct patient phenotypes, and then neural network models were trained for discriminating the phenotypic presentations. RESULTS The patient similarity model identified 4 clusters (I to IV), with patients in each cluster showed distinctive clinical presentations based on American College of Cardiology/American Heart Association heart failure stage and the occurrence of short-term major adverse cardiac and cerebrovascular events. Compared with other clusters, cluster IV had a higher prevalence of stage C or D heart failure (78%; p < 0.001), New York Heart Association functional classes III or IV (61%; p < 0.001), and a higher incidence of major adverse cardiac and cerebrovascular events (p < 0.001). The neural network model showed robust prediction of patient clusters, with area under the receiver-operating characteristic curve ranging from 0.82 to 0.99 for the independent hold-out validation set. CONCLUSIONS Automated computational methods for phenotyping can be an effective strategy to fuse multidimensional parameters of LV structure and function. It can identify distinct cardiac phenogroups in terms of clinical characteristics, cardiac structure and function, hemodynamics, and outcomes.
Collapse
Affiliation(s)
- Jung Sun Cho
- West Virginia University Heart & Vascular Institute, Morgantown, West Virginia; Division of Cardiology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sirish Shrestha
- West Virginia University Heart & Vascular Institute, Morgantown, West Virginia
| | - Nobuyuki Kagiyama
- West Virginia University Heart & Vascular Institute, Morgantown, West Virginia
| | - Lan Hu
- West Virginia University Heart & Vascular Institute, Morgantown, West Virginia
| | - Yasir Abdul Ghaffar
- West Virginia University Heart & Vascular Institute, Morgantown, West Virginia
| | | | - Irfan Zeb
- West Virginia University Heart & Vascular Institute, Morgantown, West Virginia
| | - Partho P Sengupta
- West Virginia University Heart & Vascular Institute, Morgantown, West Virginia.
| |
Collapse
|
19
|
Matsuura K, Sato K, Shimada K, Goya S, Uemura A, Iso T, Yazaki K, Yilmaz Z, Takahashi K, Tanaka R. Changes in left ventricular blood flow during diastole due to differences in chamber size in healthy dogs. Sci Rep 2020; 10:1106. [PMID: 31980646 PMCID: PMC6981119 DOI: 10.1038/s41598-019-57180-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/03/2019] [Indexed: 11/09/2022] Open
Abstract
Vorticity is a novel index that reflects diastolic function of left ventricle. The size of the ventricle can influence the ventricular diastolic blood flow. We evaluated effect of ventricular size on diastolic function and diastolic intracardiac blood flow using a particular species of dogs, which has a wide range of body size. Vector flow mapping was used for evaluation of intracardiac blood flow, and intraventricular pressure gradient (IVPG) was used for evaluation of diastolic function. 58 dogs weighing 1.3-42.3 kg were included in this study. Vorticity was found to be inversely proportional to the length of the ventricular chamber. Intraventricular pressure difference was positively correlated with the length of the left ventricle, whereas IVPG was not. This study showed that the vorticity is influenced by the size of the left ventricle independently of other factors. To evaluate the hemodynamic state of each individual appropriately by using vorticity and IVPD, ventricular size should be taken into account especially in the field of veterinary medicine and human pediatric and adolescent cardiology.
Collapse
Affiliation(s)
- Katsuhiro Matsuura
- Tokyo University of Agriculture and Technology, Department of Veterinary Surgery, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-0052, Japan
| | - Kotomi Sato
- Tokyo University of Agriculture and Technology, Department of Veterinary Surgery, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-0052, Japan
| | - Kazumi Shimada
- Tokyo University of Agriculture and Technology, Department of Veterinary Surgery, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-0052, Japan
| | - Seijirow Goya
- Tokyo University of Agriculture and Technology, Department of Veterinary Surgery, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-0052, Japan
| | - Akiko Uemura
- Teikyo University of Science, Department of Animal Science, 2-2-1, Senjyusakuragi, Adachi-ku, Tokyo, 120-0045, Japan
| | - Takeshi Iso
- Juntendo University Graduate School of Medicine, Department of Pediatrics and Adolescent Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kana Yazaki
- Juntendo University Graduate School of Medicine, Department of Pediatrics and Adolescent Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Zeki Yilmaz
- Uludag University, Department of Internal Medicine, Özlüce Mahallesi, Veterinerlik Fak. Hayvan Hst., 16120, Nilüfer, Bursa, Turkey
| | - Ken Takahashi
- Juntendo University Graduate School of Medicine, Department of Pediatrics and Adolescent Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Animal Medical Center, 3-5-8 Saiwaicho, 183-8509, Fuchu-shi, Tokyo, Japan.
