1
|
D'Amario D, Laborante R, Bianchini E, Ciliberti G, Paglianiti DA, Galli M, Restivo A, Stolfo D, Vergallo R, Rosano GM, Crea F, Lam CS, Lund LH, Metra M, Patti G, Savarese G. Impact of coronary microvascular dysfunction in heart failure with preserved ejection fraction: a meta-analysis. ESC Heart Fail 2024; 11:2063-2075. [PMID: 38549197 PMCID: PMC11287310 DOI: 10.1002/ehf2.14626] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/20/2023] [Indexed: 07/31/2024] Open
Abstract
AIMS Several mechanisms have been identified in the aetiopathogenesis of heart failure with preserved ejection fraction (HFpEF). Among these, coronary microvascular dysfunction (CMD) may play a key pathophysiological role. We performed a systematic review and meta-analysis to investigate the prevalence, echocardiographic correlates, and prognostic implications of CMD in patients with HFpEF. METHODS AND RESULTS A systematic search for articles up to 1 May 2023 was performed. The primary aim was to assess the prevalence of CMD. Secondary aims were to compare key echocardiographic parameters (E/e' ratio, left atrial volume index [LAVi], and left ventricular mass index [LVMi]), clinical outcomes [death and hospitalization for heart failure (HF)], and prevalence of atrial fibrillation (AF) between patients with and without CMD. Meta-regressions according to baseline patient characteristics and study features were performed to explore potential heterogeneity sources. We identified 14 observational studies, enrolling 1138 patients with HFpEF. The overall prevalence of CMD was 58%. Compared with patients without CMD, patients with HFpEF and CMD had larger LAVi [mean difference (MD) 3.85 confidence interval (CI) 1.19-6.5, P < 0.01)], higher E/e' ratio (MD 2.76 CI 1.54-3.97; P < 0.01), higher prevalence of AF (odds ratio 1.61 CI 1.04-2.48, P = 0.03) and higher risk of death or hospitalization for HF [hazard ratio 3.19, CI 1.04-9.57, P = 0.04]. CONCLUSIONS CMD is present in little more than half of the patients with HFpEF and is associated with echocardiographic evidence of more severe diastolic dysfunction and a higher prevalence of AF, doubling the risk of death or HF hospitalization.
Collapse
Affiliation(s)
- Domenico D'Amario
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
- Division of CardiologyAOU Maggiore della CaritàNovaraItaly
| | | | | | | | | | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & ResearchCotignolaItaly
| | | | - Davide Stolfo
- Department of CardiothoracovascularAzienda Sanitaria Universitaria Giuliano IsontinaTriesteItaly
- Department of Medicine, Division of CardiologyKarolinska InstitutetStockholmSweden
| | - Rocco Vergallo
- Cardiology UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Giuseppe M.C. Rosano
- Centre for Clinical & Basic Research, IRCCS San Raffaele PisanaRomeItaly
- St George's Hospital Medical SchoolLondonUK
| | - Filippo Crea
- Catholic University of the Sacred HeartRomeItaly
| | - Carolyn S.P. Lam
- National Heart Centre SingaporeCentral SingaporeSingapore
- Duke‐National University of Singapore Medical SchoolCentral SingaporeSingapore
| | - Lars H. Lund
- Department of Medicine, Division of CardiologyKarolinska InstitutetStockholmSweden
- Heart and Vascular ThemeKarolinska University HospitalStockholmSweden
| | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Giuseppe Patti
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
- Division of CardiologyAOU Maggiore della CaritàNovaraItaly
| | - Gianluigi Savarese
- Department of Medicine, Division of CardiologyKarolinska InstitutetStockholmSweden
- Heart and Vascular ThemeKarolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Caminiti G, Volterrani M, Iellamo F, Marazzi G, Silvestrini M, Giamundo DM, Morsella V, Di Biasio D, Franchini A, Perrone MA. Exercise training for patients with heart failure and preserved ejection fraction. A narrative review. Monaldi Arch Chest Dis 2024. [PMID: 39058025 DOI: 10.4081/monaldi.2024.3030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 07/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a significant global health challenge, accounting for up to 50% of all heart failure cases and predominantly affecting the elderly and women. Despite advancements in therapeutic strategies, HFpEF's complexity poses substantial challenges in management, particularly due to its high comorbidity burden, including renal failure, atrial fibrillation, and obesity, among others. These comorbidities not only complicate the pathophysiology of HFpEF but also exacerbate its symptoms, necessitating a personalized approach to treatment focused on comorbidity management and symptom alleviation. In