1
|
Gao Y, Luo Y, Ji G, Wu T. Functional and pathological roles of adenylyl cyclases in various diseases. Int J Biol Macromol 2024; 281:136198. [PMID: 39366614 DOI: 10.1016/j.ijbiomac.2024.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Adenylyl cyclases (ADCYs) produce the second messengers cAMP, which is crucial for a number of cellular activities. There are ten isoforms in the mammalian ADCY family including nine transmembrane adenylyl cyclases (tmAC) and one soluble adenylyl cyclase (sAC/ADCY10). There have been numerous studies demonstrating the importance of ADCYs in the development of a wide range of diseases, including cardiovascular disease, neurological disease, liver disease, and tumors. The classification, structure and regulation of ADCYs are discussed in this overview, which is followed by an analysis of how ADCYs are involved in various disorders and how they are used as a therapeutic tool. Our objective is to get a more thorough understanding of ADCYs to aid future study and provide novel ideas for the treatment of particular diseases.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Panconesi R, Widmer J, Carvalho MF, Eden J, Dondossola D, Dutkowski P, Schlegel A. Mitochondria and ischemia reperfusion injury. Curr Opin Organ Transplant 2022; 27:434-445. [PMID: 35950880 DOI: 10.1097/mot.0000000000001015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review describes the role of mitochondria in ischemia-reperfusion-injury (IRI). RECENT FINDINGS Mitochondria are the power-house of our cells and play a key role for the success of organ transplantation. With their respiratory chain, mitochondria are the main energy producers, to fuel metabolic processes, control cellular signalling and provide electrochemical integrity. The mitochondrial metabolism is however severely disturbed when ischemia occurs. Cellular energy depletes rapidly and various metabolites, including Succinate accumulate. At reperfusion, reactive oxygen species are immediately released from complex-I and initiate the IRI-cascade of inflammation. Prior to the development of novel therapies, the underlying mechanisms should be explored to target the best possible mitochondrial compound. A clinically relevant treatment should recharge energy and reduce Succinate accumulation before organ implantation. While many interventions focus instead on a specific molecule, which may inhibit downstream IRI-inflammation, mitochondrial protection can be directly achieved through hypothermic oxygenated perfusion (HOPE) before transplantation. SUMMARY Mitochondria are attractive targets for novel molecules to limit IRI-associated inflammation. Although dynamic preservation techniques could serve as delivery tool for new therapeutic interventions, their own inherent mechanism should not only be studied, but considered as key treatment to reduce mitochondrial injury, as seen with the HOPE-approach.
Collapse
Affiliation(s)
- Rebecca Panconesi
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Jeannette Widmer
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | | | - Janina Eden
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Daniele Dondossola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| | - Philipp Dutkowski
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| |
Collapse
|
3
|
Goikoetxea‐Usandizaga N, Serrano‐Maciá M, Delgado TC, Simón J, Fernández Ramos D, Barriales D, Cornide M, Jiménez M, Pérez‐Redondo M, Lachiondo‐Ortega S, Rodríguez‐Agudo R, Bizkarguenaga M, Zalamea JD, Pasco ST, Caballero‐Díaz D, Alfano B, Bravo M, González‐Recio I, Mercado‐Gómez M, Gil‐Pitarch C, Mabe J, Gracia‐Sancho J, Abecia L, Lorenzo Ó, Martín‐Sanz P, Abrescia NGA, Sabio G, Rincón M, Anguita J, Miñambres E, Martín C, Berenguer M, Fabregat I, Casado M, Peralta C, Varela‐Rey M, Martínez‐Chantar ML. Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals. Hepatology 2022; 75:550-566. [PMID: 34510498 PMCID: PMC9300136 DOI: 10.1002/hep.32149] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation-controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS Wild-type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL-6, and heparin-binding EGF, accelerating the priming phase and the progression through G1 /S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed a high-fat/high-fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI-susceptible organs.