| |
Collapse
|
20
|
Oktamuliani S, Hasegawa K, Saijo Y. Left Ventricular Vortices in Myocardial Infarction Observed with Echodynamography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5816-5819. [PMID: 31947174 DOI: 10.1109/embc.2019.8856394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Echodynamography (EDG) is a computational method to deduce two-dimensional (2D) blood flow vector from conventional color Doppler ultrasound image by considering that the blood flow is divided into vortex and base flow components. Left ventricular (LV) vortices indicate cardiac flow status influenced by LV wall motion. Thus, quantitative assessment of LV vortices may become new and sensitive parameters for cardiac function. In the present study, quantitative parameters of LV vortices such as vortex index, vortex size, and Reynolds number were calculated and relation between each parameter was assessed. Six healthy volunteers and three patients with myocardial infarction (MI) who underwent color Doppler echocardiography (CDE) were involved in the study. Serial CDE images in apical three-chamber view were recorded and 2D blood flow vector was superimposed on the CDE image. Vortex index, vortex size, and Reynolds number were compared between the normal volunteers and the MI patients. The results showed that vortex index (3.09±2.06 vs. 3.34±2.33, p<; 0.05), vortex size (1.76 0.69 vs. 2.01 ±0.68, p<; 0.05), Reynolds number (1020±603 vs.±1312 1046, p<; ±0.05) were significantly greater in the MI patients than in the healthy volunteers. Vortex equivalent diameter in LV showed significant positive correlation with Reynolds number (R2 = 0.799, y = 0.001x + 0.7098, p <; 0.05) in healthy volunteers and (R2 = 0.6404, y = 0.0005x+1.3185, p<; 0.05) in MI patients. Vortex index showed positive correlation with Reynolds number (R2 = 0.9351, y = 0.002x+0.1397, p<; 0.05) in healthy volunteers and (R2 = 0.758, y = 0.0019x+0.7957, p<; 0.05) in MI patients. In conclusion, EDG provides information on LV hemodynamics by quantitative LV vortices parameters both in healthy volunteers and MI patients.
Collapse
|
21
|
Liu R, Cui C, Li Y, Qiu Z, Hu Y, Wang Y, Cui M, Yin S, Liu L. Analysis of left ventricular diastolic energy loss in patients with aortic stenosis with preserved ejection fraction by using vector flow mapping. Echocardiography 2019; 36:2216-2226. [PMID: 31876982 DOI: 10.1111/echo.14555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ruijie Liu
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Cunying Cui
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Yanan Li
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Zhaoying Qiu
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Yanbin Hu
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Ying Wang
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Mingxia Cui
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Shanshan Yin
- Henan Academy of Medical Sciences Zhengzhou China
| | - Lin Liu
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
22
|
Oktamuliani S, Kanno N, Maeda M, Hasegawa K, Saijo Y. Validation of Echodynamography in Comparison with Particle-image Velocimetry. ULTRASONIC IMAGING 2019; 41:336-352. [PMID: 31615353 DOI: 10.1177/0161734619879859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Echodynamography (EDG) is a computational method to estimate and visualize two-dimensional flow velocity vectors by applying dynamic flow theories to color Doppler echocardiography. The EDG method must be validated if applied to human cardiac flow function. However, a few studies of flow estimated have compared by EDG to the flow data were acquired by other methods. In this study, EDG was validated by comparing the analysis of estimating and visualizing flow velocity vectors obtained by original particle image velocimetry (PIV) based on a left ventricular (LV) phantom hydrogel (in vitro studies) and by EDG based on the virtual Doppler velocity. Velocity measured by PIV method and velocity estimated by EDG method in the perpendicular direction and the radial direction were compared. Regression analysis for the velocity estimated in the radial direction revealed an excellent correlation (R2=0.99, slope = 0.96) and moderate correlation in the perpendicular direction (R2=0.44, slope = 0.46). As revealed by the Bland-Altman plot, however, overestimations and higher relative error were observed in the perpendicular direction (0.51 ± 2.75 mm/s) and in the radial direction (-2.15 ± 21.13 mm/s). The percentage error of the norm-wise relative error of the velocity discrepancy is less than 10%, and velocity magnitude followed the same trends and are of comparable magnitude. These findings indicate that good estimates of velocity can be obtained by the EDG method. Therefore, the EDG method was appropriate for estimating and visualizing velocity vectors in clinical studies for higher measurement accuracy and reliability. The clinical in vivo application showed that the EDG method has the ability to visualize blood flow velocity vectors and differentiate the clinical information of vortex parameters both in normal and abnormal LV subjects. In conclusion, the EDG method has potentially greater clinical acceptance as a tool assessment of LV during the cardiac cycle.