heart failure with reduced ejection fraction, exercise training (ET) was effective in improving exercise tolerance, quality of life, and reducing hospitalizations. However, the efficacy of ET in HFpEF patients remains less understood, with limited studies showing mixed results. Exercise intolerance is a key symptom in HFpEF patients, and it has a multifactorial origin since both central and peripheral oxygen mechanisms of transport and utilization are often compromised. Recent evidence underscores the potential of supervised ET in enhancing exercise tolerance and quality of life among HFpEF patients; however, the literature remains sparse and predominantly consists of small-scale studies. This review highlights the critical role of exercise intolerance in HFpEF and synthesizes current knowledge on the benefits of ET. It also calls for a deeper understanding and further research into exercise-based interventions and their underlying mechanisms, emphasizing the need for larger, well-designed studies to evaluate the effectiveness of ET in improving outcomes for HFpEF patients.
Collapse
Affiliation(s)
- Giuseppe Caminiti
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University, Rome; Cardiology Rehabilitation Unit, IRCCS San Raffaele, Rome.
| | - Maurizio Volterrani
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University, Rome; Cardiology Rehabilitation Unit, IRCCS San Raffaele, Rome.
| | - Ferdinando Iellamo
- Division of Cardiology and Sports Medicine, Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome.
| | | | - Marco Silvestrini
- Division of Cardiology and Sports Medicine, Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome.
| | | | | | | | | | - Marco Alfonso Perrone
- Division of Cardiology and Sports Medicine, Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome.
| |
Collapse
|
3
|
Bunsawat K, Nelson MD, Hearon CM, Wray DW. Exercise intolerance in heart failure with preserved ejection fraction: Causes, consequences and the journey towards a cure. Exp Physiol 2024; 109:502-512. [PMID: 38063130 PMCID: PMC10984794 DOI: 10.1113/ep090674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/22/2023] [Indexed: 04/04/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for over 50% of all heart failure cases nationwide and continues to rise in its prevalence. The complex, multi-organ involvement of the HFpEF clinical syndrome requires clinicians and investigators to adopt an integrative approach that considers the contribution of both cardiac and non-cardiac function to HFpEF pathophysiology. Thus, this symposium review outlines the key points from presentations covering the contributions of disease-related changes in cardiac function, arterial stiffness, peripheral vascular function, and oxygen delivery and utilization to exercise tolerance in patients with HFpEF. While many aspects of HFpEF pathophysiology remain poorly understood, there is accumulating evidence for a decline in vascular health in this patient group that may be remediable through pharmacological and lifestyle interventions and could improve outcomes and clinical status in this ever-growing patient population.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Department of Internal Medicine, Division of GeriatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Michael D. Nelson
- Department of KinesiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Christopher M. Hearon
- Department of Applied Clinical ResearchThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - D. Walter Wray
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Department of Internal Medicine, Division of GeriatricsUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
4
|
Lin X, Wu G, Wang S, Huang J. The prevalence of coronary microvascular dysfunction (CMD) in heart failure with preserved ejection fraction (HFpEF): a systematic review and meta-analysis. Heart Fail Rev 2024; 29:405-416. [PMID: 37870703 DOI: 10.1007/s10741-023-10362-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