Collapse
Affiliation(s)
- Naroa Goikoetxea‐Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Marina Serrano‐Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Jorge Simón
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - David Fernández Ramos
- Precision Medicine and Liver Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maria E. Cornide
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Mónica Jiménez
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | | | - Sofia Lachiondo‐Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Rubén Rodríguez‐Agudo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maider Bizkarguenaga
- Precision Medicine and Liver Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Juan Diego Zalamea
- Structure and Cell Biology of Viruses Lab Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Samuel T. Pasco
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Daniel Caballero‐Díaz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,TGF‐β and Cancer GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)Gran Via de L’HospitaletBarcelonaSpain
| | - Benedetta Alfano
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Miren Bravo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Irene González‐Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maria Mercado‐Gómez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Clàudia Gil‐Pitarch
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Jon Mabe
- Electronics and Communications Unit, IK4‐TeknikerEibarSpain
| | - Jordi Gracia‐Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,Liver Vascular Biology Research GroupIDIBAPSBarcelonaSpain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,Immunology, Microbiology and Parasitology Department, Medicine and Nursing FacultyUniversity of the Basque CountryLeioaSpain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular PathologyIIS‐Fundación Jiménez Díaz‐Universidad Autónoma de Madrid, Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) NetworkMadridSpain
| | - Paloma Martín‐Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,Cell Signalling and Metabolism DepartmentInstituto de Investigaciones Biomédicas “Alberto Sols,” CSIC‐UAMMadridSpain
| | - Nicola G. A. Abrescia
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,Structure and Cell Biology of Viruses Lab Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones CardiovascularesStress Kinases in Diabetes, Cancer and BiochemistryMadridSpain
| | - Mercedes Rincón
- Department of MedicineImmunobiology DivisionUniversity of VermontBurlingtonVermontUSA
| | - Juan Anguita
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Eduardo Miñambres
- Transplant Coordination Unit, Marqués de Valdecilla University Hospital–IDIVAL, Cantabria UniversitySantanderSpain
| | - César Martín
- Biofisika Institute, Centro Superior de Investigaciones Científicas, and Department of Biochemisty, Faculty of Science and TechnologyUniversity of Basque CountryLeioaSpain
| | - Marina Berenguer
- Liver UnitHospital Universitario y Politécnico La FeValenciaSpain
| | - Isabel Fabregat
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,TGF‐β and Cancer GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)Gran Via de L’HospitaletBarcelonaSpain,Faculty of Medicine and Health SciencesUniversity of BarcelonaL’HospitaletBarcelonaSpain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,Experimental Metabolic Pathology DepartmentInstituto de Biomedicina de ValenciaIBV‐CSICValenciaSpain
| | - Carmen Peralta
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Marta Varela‐Rey
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| | - María Luz Martínez‐Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| |
Collapse
|
4
|
Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:cells11040688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
|
5
|
Xin X, Tang J, Jia HM, Zhang TE, Zheng Y, Huang LF, Ding Q, Li JC, Guo SY, Li WX. Development of a Multivariable Prediction Model for Citrate Accumulation in Liver Transplant Patients Undergoing Continuous Renal Replacement Therapy with Regional Citrate Anticoagulation. Blood Purif 2021; 51:111-121. [PMID: 33951630 DOI: 10.1159/000513947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Patients with impaired citrate metabolism may experience citrate accumulation (CA), which causes life-threatening metabolic acidosis and hypocalcemia. CA poses a challenge for clinicians when deciding on the use of regional citrate anticoagulation (RCA) for patients with liver dysfunction. This study aimed to develop a prediction model integrating multiple clinical variables to assess the risk of CA in liver transplant patients. METHODS This single-center prospective cohort study included postoperative liver transplant patients who underwent continuous renal replacement therapy (CRRT) with RCA. The study end point was CA. A prediction model was developed using a generalized linear mixed-effect model based on the Akaike information criterion. The predictive values were assessed using the receiver operating characteristic curve and bootstrap resampling (times = 500) to estimate the area under the curve (AUC) and the corresponding 95% confidence interval (CI). A nomogram was used to visualize the model. RESULTS This study included 32 patients who underwent 133 CRRT sessions with RCA. CA occurred in 46 CRRT sessions. The model included lactate, norepinephrine >0.1 μg/kg/min, alanine aminotransferase, total bilirubin, and standard bicarbonate, which were tested before starting each CRRT session and body mass index, diabetes mellitus, and chronic kidney disease as predictors. The AUC of the model was 0.867 (95% CI 0.786-0.921), which was significantly higher than that of the single predictor (p < 0.05). A nomogram visualized the prediction model. CONCLUSIONS The prediction model integrating multiple clinical variables showed a good predictive value for CA. A nomogram visualized the model for easy application in clinical practice.