Collapse
Affiliation(s)
- Sri Oktamuliani
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Naoya Kanno
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Moe Maeda
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Kaoru Hasegawa
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yoshifumi Saijo
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
23
|
Waal K, Crendal E, Boyle A. Left ventricular vortex formation in preterm infants assessed by blood speckle imaging. Echocardiography 2019; 36:1364-1371. [DOI: 10.1111/echo.14391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Koert Waal
- John Hunter Children's Hospital Department of Neonatology and University of Newcastle Newcastle New South Wales Australia
| | - Edward Crendal
- John Hunter Children's Hospital Department of Neonatology and University of Newcastle Newcastle New South Wales Australia
- John Hunter Hospital Department of Cardiology and University of Newcastle Newcastle New South Wales Australia
| | - Andrew Boyle
- John Hunter Hospital Department of Cardiology and University of Newcastle Newcastle New South Wales Australia
| |
Collapse
|
24
|
Energy Dissipation in Resynchronization Therapy: Impact of Atrioventricular Delay. J Am Soc Echocardiogr 2019; 32:744-754.e1. [DOI: 10.1016/j.echo.2019.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 11/20/2022]
|
25
|
Mele D, Smarrazzo V, Pedrizzetti G, Capasso F, Pepe M, Severino S, Luisi GA, Maglione M, Ferrari R. Intracardiac Flow Analysis: Techniques and Potential Clinical Applications. J Am Soc Echocardiogr 2019; 32:319-332. [DOI: 10.1016/j.echo.2018.10.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 01/20/2023]
|
26
|
Wang W, Wang Y, Chen X, Yuan L, Bai H. Evaluation of left ventricular diastolic function based on flow energetic parameters in chronic kidney disease with diastolic dysfunction. Echocardiography 2019; 36:567-576. [PMID: 30677176 DOI: 10.1111/echo.14264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022] Open
Affiliation(s)
- Wei Wang
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| | - Yueheng Wang
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| | - Xiaoxue Chen
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| | - Lijun Yuan
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| | - Hui Bai
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| |
Collapse
|
27
|
Yoshida S, Miyagawa S, Fukushima S, Yoshikawa Y, Hata H, Saito S, Yoshioka D, Kainuma S, Domae K, Matsuura R, Nakatani S, Toda K, Sawa Y. Cardiac Function and Type of Mitral Valve Surgery Affect Postoperative Blood Flow Pattern in the Left Ventricle. Circ J 2018; 83:130-138. [PMID: 30473569 DOI: 10.1253/circj.cj-18-0625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
BACKGROUND To determine the impact of cardiac function and type of mitral valve (MV) surgery on blood flow and energy loss in the left ventricle (LV). METHODS AND RESULTS This study enrolled patients with ejection fraction (EF) <35% or >50%; both groups had native (n=27 and n=16), repaired (n=19 and n=33), or prosthetic MVs (n=18 and n=19). They were examined by echocardiography-based vector flow mapping to assess the LV blood flow pattern and energy loss per heartbeat. Among patients with preserved EF, those with native MVs displayed a clockwise vortex and relatively low energy loss. In contrast, MV replacement induced a counterclockwise vortex producing higher energy loss than MV repair, which induced a normal clockwise vortex. This indicated the need for MV repair to minimize LV energy loss after surgery. Among the patients with reduced EF, those with native MVs showed a blood flow pattern similar to those with preserved EF and native MVs; furthermore, those with repaired MVs and half of the patients with prosthetic MVs displayed a clockwise vortex, resulting in no difference in energy loss between the 2 types of MV surgery. CONCLUSIONS Cardiac function and the type of MV surgery are factors affecting the postoperative LV blood flow pattern. MV replacement resulted in abnormal blood flow with normal cardiac function, whereas advanced cardiomyopathy modified the blood flow pattern post-MV replacement.