To date, studies on the prevalence of coronary microvascular dysfunction (CMD) in heart failure with preserved ejection fraction (HFpEF) have not been summarized and analyzed as a whole. We conducted this systematic review and meta-analysis to assess the prevalence of CMD in patients with HFpEF. The PubMed, Cochrane, and Embase databases were searched from dates of inception until May 1, 2023. The primary outcome was the prevalence of CMD in patients with HFpEF, and values of CMD prevalence were pooled using a random-effects model. In total, 10 studies involving 1267 patients, including 822 with HFpEF and 445 without HFpEF, were included. The pooled prevalence of CMD in patients with HFpEF was 71% (95% CI, 0.63-0.79). In the subgroup analysis, the prevalence of CMD was 79% (95% CI, 0.71-0.87) by invasive measurement and 66% (95% CI, 0.54-0.77) by noninvasive measurement and 67% (95% CI, 0.52-0.82) with CFR < 2.0 and 75.0% (95% CI, 0.71-0.79) with CFR < 2.5. The prevalence of endothelium-independent CMD and endothelium-dependent CMD was 62% (95% CI, 0.53-0.72) and 50% (95% CI, 0.19-0.81), respectively. The prevalence of CMD was 74% (95% CI = 0.69-0.79) and 66% (95% CI = 0.41-0.90) in prospective and retrospective studies, respectively. Compared with the control group, patients with HFpEF had a significantly lower CFR (MD = - 1.28, 95% CI = - 1.82 to - 0.74, P < 0.01) and a higher prevalence of CMD (RR = 2.21, 95% CI = 1.52 to 3.20, P < 0.01). Qualitative analysis demonstrated that CMD might be associated with poor clinical outcomes in patients with HFpEF. In conclusion, this is the first systematic review and meta-analysis of all studies reporting the prevalence of CMD in patients with HFpEF. Our study demonstrates that CMD is common in patients with HFpEF and might be associated with poor clinical outcomes in these patients. Clinicians should attach importance to CMD in the diagnosis and treatment of HFpEF. The number of studies in this field is relatively small. Therefore, more high-quality studies are needed to explore the diagnostic and prognostic value of CMD and the potential role of CMD as a therapeutic target in patients with HFpEF.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Guomin Wu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Shuai Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China.
| | - Jinyu Huang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China.
| |
Collapse
|
5
|
Al-Mohaissen MA. Echocardiographic assessment of primary microvascular angina and primary coronary microvascular dysfunction. Trends Cardiovasc Med 2023; 33:369-383. [PMID: 35192927 DOI: 10.1016/j.tcm.2022.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/16/2023]
Abstract
There is an increasing interest in the role of echocardiography in the evaluation of primary microvascular angina, which is attributed to primary coronary microvascular dysfunction. Valid echocardiographic techniques are expected to facilitate the diagnosis and follow-up of these patients and would be valuable for research purposes and therapy evaluation. However, adequate echocardiographic data are lacking, and the interpretation of the limited available literature is hindered by the previous addition of microvascular angina under more inclusive entities, such as cardiac syndrome X. In experienced hands, the assessment of primary coronary microvascular dysfunction in patients with suspected primary microvascular angina, using multiple echocardiographic techniques is feasible, relatively inexpensive, and safe. Exclusion of obstructive epicardial coronary artery disease is, however, a prerequisite for diagnosis. Two-dimensional transthoracic echocardiography, routine stress echocardiography, and speckle-tracking echocardiography indirectly assess primary coronary microvascular dysfunction by evaluating potential impairment in myocardial function and lack diagnostic sensitivity and specificity. Conversely, certain echocardiographic techniques, including Doppler-derived coronary flow velocity reserve and myocardial contrast echocardiography, assess some coronary microvascular dysfunction parameters and have exhibited diagnostic and prognostic potentials. Doppler-derived coronary flow velocity reserve is the best studied and only guideline-approved echocardiographic technique for documenting coronary microvascular dysfunction in patients with suspected microvascular angina. Myocardial contrast echocardiography, by comparison, can detect heterogeneous and patchy myocardial involvement by coronary microvascular dysfunction, which is an advantage over the common practice of coronary flow velocity reserve assessment in a single vessel (commonly the left anterior descending artery) which only reflects regional microvascular function. However, there is no consensus regarding the diagnostic criteria, and expertise performing this technique is limited. Echocardiography remains underexplored and inadequately utilized in the setting of microvascular angina and coronary microvascular dysfunction. Appraisal of the current echocardiographic literature regarding coronary microvascular dysfunction and microvascular angina is important to stay current with the progress in its clinical recognition and create a basis for future research and technological advancements.