Collapse
Affiliation(s)
- Xin Xin
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jing Tang
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hui-Miao Jia
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tian-En Zhang
- Department of Health Science, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Yue Zheng
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li-Feng Huang
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qi Ding
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jun-Cong Li
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shu-Yan Guo
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen-Xiong Li
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Mitochondrial Bioenergetic Assays as a Standard Protocol for Toxicological and Metabolic Assessment. Methods Mol Biol 2021. [PMID: 33423237 DOI: 10.1007/978-1-0716-1091-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mitochondria are the center for all metabolic pathways within the eukaryotic cell. Being responsible for the production of over 95% of the cell's requirement of adenosine triphosphate any effect on the function of mitochondria is sure to cause disruption of cellular activity and even viability. As such, it comes as no surprise that many diseases have mitochondrial dysfunction at their core. Understanding mitochondrial function and capacity in the context of a study is key for perceiving and explaining the behavior of said disease or toxic effect. Here, we describe a wide array of simple and yet elegant assays that can be easily implemented to ascertain the function of mitochondria and thus greatly improve the understanding of how a certain disease or compound causes its effects on the cellular function.
Collapse
|
7
|
Takei S, Homma Y, Matsuyama R, Endo I. Hepatectomy for liver metastasis from rectal cancer in a patient with mitochondrial disease. BMJ Case Rep 2021; 14:14/2/e238653. [PMID: 33547122 PMCID: PMC7871235 DOI: 10.1136/bcr-2020-238653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We herein report a woman who was suffering from type 1 diabetes and hearing impairment and whose mother had mitochondrial disease. Abdominal ultrasound identified a hepatic tumour, and a further examination led to the diagnosis of rectal cancer with synchronous multiple liver metastases. A genetic test led to the diagnosis of mitochondrial disease with a mitochondrial gene 3243A>G mutation. After neoadjuvant chemotherapy, we performed hepatectomy and low anterior resection in one stage. Hepatic vascular exclusion was not performed in order to prevent damage to hepatocytes due to liver ischaemia, and Ringer's lactate solution was not used to prevent lactic acidosis. The postoperative course was uneventful. Only one other case involving hepatectomy being performed in a patient with mitochondrial disease has been reported. Considering the extreme rarity of such cases and the importance of perioperative management, we report this case here.
Collapse
Affiliation(s)
- Shogo Takei
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yuki Homma
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Morio B, Panthu B, Bassot A, Rieusset J. Role of mitochondria in liver metabolic health and diseases. Cell Calcium 2020; 94:102336. [PMID: 33387847 DOI: 10.1016/j.ceca.2020.102336] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
The liver is a major organ that coordinates the metabolic flexibility of the whole body, which is characterized by the ability to adapt dynamically in response to fluctuations in energy needs and supplies. In this context, hepatocyte mitochondria are key partners in fine-tuning metabolic flexibility. Here we review the metabolic and signalling pathways carried by mitochondria in the liver, the major pathways that regulate mitochondrial function and how they function in health and metabolic disorders associated to obesity, i.e. insulin resistance, non-alcoholic steatosis and steatohepatitis and hepatocellular carcinoma. Finally, strategies targeting mitochondria to counteract liver disorders are discussed.
Collapse
Affiliation(s)
- Béatrice Morio
- CarMeN Laboratory, INSERM U1060, INRA U1397, Lyon, France
| | | | - Arthur Bassot
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | | |
Collapse
|
9
|
The Soluble Adenylyl Cyclase Inhibitor LRE1 Prevents Hepatic Ischemia/Reperfusion Damage Through Improvement of Mitochondrial Function. Int J Mol Sci 2020; 21:ijms21144896. [PMID: 32664470 PMCID: PMC7402335 DOI: 10.3390/ijms21144896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a leading cause of organ dysfunction and failure in numerous pathological and surgical settings. At the core of this issue lies mitochondrial dysfunction. Hence, strategies that prime mitochondria towards damage resilience might prove applicable in a clinical setting. A promising approach has been to induce a mitohormetic response, removing less capable organelles, and replacing them with more competent ones, in preparation for an insult. Recently, a soluble form of adenylyl cyclase (sAC) has been shown to exist within mitochondria, the activation of which improved mitochondrial function. Here, we sought to understand if inhibiting mitochondrial sAC would elicit mitohormesis and protect the liver from I/R injury. Wistar male rats were pretreated with LRE1, a specific sAC inhibitor, prior to the induction of hepatic I/R injury, after which mitochondria were collected and their metabolic function was assessed. We find LRE1 to be an effective inducer of a mitohormetic response based on all parameters tested, a phenomenon that appears to require the activity of the NAD+-dependent sirtuin deacylase (SirT3) and the subsequent deacetylation of mitochondrial proteins. We conclude that LRE1 pretreatment leads to a mitohormetic response that protects mitochondrial function during I/R injury.