Collapse
Affiliation(s)
- Shohei Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Yasushi Yoshikawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Hiroki Hata
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Shunsuke Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Daisuke Yoshioka
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Satoshi Kainuma
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Keitaro Domae
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Ryohei Matsuura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Satoshi Nakatani
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| |
Collapse
|
28
|
Surgical Approaches to Hypertrophic Cardiomyopathy and Implications for Perioperative Management. Int Anesthesiol Clin 2018; 56:47-63. [PMID: 30204607 DOI: 10.1097/aia.0000000000000203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Ji L, Hu W, Yong Y, Wu H, Zhou L, Xu D. Left ventricular energy loss and wall shear stress assessed by vector flow mapping in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 2018; 34:1383-1391. [PMID: 29626283 DOI: 10.1007/s10554-018-1348-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
The aim of this study was to assess left ventricular (LV) summation of energy loss (EL-SUM), average energy loss (EL-AVE) and wall shear stress (WSS) using vector flow mapping (VFM) in patients with hypertrophic cardiomyopathy (HCM). Forty HCM patients, and 40 controls were evaluated by transthoracic echocardiography. Conventional echocardiographic parameters, summation and average of energy loss (EL-total, EL-base, EL-mid and EL-apex), and WSS in each segment were calculated at different phases. Compared with controls, conventional diastolic measurements were impaired in HCM patients. HCM patients also showed increased EL-SUM-total and EL-AVE-total at the peak of LV rapid ejection period as well as decreased EL-SUM-total and EL-AVE-total at the end of early diastole. In controls, EL-SUM and EL-AVE showed a gradual decrease from the basal segment to the apex, this regularity was not observed in HCM patients. Compared with controls, HCM patients showed increased WSS at the peak of the LV rapid ejection period and the atrial contraction period as well as decreased WSS at the end of early diastole (all p < 0.05). WSS was increased slightly at the peak of the LV rapid filling period in HCM patients (p = 0.055). EL and WSS values derived from VFM are novel flow dynamic parameters that can effectively evaluate systolic and diastolic hemodynamic function in HCM patients.
Collapse
Affiliation(s)
- Ling Ji
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhi Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yonghong Yong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongping Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
30
|
Goya S, Wada T, Shimada K, Hirao D, Tanaka R. The relationship between systolic vector flow mapping parameters and left ventricular cardiac function in healthy dogs. Heart Vessels 2017; 33:549-560. [PMID: 29230570 DOI: 10.1007/s00380-017-1093-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/01/2017] [Indexed: 11/24/2022]
Abstract
Vector flow mapping (VFM) is a novel echocardiographic technology that shows blood flow vectors and vortexes, enabled the hydrokinetic evaluation of hemodynamics within the left ventricle. VFM provides several unique parameters: circulation, vorticity, vortex area, and energy loss. The present study aims to reveal a relationship between VFM parameters and cardiac function. Five healthy Beagle dogs were anesthetized and administered with dobutamine (0, 2, 4, 8, 12 µg/kg/min). Pressure-volume diagrams were acquired to assess cardiac function using pressure-volume conductance catheter. Systolic maximum circulation, vorticity, vortex area, and energy loss were measured using VFM. The systolic maximum circulation, systolic vorticity, systolic vortex area, and systolic energy loss were increased by dobutamine administration. There was a strongly significant correlation between the systolic maximum circulation and ejection fraction (r = 0.76), maximal positive left ventricular (LV) pressure derivatives (dP/dt max) (r = 0.80), and end-systolic LV elastance (r = 0.73). Systolic vorticity and systolic vortex area were strongly correlated with ejection fraction (r = 0.76, 0.68) and dP/dt max (r = 0.76, 0.69), and end-systolic LV elastance (r = 0.62, 0.74), respectively. Systolic energy loss was strongly correlated with dP/dt max (r = 0.78), systolic maximum circulation (r = 0.81), and systolic vorticity (r = 0.82). The present study revealed that systolic VFM parameters are associated with the LV contractility. Furthermore, systolic energy loss was susceptible to the systolic vortex parameters such as systolic vorticity and systolic maximum circulation. Systolic VFM parameters are new hydrokinetic indices reflecting LV contractility.