Collapse
Affiliation(s)
- Maha A Al-Mohaissen
- Department of Clinical Sciences (Cardiology), College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Naserinejad N, Costanian C, Birot O, Barboni T, Roudier E. Wildland fire, air pollution and cardiovascular health: is it time to focus on the microvasculature as a risk assessment tool? Front Physiol 2023; 14:1225195. [PMID: 37538378 PMCID: PMC10394245 DOI: 10.3389/fphys.2023.1225195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Climate change favors weather conditions conducive to wildland fires. The intensity and frequency of forest fires are increasing, and fire seasons are lengthening. Exposure of human populations to smoke emitted by these fires increases, thereby contributing to airborne pollution through the emission of gas and particulate matter (PM). The adverse health outcomes associated with wildland fire exposure represent an important burden on the economies and health systems of societies. Even though cardiovascular diseases (CVDs) are the main of cause of the global burden of diseases attributable to PM exposure, it remains difficult to show reliable associations between exposure to wildland fire smoke and cardiovascular disease risk in population-based studies. Optimal health requires a resilient and adaptable network of small blood vessels, namely, the microvasculature. Often alterations of this microvasculature precede the occurrence of adverse health outcomes, including CVD. Biomarkers of microvascular health could then represent possible markers for the early detection of poor cardiovascular outcomes. This review aims to synthesize the current literature to gauge whether assessing the microvasculature can better estimate the cardiovascular impact of wildland fires.
Collapse
Affiliation(s)
- Nazgol Naserinejad
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
| | - Christy Costanian
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Department of Family and Community Medicine, St. Michael’s Hospital, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Toussaint Barboni
- Laboratoire des Sciences Pour l’Environnement (SPE), UMR-CNRS 6134, University of Corsica Pasquale Paoli, Campus Grimaldi, Corte, France
| | - Emilie Roudier
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
7
|
Berkowicz P, Totoń-Żurańska J, Kwiatkowski G, Jasztal A, Csípő T, Kus K, Tyrankiewicz U, Orzyłowska A, Wołkow P, Tóth A, Chlopicki S. Accelerated ageing and coronary microvascular dysfunction in chronic heart failure in Tgαq*44 mice. GeroScience 2023; 45:1619-1648. [PMID: 36692592 PMCID: PMC10400753 DOI: 10.1007/s11357-022-00716-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/12/2022] [Indexed: 01/25/2023] Open
Abstract
Age represents a major risk factor in heart failure (HF). However, the mechanisms linking ageing and HF are not clear. We aimed to identify the functional, morphological and transcriptomic changes that could be attributed to cardiac ageing in a model of slowly progressing HF in Tgαq*44 mice in reference to the cardiac ageing process in FVB mice. In FVB mice, ageing resulted in the impairment of diastolic cardiac function and in basal coronary flow (CF), perivascular and interstitial fibrosis without changes in the cardiac activity of angiotensin-converting enzyme (ACE) or aldosterone plasma concentration. In Tgαq*44 mice, HF progression was featured by the impairment of systolic and diastolic cardiac function and in basal CF that was associated with a distinct rearrangement of the capillary architecture, pronounced perivascular and interstitial fibrosis, progressive activation of cardiac ACE and systemic angiotensin-aldosterone-dependent pathways. Interestingly, cardiac ageing genes and processes were represented in Tgαq*44 mice not only in late but also in early phases of HF, as evidenced by cardiac transcriptome analysis. Thirty-four genes and 8 biological processes, identified as being ageing related, occurred early and persisted along HF progression in Tgαq*44 mice and were mostly associated with extracellular matrix remodelling and fibrosis compatible with perivascular fibrosis resulting in coronary microvascular dysfunction (CMD) in Tgαq*44 mice. In conclusion, accelerated and persistent cardiac ageing contributes to the pathophysiology of chronic HF in Tgαq*44 mice. In particular, prominent perivascular fibrosis of microcirculation resulting in CMD represents an accelerated cardiac ageing phenotype that requires targeted treatment in chronic HF.