Collapse
|
10
|
Teodoro JS, Silva R, Aguiar A, Sobral AJFN, Rolo AP, Palmeira CM. Exploration of the cellular effects of the high-dose, long-term exposure to coffee roasting product furan and its by-product cis-2-butene-1,4-dial on human and rat hepatocytes. Toxicol Mech Methods 2020; 30:536-545. [PMID: 32544017 DOI: 10.1080/15376516.2020.1780361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Coffee is the most popular hot beverage and caffeine is the most used psychoactive drug in the world. Roasting of coffee beans leads to the generation of minute quantities of undesirable compounds, such as furan. It is now thought that the toxicity of furan derives from its processing by CYP450 family of detoxifying enzymes, leading to the formation of cis-2-butene-1,4-dial (BDA). BDA has known cytotoxicity capacities, binding to proteins, nucleic acids, and glutathione (GSH). BDA also appears to mediate furan's toxic effects, since the inhibition of CYP450 family impedes the aforementioned toxicological effects of furan. There are some studies performed on furan's toxicity, but very few on BDA. Furthermore, the doses used in these studies appear to be fairly high when compared with the expected dosage one could be exposed to in a standard day. As such, to understand if furan and BDA could have toxic effects using more realistic doses and longer time frames, human and rat hepatocytes were exposed to furan or BDA for up to 96 h, and several biochemical parameters were assessed. We report here that human hepatocytes were more sensitive than rat's, in particular to furan, for we show a decrease in MTT reduction, ATP levels and increase in carbonyl formation and 8-OHdG accumulation in the longer time points. BDA was mostly ineffective, which we attribute to a low import rate into the cells. In conclusion, we show that there is potential for harm from furan in high doses, which should be carefully addressed.
Collapse
Affiliation(s)
- João S Teodoro
- Department of Life Sciences of Faculty of Sciences and Technology, of the University of Coimbra, Coimbra, Portugal.,Center for Neurosciences and Cell Biology, of the University of Coimbra, Coimbra, Portugal
| | - Rui Silva
- Center for Neurosciences and Cell Biology, of the University of Coimbra, Coimbra, Portugal
| | - António Aguiar
- Chemistry Department, FCTUC, University of Coimbra, Coimbra, Portugal
| | | | - Anabela P Rolo
- Department of Life Sciences of Faculty of Sciences and Technology, of the University of Coimbra, Coimbra, Portugal.,Center for Neurosciences and Cell Biology, of the University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Department of Life Sciences of Faculty of Sciences and Technology, of the University of Coimbra, Coimbra, Portugal.,Center for Neurosciences and Cell Biology, of the University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Martins RM, Teodoro JS, Furtado E, Rolo AP, Palmeira CM, Tralhão JG. Evaluation of bioenergetic and mitochondrial function in liver transplantation. Clin Mol Hepatol 2019; 25:190-198. [PMID: 30897898 PMCID: PMC6589847 DOI: 10.3350/cmh.2018.0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/14/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS We measured changes in mitochondrial function and bioenergetics that occur during ischemia/ reperfusion in fresh liver samples of patients undergoing liver transplantation. These variations correlated with markers of liver function and clinical outcome. Ischemia/reperfusion injury related to liver transplantation affects mitochondrial function and bioenergetics. Experimental studies were conducted to identify the role of bioenergetics and mitochondrial dysfunction. To the best of our knowledge, no investigation of these two factors' impacts on liver transplantation has been performed. METHODS This was a prospective study of 28 patients who underwent liver transplantation. We measured parameters of mitochondrial function and bioenergetics in biopsies performed during the procedure. RESULTS We observed a statistically significant reduction in mitochondrial membrane potential, an increase in lag phase, and decreases in mitochondrial respiration and adenosine triphosphate content (P<0.010). Higher postoperative aminotransferase peaks correlated with worse mitochondrial function; mitochondrial respiration correlated with arterial lactate (P<0.010). CONCLUSION There is a relationship between mitochondrial function and ischemia/reperfusion injury. The future use of these clinical markers as prognostic factors may allow early identification of post-transplant liver failure and may indicate the need to perform a new transplant.