Collapse
Affiliation(s)
- Seijirow Goya
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Tomoki Wada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Daiki Hirao
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
31
|
Akiyama K, Nakamura N, Itatani K, Naito Y, Kinoshita M, Shimizu M, Hamaoka S, Kato H, Yasumoto H, Nakajima Y, Mizobe T, Numata S, Yaku H, Sawa T. Flow-dynamics assessment of mitral-valve surgery by intraoperative vector flow mapping. Interact Cardiovasc Thorac Surg 2017; 24:869-875. [DOI: 10.1093/icvts/ivx033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/18/2017] [Indexed: 11/12/2022] Open
|
32
|
Faurie J, Baudet M, Assi KC, Auger D, Gilbert G, Tournoux F, Garcia D. Intracardiac Vortex Dynamics by High-Frame-Rate Doppler Vortography-In Vivo Comparison With Vector Flow Mapping and 4-D Flow MRI. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:424-432. [PMID: 27913338 DOI: 10.1109/tuffc.2016.2632707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent studies have suggested that intracardiac vortex flow imaging could be of clinical interest to early diagnose the diastolic heart function. Doppler vortography has been introduced as a simple color Doppler method to detect and quantify intraventricular vortices. This method is able to locate a vortex core based on the recognition of an antisymmetric pattern in the Doppler velocity field. Because the heart is a fast-moving organ, high frame rates are needed to decipher the whole blood vortex dynamics during diastole. In this paper, we adapted the vortography method to high-frame-rate echocardiography using circular waves. Time-resolved Doppler vortography was first validated in vitro in an ideal forced vortex. We observed a strong correlation between the core vorticity determined by high-frame-rate vortography and the ground-truth vorticity. Vortography was also tested in vivo in ten healthy volunteers using high-frame-rate duplex ultrasonography. The main vortex that forms during left ventricular filling was tracked during two-three successive cardiac cycles, and its core vorticity was determined at a sampling rate up to 80 duplex images per heartbeat. Three echocardiographic apical views were evaluated. Vortography-derived vorticities were compared with those returned by the 2-D vector flow mapping approach. Comparison with 4-D flow magnetic resonance imaging was also performed in four of the ten volunteers. Strong intermethod agreements were observed when determining the peak vorticity during early filling. It is concluded that high-frame-rate Doppler vortography can accurately investigate the diastolic vortex dynamics.