Collapse
Affiliation(s)
- Piotr Berkowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Justyna Totoń-Żurańska
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tamás Csípő
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Urszula Tyrankiewicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Orzyłowska
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Paweł Wołkow
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.
- Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
8
|
Mahfooz K, Najeed S. Comment on: Exercise capacity assessed with the one-minute sit-to-stand test (1-min STST) and echocardiographic findings in patients with heart failure with preserved ejection fraction (HFpEF). Heart Lung 2023; 58:245-246. [PMID: 36635164 DOI: 10.1016/j.hrtlng.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Kamran Mahfooz
- Lincoln Medical Center, New York Health and Hospital corporation, USA.
| | - Syed Najeed
- Department of Medicine, Wright state University, USA
| |
Collapse
|
9
|
Capone F, Sotomayor-Flores C, Bode D, Wang R, Rodolico D, Strocchi S, Schiattarella GG. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res 2023; 118:3556-3575. [PMID: 36504368 DOI: 10.1093/cvr/cvac166] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) is marked by distinctive changes in myocardial uptake and utilization of energy substrates. Among the different types of HF, HF with preserved ejection fraction (HFpEF) is a highly prevalent, complex, and heterogeneous condition for which metabolic derangements seem to dictate disease progression. Changes in intermediate metabolism in cardiometabolic HFpEF-among the most prevalent forms of HFpEF-have a large impact both on energy provision and on a number of signalling pathways in the heart. This dual, metabolic vs. signalling, role is played in particular by long-chain fatty acids (LCFAs) and short-chain carbon sources [namely, short-chain fatty acids (SCFAs) and ketone bodies (KBs)]. LCFAs are key fuels for the heart, but their excess can be harmful, as in the case of toxic accumulation of lipid by-products (i.e. lipotoxicity). SCFAs and KBs have been proposed as a potential major, alternative source of energy in HFpEF. At the same time, both LCFAs and short-chain carbon sources are substrate for protein post-translational modifications and other forms of direct and indirect signalling of pivotal importance in HFpEF pathogenesis. An in-depth molecular understanding of the biological functions of energy substrates and their signalling role will be instrumental in the development of novel therapeutic approaches to HFpEF. Here, we summarize the current evidence on changes in energy metabolism in HFpEF, discuss the signalling role of intermediate metabolites through, at least in part, their fate as substrates for post-translational modifications, and highlight clinical and translational challenges around metabolic therapy in HFpEF.
Collapse
Affiliation(s)
- Federico Capone
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Division of Internal Medicine, Department of Medicine, University of Padua, Padua, Italy
| | - Cristian Sotomayor-Flores
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Rongling Wang
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Strocchi
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
10
|
Vanreusel I, Segers VF, Van Craenenbroeck E, Van Berendoncks A. Coronary Microvascular Dysfunction in Patients with Congenital Heart Disease. Curr Cardiol Rev 2023; 19:e190123212886. [PMID: 36658708 PMCID: PMC10494268 DOI: 10.2174/1573403x19666230119112634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023] Open
Abstract
Congenital heart diseases represent a wide range of cardiac malformations. Medical and surgical advances have dramatically increased the survival of patients with congenital heart disease, leading to a continuously growing number of children, adolescents, and adults with congenital heart disease. Nevertheless, congenital heart disease patients have a worse prognosis compared to healthy individuals of similar age. There is substantial overlap in the pathophysiology of congenital heart disease and heart failure induced by other etiologies. Among the pathophysiological changes in heart failure, coronary microvascular dysfunction has recently emerged as a crucial modulator of disease initiation and progression. Similarly, coronary microvascular dysfunction could be important in the pathophysiology of congenital heart diseases as well. For this systematic review, studies on maximal vasodilatory capacity in the coronary microvascular bed in patients with congenital heart disease were searched using the PubMed database. To date, coronary microvascular dysfunction in congenital heart disease patients is incompletely understood because studies on this topic are rare and heterogeneous. The prevalence, extent, and pathophysiological relevance of coronary microvascular dysfunction in congenital heart diseases remain to be elucidated. Herein, we discuss what is currently known about coronary microvascular dysfunction in congenital heart disease and future directions.