Collapse
Affiliation(s)
| | - João Soeiro Teodoro
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Emanuel Furtado
- Adult and Paediatric Liver Transplantation Unit, Coimbra University and Hospital Centre, Coimbra, Portugal
| | - Anabela Pinto Rolo
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos Marques Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Guilherme Tralhão
- General Surgery Department, Coimbra University and Hospital Centre, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Caldez MJ, Van Hul N, Koh HWL, Teo XQ, Fan JJ, Tan PY, Dewhurst MR, Too PG, Talib SZA, Chiang BE, Stünkel W, Yu H, Lee P, Fuhrer T, Choi H, Björklund M, Kaldis P. Metabolic Remodeling during Liver Regeneration. Dev Cell 2018; 47:425-438.e5. [PMID: 30344111 DOI: 10.1016/j.devcel.2018.09.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/13/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022]
Abstract
Liver disease is linked to a decreased capacity of hepatocytes to divide. In addition, cellular metabolism is important for tissue homeostasis and regeneration. Since metabolic changes are a hallmark of liver disease, we investigated the connections between metabolism and cell division. We determined global metabolic changes at different stages of liver regeneration using a combination of integrated transcriptomic and metabolomic analyses with advanced functional redox in vivo imaging. Our data indicate that blocking hepatocyte division during regeneration leads to mitochondrial dysfunction and downregulation of oxidative pathways. This resulted in an increased redox ratio and hyperactivity of alanine transaminase allowing the production of alanine and α-ketoglutarate from pyruvate when mitochondrial functions are impaired. Our data suggests that during liver regeneration, cell division leads to hepatic metabolic remodeling. Moreover, we demonstrate that hepatocytes are equipped with a flexible metabolic machinery able to adapt dynamically to changes during tissue regeneration.
Collapse
Affiliation(s)
- Matias J Caldez
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore; National University of Singapore (NUS), Department of Biochemistry, Singapore 117597, Republic of Singapore
| | - Noémi Van Hul
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore
| | - Hiromi W L Koh
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore 117549, Republic of Singapore
| | - Xing Qi Teo
- Singapore Bio-Imaging Consortium, A(∗)STAR, Singapore, Republic of Singapore
| | - Jun Jun Fan
- Institute of Bioengineering and Nanotechnology, A(∗)STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Republic of Singapore; Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602, Republic of Singapore; Department of Orthopaedic Surgery, Xi Jing Hospital, Fourth Military Medical University, #88 Jiefang Road, Xi'an 710032, China
| | - Peck Yean Tan
- Singapore Institute of Clinical Sciences, A(∗)STAR, Singapore, Republic of Singapore
| | - Matthew R Dewhurst
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore; Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Peh Gek Too
- Singapore Institute of Clinical Sciences, A(∗)STAR, Singapore, Republic of Singapore
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore
| | - Beatrice E Chiang
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore
| | - Walter Stünkel
- Singapore Institute of Clinical Sciences, A(∗)STAR, Singapore, Republic of Singapore
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, A(∗)STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Republic of Singapore; Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117597, Republic of Singapore; Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore; Gastroenterology Department, Southern Medical University, Guangzhou 510515, China
| | - Philip Lee
- Singapore Bio-Imaging Consortium, A(∗)STAR, Singapore, Republic of Singapore
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Hyungwon Choi
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore; Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore 117549, Republic of Singapore
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd, Haining, Zhejiang 314400, China
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore; National University of Singapore (NUS), Department of Biochemistry, Singapore 117597, Republic of Singapore.