Collapse
|
33
|
Akiyama K, Maeda S, Matsuyama T, Kainuma A, Ishii M, Naito Y, Kinoshita M, Hamaoka S, Kato H, Nakajima Y, Nakamura N, Itatani K, Sawa T. Vector flow mapping analysis of left ventricular energetic performance in healthy adult volunteers. BMC Cardiovasc Disord 2017; 17:21. [PMID: 28068909 PMCID: PMC5223342 DOI: 10.1186/s12872-016-0444-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vector flow mapping, a novel flow visualization echocardiographic technology, is increasing in popularity. Energy loss reference values for children have been established using vector flow mapping, but those for adults have not yet been provided. We aimed to establish reference values in healthy adults for energy loss, kinetic energy in the left ventricular outflow tract, and the energetic performance index (defined as the ratio of kinetic energy to energy loss over one cardiac cycle). METHODS Transthoracic echocardiography was performed in fifty healthy volunteers, and the stored images were analyzed to calculate energy loss, kinetic energy, and energetic performance index and obtain ranges of reference values for these. RESULTS Mean energy loss over one cardiac cycle ranged from 10.1 to 59.1 mW/m (mean ± SD, 27.53 ± 13.46 mW/m), with a reference range of 10.32 ~ 58.63 mW/m. Mean systolic energy loss ranged from 8.5 to 80.1 (23.52 ± 14.53) mW/m, with a reference range of 8.86 ~ 77.30 mW/m. Mean diastolic energy loss ranged from 7.9 to 86 (30.41 ± 16.93) mW/m, with a reference range of 8.31 ~ 80.36 mW/m. Mean kinetic energy in the left ventricular outflow tract over one cardiac cycle ranged from 200 to 851.6 (449.74 ± 177.51) mW/m with a reference range of 203.16 ~ 833.15 mW/m. The energetic performance index ranged from 5.3 to 37.6 (18.48 ± 7.74), with a reference range of 5.80 ~ 36.67. CONCLUSIONS Energy loss, kinetic energy, and energetic performance index reference values were defined using vector flow mapping. These reference values enable the assessment of various cardiac conditions in any clinical situation.
Collapse
Affiliation(s)
- Koichi Akiyama
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto, 602-8566, Japan.
| | - Sachiko Maeda
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto, 602-8566, Japan
| | | | - Atsushi Kainuma
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto, 602-8566, Japan
| | - Maki Ishii
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto, 602-8566, Japan
| | - Yoshifumi Naito
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto, 602-8566, Japan
| | - Mao Kinoshita
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto, 602-8566, Japan
| | - Saeko Hamaoka
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto, 602-8566, Japan
| | - Hideya Kato
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto, 602-8566, Japan
| | - Yasufumi Nakajima
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
| | - Naotoshi Nakamura
- Department of Statistical Genetics, Kyoto University, Kamigyo, Kyoto, Japan
| | - Keiichi Itatani
- Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto, 602-8566, Japan
| |
Collapse
|
34
|
Vector Flow Mapping in Mitral Valve Disease: a Novel Method for the Assessment of Flow Mechanics and Their Potential Implications for Mitral Valve Repair. CURRENT CARDIOVASCULAR IMAGING REPORTS 2015. [DOI: 10.1007/s12410-015-9358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Pasipoularides A. Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: part 1. J Cardiovasc Transl Res 2015; 8:76-87. [PMID: 25624114 DOI: 10.1007/s12265-015-9611-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
Abstract
Epigenetic mechanisms are fundamental in cardiac adaptations, remodeling, reverse remodeling, and disease. This two-article series proposes that variable forces associated with diastolic RV/LV rotatory intraventricular flows can exert physiologically and clinically important, albeit still unappreciated, epigenetic actions influencing functional and morphological cardiac adaptations and/or maladaptations. Taken in toto, the two-part survey formulates a new paradigm in which intraventricular diastolic filling vortex-associated forces play a fundamental epigenetic role, and examines how heart cells react to these forces. The objectives are to provide a perspective on vortical epigenetic effects, to introduce emerging ideas, and to suggest directions of multidisciplinary translational research. The main goal is to make pertinent biophysics and cytomechanical dynamic systems concepts accessible to interested translational and clinical cardiologists. I recognize that the diversity of the epigenetic problems can give rise to a diversity of approaches and multifaceted specialized research undertakings. Specificity may dominate the picture. However, I take a contrasting approach. Are there concepts that are central enough that they should be developed in some detail? Broadness competes with specificity. Would, however, this viewpoint allow for a more encompassing view that may otherwise be lost by generation of fragmented results? Part 1 serves as a general introduction, focusing on background concepts, on intracardiac vortex imaging methods, and on diastolic filling vortex-associated forces acting epigenetically on RV/LV endocardium and myocardium. Part 2 will describe pertinent available pluridisciplinary knowledge/research relating to mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations and to their epigenetic actions on myocardial and ventricular function and adaptations.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA,
| |
Collapse
|