Collapse
Affiliation(s)
- Inne Vanreusel
- Department of Cardiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem 2650, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Vincent F.M. Segers
- Department of Cardiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem 2650, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Emeline Van Craenenbroeck
- Department of Cardiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem 2650, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Antwerp 2610, Belgium
| | - An Van Berendoncks
- Department of Cardiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem 2650, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Antwerp 2610, Belgium
| |
Collapse
|
11
|
Impairment in quantitative microvascular function in non-ischemic cardiomyopathy as demonstrated using cardiovascular magnetic resonance. PLoS One 2022; 17:e0264454. [DOI: 10.1371/journal.pone.0264454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Microvascular dysfunction (MVD) is present in various cardiovascular diseases and portends worse outcomes. We assessed the prevalence of MVD in patients with non-ischemic cardiomyopathy (NICM) as compared to subjects with preserved ejection fraction (EF) using stress cardiovascular magnetic resonance (CMR).
Methods
We retrospectively studied consecutive patients with NICM and 58 subjects with preserved left ventricular (LV) EF who underwent stress CMR between 2011–2016. MVD was defined visually as presence of a subendocardial perfusion defect and semiquantitatively by myocardial perfusion reserve index (MPRI<1.51). MPRI was compared between groups using univariate analysis and multivariable linear regression.
Results
In total, 41 patients with NICM (mean age 51 ± 14, 59% male) and 58 subjects with preserved LVEF (mean age 51 ± 13, 31% male) were identified. In the NICM group, MVD was present in 23 (56%) and 11 (27%) by semiquantitative and visual evaluation respectively. Compared to those with preserved LVEF, NICM patients had lower rest slope (3.9 vs 4.9, p = 0.05) and stress perfusion slope (8.8 vs 11.7, p<0.001), and MPRI (1.41 vs 1.74, p = 0.02). MPRI remained associated with NICM after controlling for age, gender, hypertension, ethnicity, diabetes, and late gadolinium enhancement (log MPR, β coefficient = -0.19, p = 0.007).
Conclusions
MVD—as assessed using CMR—is highly prevalent in NICM as compared to subjects with preserved LVEF even after controlling for covariates. Semiquantitative is able to detect a greater number of incidences of MVD compared to visual methods alone. Further studies are needed to determine whether treatment of MVD is beneficial in NICM.
Collapse
|
12
|
Zhan J, Zhong L, Wu J. Assessment and Treatment for Coronary Microvascular Dysfunction by Contrast Enhanced Ultrasound. Front Cardiovasc Med 2022; 9:899099. [PMID: 35795368 PMCID: PMC9251174 DOI: 10.3389/fcvm.2022.899099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
With growing evidence in clinical practice, the understanding of coronary syndromes has gradually evolved out of focusing on the well-established link between stenosis of epicardial coronary artery and myocardial ischemia to the structural and functional abnormalities at the level of coronary microcirculation, known as coronary microvascular dysfunction (CMD). CMD encompasses several pathophysiological mechanisms of coronary microcirculation and is considered as an important cause of myocardial ischemia in patients with angina symptoms without obstructive coronary artery disease (CAD). As a result of growing knowledge of the understanding of CMD assessed by multiple non-invasive modalities, CMD has also been found to be involved in other cardiovascular diseases, including primary cardiomyopathies as well as heart failure with preserved ejection fraction (HFpEF). In the past 2 decades, almost all the imaging modalities have been used to non-invasively quantify myocardial blood flow (MBF) and promote a better understanding of CMD. Myocardial contrast echocardiography (MCE) is a breakthrough as a non-invasive technique, which enables assessment of myocardial perfusion and quantification of MBF, exhibiting promising diagnostic performances that were comparable to other non-invasive techniques. With unique advantages over other non-invasive techniques, MCE has gradually developed into a novel modality for assessment of the coronary microvasculature, which may provide novel insights into the pathophysiological role of CMD in different clinical conditions. Moreover, the sonothrombolysis and the application of artificial intelligence (AI) will offer the opportunity to extend the use of contrast ultrasound theragnostics.