| |
Collapse
|
13
|
Adlbrecht C, Blanco-Verea A, Bouzas-Mosquera MC, Brion M, Burtscher M, Carbone F, Chang TT, Charmandari E, Chen JW, Correia-Costa L, Dullaart RPF, Eleftheriades M, Fernandez-Fernandez B, Goliasch G, Gremmel T, Groeneveld ME, Henrique A, Huelsmann M, Jung C, Lichtenauer M, Montecucco F, Nicolaides NC, Niessner A, Palmeira C, Pirklbauer M, Sanchez-Niño MD, Sotiriadis A, Sousa T, Sulzgruber P, van Beek AP, Veronese N, Winter MP, Yeung KK, Bouzas-Mosquera A. Research update for articles published in EJCI in 2016. Eur J Clin Invest 2018; 48:e13016. [PMID: 30099749 DOI: 10.1111/eci.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher Adlbrecht
- Fourth Medical Department, Hietzing Hospital, Karl Landsteiner Institute for Cardiovascular and Intensive Care Research, Vienna, Austria
| | - Alejandro Blanco-Verea
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Servicio de Cardiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain.,Medicina Xenómica, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | | | - María Brion
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Servicio de Cardiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain.,Medicina Xenómica, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | | | - Federico Carbone
- First Clinical of Internal Medicine Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Ting-Ting Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jaw-Wen Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Liane Correia-Costa
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Department of Pediatric Nephrology, Centro Materno-Infantil do Norte, Centro Hospitalar do Porto, Porto, Portugal
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen, Groningen, the Netherlands.,University Medical Center, Groningen, the Netherlands
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Georg Goliasch
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Thomas Gremmel
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Menno Evert Groeneveld
- Department of Vascular Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands.,Department of Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Alexandrino Henrique
- Serviço de Cirurgia A - Centro Hospitalar e Universitário de Coimbra, Faculdade de Medicina - Universidade de Coimbra, Coimbra, Portugal
| | - Martin Huelsmann
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Fabrizio Montecucco
- First Clinical of Internal Medicine Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alexander Niessner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Carlos Palmeira
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Markus Pirklbauer
- Department for Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | | | - Alexandros Sotiriadis
- Second Department of Obstetrics and Gynecology, "Hippokrateion" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Teresa Sousa
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Patrick Sulzgruber
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - André P van Beek
- Department of Endocrinology, University of Groningen, Groningen, the Netherlands.,University Medical Center, Groningen, the Netherlands
| | - Nicola Veronese
- Neuroscience Institute, National Research Council, Padova, Italy
| | - Max-Paul Winter
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Kak Khee Yeung
- Department of Vascular Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands.,Department of Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Alberto Bouzas-Mosquera
- Unidad de Imagen y Función Cardiacas, Servicio de Cardiología, Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| |
Collapse
|
14
|
Effects of hepatic blood inflow on liver ultrastructure and regeneration after extensive liver resection in rats with cirrhosis. Exp Ther Med 2018; 16:2573-2583. [PMID: 30210605 PMCID: PMC6122590 DOI: 10.3892/etm.2018.6467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/06/2018] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to investigate the effects of hepatic blood inflow on liver function, liver ultrastructure and the regeneration of future liver remnant (FLR) following major hepatectomy in rats with liver cirrhosis. A rat model of cirrhosis was established through intraperitoneal injection of carbon tetrachloride for 8 consecutive weeks. Extensive liver resection and different blood inflow models by portal vein (PV) and/or hepatic artery (HA) stenosis were conducted on the cirrhosis rats. Animal models were constructed as follows: Control (group A), low-flow PV + high-flow HA (group B), low-flow PV + low-flow HA (group C), high-flow PV + high-flow HA (group D) and high-flow PV + low-flow HA (group E). Hepatic blood inflow was detected by laser speckle contrast analysis, liver function and pathological changes were analyzed, Masson staining was used to identify the fibrosis of the liver and Periodic acid-Schiff staining was used to identify glycogen synthesis and hepatocyte function. The liver cell ultrastructure was evaluated by transmission electron microscopy, and the expression of Ki-67 in hepatocytes and the weight of the FLR were recorded to determine the regeneration of the FLR. Five days after major hepatectomy and liver blood inflow modulation, pathological examination of the livers from groups B and C revealed less congestion and less extensive hepatocellular injury. The serum alanine aminotransferase level of group B at 1, 3 and 5 days after hepatectomy and blood inflow modulation was 460.9±31.7, 331.0±22.0 and 285.6±15.8 U/l, respectively (control group: 676.9±41.7, 574.9±28.0 and 436.1±32.7 U/l, respectively; P<0.05); the total bilirubin of group B at 1, 3 and 5 days was 20.4±1.5, 16.1±1.0 and 13.5±0.6 µmol/l, respectively (control group: 30.3±1.4, 26.5±0.8 and 22.1±1.2 µmol/l, respectively; P<0.05). The size of the endoplasmic reticulum in the low-flow PV groups increased significantly and the mitochondrial swelling was alleviated. The positive rate of Ki-67 in the hepatocytes of groups B, C and D was 23.9±3.6, 15.7±2.3 and 12.9±2.4%, respectively (control group: 10.1±2.1%, P<0.05), and the positive rate of Ki-67 in group E was 6.1±1.4% (compared with that of the control group, P<0.05). The remnant liver weight of group B was 15.4±1.0 g (compared with that of the control group, P<0.05). Therefore, decreased portal blood flow combined with increased hepatic arterial blood flow alleviated the congestion in the liver following major hepatectomy in cirrhotic rats, improved the pathological status and liver function, increased the expression of Ki-67 and promoted liver regeneration.