Collapse
|
13
|
Weerts J, Mourmans SGJ, Barandiarán Aizpurua A, Schroen BLM, Knackstedt C, Eringa E, Houben AJHM, van Empel VPM. The Role of Systemic Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction. Biomolecules 2022; 12:biom12020278. [PMID: 35204779 PMCID: PMC8961612 DOI: 10.3390/biom12020278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a condition with increasing incidence, leading to a health care problem of epidemic proportions for which no curative treatments exist. Consequently, an urge exists to better understand the pathophysiology of HFpEF. Accumulating evidence suggests a key pathophysiological role for coronary microvascular dysfunction (MVD), with an underlying mechanism of low-grade pro-inflammatory state caused by systemic comorbidities. The systemic entity of comorbidities and inflammation in HFpEF imply that patients develop HFpEF due to systemic mechanisms causing coronary MVD, or systemic MVD. The absence or presence of peripheral MVD in HFpEF would reflect HFpEF being predominantly a cardiac or a systemic disease. Here, we will review the current state of the art of cardiac and systemic microvascular dysfunction in HFpEF (Graphical Abstract), resulting in future perspectives on new diagnostic modalities and therapeutic strategies.
Collapse
Affiliation(s)
- Jerremy Weerts
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
- Correspondence: ; Tel.: +31-43-387-7097
| | - Sanne G. J. Mourmans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Arantxa Barandiarán Aizpurua
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Blanche L. M. Schroen
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Christian Knackstedt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Etto Eringa
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6211 LK Maastricht, The Netherlands;
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Alfons J. H. M. Houben
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Vanessa P. M. van Empel
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| |
Collapse
|
14
|
Bilak JM, Alam U, Miller CA, McCann GP, Arnold JR, Kanagala P. Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction: Pathophysiology, Assessment, Prevalence and Prognosis. Card Fail Rev 2022; 8:e24. [PMID: 35846985 PMCID: PMC9274364 DOI: 10.15420/cfr.2022.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) currently accounts for approximately half of all new heart failure cases in the community. HFpEF is closely associated with chronic lifestyle-related diseases, such as obesity and type 2 diabetes, and clinical outcomes are worse in those with than without comorbidities. HFpEF is pathophysiologically distinct from heart failure with reduced ejection fraction, which may explain, in part, the disparity of treatment options available between the two heart failure phenotypes. The mechanisms underlying HFpEF are complex, with coronary microvascular dysfunction (MVD) being proposed as a potential key driver in its pathophysiology. In this review, the authors highlight the evidence implicating MVD in HFpEF pathophysiology, the diagnostic approaches for identifying MVD (both invasive and non-invasive) and the prevalence and prognostic significance of MVD.
Collapse
Affiliation(s)
- Joanna M Bilak
- Department of Cardiovascular Sciences, University of Leicester and the Leicester NIHR Biomedical Research Centre, Glenfield HospitalLeicester, UK
| | - Uazman Alam
- Liverpool University Hospitals NHS Foundation TrustLiverpool, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of ManchesterManchester, UK
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of LiverpoolLiverpool, UK
| | - Christopher A Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science CentreManchester, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester and the Leicester NIHR Biomedical Research Centre, Glenfield HospitalLeicester, UK
| | - Jayanth R Arnold
- Department of Cardiovascular Sciences, University of Leicester and the Leicester NIHR Biomedical Research Centre, Glenfield HospitalLeicester, UK
| | - Prathap Kanagala
- Liverpool University Hospitals NHS Foundation TrustLiverpool, UK
- Liverpool Centre for Cardiovascular Sciences, Faculty of Health and Life SciencesLiverpool, UK
| |
Collapse
|
15
|
Abouelnour A, Gori T. Vasomotor Dysfunction in Patients with Ischemia and Non-Obstructive Coronary Artery Disease: Current Diagnostic and Therapeutic Strategies. Biomedicines 2021; 9:biomedicines9121774. [PMID: 34944590 PMCID: PMC8698648 DOI: 10.3390/biomedicines9121774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Many patients who present with symptoms or objective evidence of ischemia have no or non-physiologically-significant disease on invasive coronary angiography. The diagnosis of ischemic heart disease is thus often dismissed, and patients receive false reassurance or other diagnoses are pursued. We now know that a significant proportion of these patients have coronary microvascular dysfunction and/or vasospastic disease as the underlying pathophysiology of their clinical presentation. Making the correct diagnosis of such abnormalities is important not only because they impact the quality of life, with recurring symptoms and unnecessary repeated testing, but also because they increase the risk for adverse cardiovascular events. The mainstay of diagnosis remains an invasive comprehensive physiologic assessment, which further allows stratifying these patients into appropriate “endotypes”. It has been shown that tailoring treatment to the patient’s assigned endotype improves symptoms and quality of life. In addition to the conventional drugs used in chronic stable angina, multiple newer agents are being investigated. Moreover, innovative non-pharmacologic and interventional therapies are emerging to provide a bail-out in refractory cases. Many of these novel therapies fail to show consistent benefits, but others show quite promising results.