Collapse
|
15
|
Bouhlel A, Bejaoui M, Ben Mosbah I, Hadj Abdallah N, Ribault C, Viel R, Hentati H, Corlu A, Ben Abdennebi H. Thymoquinone protects rat liver after partial hepatectomy under ischaemia/reperfusion through oxidative stress and endoplasmic reticulum stress prevention. Clin Exp Pharmacol Physiol 2018; 45:943-951. [PMID: 29733120 DOI: 10.1111/1440-1681.12961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/29/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022]
Abstract
Ischaemia reperfusion (I/R) is associated with liver injury and impaired regeneration during partial hepatectomy (PH). The aim of this study was to investigate the effect of thymoquinone (TQ), the active compound of essential oil obtained from Nigella sativa seeds, on rat liver after PH. Male Wistar rats were divided equally into four groups (n = 6) receiving an oral administration of either vehicle solution (sham and PH groups) or TQ at 30 mg/kg (TQ and TQ + PH groups) for 10 consecutive days. Then, rats underwent PH (70%) with 60 minutes of ischaemia followed by 24 hours of reperfusion (PH and TQ + PH groups). Alanine aminotransferase (ALT) activity and histopathological damage were determined. Also, antioxidant parameters, liver regeneration index, hepatic adenosine triphosphate (ATP) content, endoplasmic reticulum (ER) stress and apoptosis were assessed. In response to PH under I/R, liver damage was significantly alleviated by TQ treatment as evidenced by the decrease in ALT activity (P < .01) and histological findings (P < .001). In parallel, TQ preconditioning increased hepatic antioxidant capacities. Moreover, TQ improved mitochondrial function (ATP, P < .05), attenuated ER stress parameters and repressed the expression of apoptotic effectors. Taken together, our results suggest that TQ preconditioning could be an effective strategy to reduce liver injury after PH under I/R. The protective effects were mediated by the increase of antioxidant capacities and the decrease of ER stress and apoptosis.
Collapse
Affiliation(s)
- Ahlem Bouhlel
- Faculté de Pharmacie, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé (UR12ES11), Université de Monastir, Monastir, Tunisia
| | - Mohamed Bejaoui
- Faculté de Pharmacie, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé (UR12ES11), Université de Monastir, Monastir, Tunisia
| | - Ismail Ben Mosbah
- Institut Mondor Recherche Biomédicale (IMRB), Université Paris-Est, Créteil, France
- Biopredic International, Rennes, France
| | - Najet Hadj Abdallah
- Faculté de Pharmacie, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé (UR12ES11), Université de Monastir, Monastir, Tunisia
| | - Catherine Ribault
- INSERM, INRA, Université Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_S1241, UMR_A 1341, Rennes, France
| | - Roselyne Viel
- Université de Rennes 1, US18, UMS 3480 Biosit, Biogenouest, Plateforme H2P2, Rennes, France
| | - Hassen Hentati
- Institut Mondor Recherche Biomédicale (IMRB), Université Paris-Est, Créteil, France
| | - Anne Corlu
- INSERM, INRA, Université Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_S1241, UMR_A 1341, Rennes, France
| | - Hassen Ben Abdennebi
- Faculté de Pharmacie, Unité de Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé (UR12ES11), Université de Monastir, Monastir, Tunisia
| |
Collapse
|
16
|
Alexandrino H, Rolo A, Teodoro JS, Donato H, Martins R, Serôdio M, Martins M, Tralhão JG, Caseiro Alves F, Palmeira C, Castro E Sousa F. Bioenergetic adaptations of the human liver in the ALPPS procedure - how liver regeneration correlates with mitochondrial energy status. HPB (Oxford) 2017; 19:1091-1103. [PMID: 28941575 DOI: 10.1016/j.hpb.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND The Associating Liver Partition and Portal Ligation for Staged Hepatectomy (ALPPS) depends on a significant inter-stages kinetic growth rate (KGR). Liver regeneration is highly energy-dependent. The metabolic adaptations in ALPPS are unknown. AIMS i) Assess bioenergetics in both stages of ALPPS (T1 and T2) and compare them with control patients undergoing minor (miHp) and major hepatectomy (MaHp), respectively; ii) Correlate findings in ALPPS with volumetric data; iii) Investigate expression of genes involved in liver regeneration and energy metabolism. METHODS Five patients undergoing ALPPS, five controls undergoing miHp and five undergoing MaHp. Assessment of remnant liver bioenergetics in T1, T2 and controls. Analysis of gene expression and protein content in ALPPS. RESULTS Mitochondrial function was worsened in T1 versus miHp; and in T2 versus MaHp (p < 0.05); but improved from T1 to T2 (p < 0.05). Liver bioenergetics in T1 strongly correlated with KGR (p < 0.01). An increased expression of genes associated with liver regeneration (STAT3, ALR) and energy metabolism (PGC-1α, COX, Nampt) was found in T2 (p < 0.05). CONCLUSION Metabolic capacity in ALPPS is worse than in controls, improves between stages and correlates with volumetric growth. Bioenergetic adaptations in ALPPS could serve as surrogate markers of liver reserve and as target for energetic conditioning.