Collapse
Affiliation(s)
- Amr Abouelnour
- Zentrum für Kardiologie, Kardiologie I, und Deutsches Zentrum für Herz und Kreislauf Forschung, University Medical Center Mainz, 55131 Standort Rhein-Main, Germany;
- Cardiovascular Institute, Assiut University, Assiut 71515, Egypt
| | - Tommaso Gori
- Zentrum für Kardiologie, Kardiologie I, und Deutsches Zentrum für Herz und Kreislauf Forschung, University Medical Center Mainz, 55131 Standort Rhein-Main, Germany;
- Correspondence:
| |
Collapse
|
16
|
Sinha A, Rahman H, Webb A, Shah AM, Perera D. Untangling the pathophysiologic link between coronary microvascular dysfunction and heart failure with preserved ejection fraction. Eur Heart J 2021; 42:4431-4441. [PMID: 34529791 PMCID: PMC8599060 DOI: 10.1093/eurheartj/ehab653] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/10/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023] Open
Abstract
Coronary microvascular disease (CMD), characterized by impaired coronary flow reserve (CFR), is a common finding in patients with stable angina. Impaired CFR, in the absence of obstructive coronary artery disease, is also present in up to 75% of patients with heart failure with preserved ejection fraction (HFpEF). Heart failure with preserved ejection fraction is a heterogeneous syndrome comprising distinct endotypes and it has been hypothesized that CMD lies at the centre of the pathogenesis of one such entity: the CMD–HFpEF endotype. This article provides a contemporary review of the pathophysiology underlying CMD, with a focus on the mechanistic link between CMD and HFpEF. We discuss the central role played by subendocardial ischaemia and impaired lusitropy in the development of CMD–HFpEF, as well as the clinical and research implications of the CMD–HFpEF mechanistic link. Future prospective follow-up studies detailing outcomes in patients with CMD and HFpEF are much needed to enhance our understanding of the pathological processes driving these conditions, which may lead to the development of physiology-stratified therapy to improve the quality of life and prognosis in these patients.
Collapse
Affiliation(s)
- Aish Sinha
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, King's College London, St. Thomas' Hospital, Westminster bridge road, London SE1 7EH, UK
| | - Haseeb Rahman
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, King's College London, St. Thomas' Hospital, Westminster bridge road, London SE1 7EH, UK
| | - Andrew Webb
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, King's College London, St. Thomas' Hospital, Westminster bridge road, London SE1 7EH, UK
| | - Ajay M Shah
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, King's College London, St. Thomas' Hospital, Westminster bridge road, London SE1 7EH, UK
| | - Divaka Perera
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, King's College London, St. Thomas' Hospital, Westminster bridge road, London SE1 7EH, UK
| |
Collapse
|
17
|
D'Amario D, Borovac JA, Crea F. Coronary microvascular dysfunction in heart failure with preserved ejection fraction: not the end but the end of the beginning. Eur J Heart Fail 2020; 23:773-775. [PMID: 33247863 DOI: 10.1002/ejhf.2069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 11/11/2022] Open
Affiliation(s)
- Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|