Collapse
Affiliation(s)
- Henrique Alexandrino
- Serviço de Cirurgia A dos Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Portugal; Clínica Universitária de Cirurgia III, Faculdade de Medicina, Universidade de Coimbra, Portugal.
| | - Anabela Rolo
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Portugal
| | - João S Teodoro
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Portugal
| | - Henrique Donato
- Serviço de Imagem Médica dos Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Portugal; Clínica Universitária de Radiologia, Faculdade de Medicina, Universidade de Coimbra, Portugal
| | - Ricardo Martins
- Serviço de Cirurgia A dos Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Portugal; Clínica Universitária de Cirurgia III, Faculdade de Medicina, Universidade de Coimbra, Portugal
| | - Marco Serôdio
- Serviço de Cirurgia A dos Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Portugal; Clínica Universitária de Cirurgia III, Faculdade de Medicina, Universidade de Coimbra, Portugal
| | - Mónica Martins
- Serviço de Cirurgia A dos Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Portugal; Clínica Universitária de Cirurgia III, Faculdade de Medicina, Universidade de Coimbra, Portugal
| | - José G Tralhão
- Serviço de Cirurgia A dos Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Portugal; Clínica Universitária de Cirurgia III, Faculdade de Medicina, Universidade de Coimbra, Portugal
| | - Filipe Caseiro Alves
- Serviço de Imagem Médica dos Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Portugal; Clínica Universitária de Radiologia, Faculdade de Medicina, Universidade de Coimbra, Portugal
| | - Carlos Palmeira
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Portugal
| | - Francisco Castro E Sousa
- Serviço de Cirurgia A dos Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Portugal; Clínica Universitária de Cirurgia III, Faculdade de Medicina, Universidade de Coimbra, Portugal
| |
Collapse
|
17
|
Adenosine receptors: regulatory players in the preservation of mitochondrial function induced by ischemic preconditioning of rat liver. Purinergic Signal 2016; 13:179-190. [PMID: 27848069 DOI: 10.1007/s11302-016-9548-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/08/2016] [Indexed: 01/12/2023] Open
Abstract
Although adenosine A1 receptors (A1R) have been associated to ischemic preconditioning (IPC), direct evidence for their ability to preserve mitochondrial function upon hepatic preconditioning is still missing and could represent a novel strategy to boost the quality of liver transplants. We tested if the A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) prevented IPC in the liver and if the A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA) might afford a pharmacological preconditioning. Livers underwent a 120 min of 70% warm ischemia and 16 h of reperfusion (I/R), and the IPC group underwent a 5-min ischemic episode followed by a 10-min period of reperfusion before I/R. DPCPX or CCPA was administered intraperitoneally 2 h before IPC or I/R. The control of mitochondrial function emerged as the central element affected by IPC and controlled by endogenous A1R activation. Thus, livers from IPC- or CCPA-treated rats displayed an improved oxidative phosphorylation with higher state 3 respiratory rate, higher respiratory control ratio, increased ATP content, and decreased lag phase. IPC and CCPA also prevented the I/R-induced susceptibility to calcium-induced mitochondrial permeability transition, the rate of reactive oxygen species (ROS) generation, and the decreased mitochondrial content of phospho-Ser9 GSK-3β. DPCPX abrogated these effects of IPC. These implicate the control of GSK-3β activity by Akt-mediated Ser9-GSK-3β phosphorylation preserving the efficiency of oxidative phosphorylation and ROS-mediated cell death in the ability of A1R activation to mimic IPC in the liver. In conclusion, the parallel between IPC and A1R-mediated preconditioning also paves the way to consider a putative therapeutic use of the later in liver transplants.
Collapse
|