1
|
Lu R, Luo XM. The role of gut microbiota in different murine models of systemic lupus erythematosus. Autoimmunity 2024; 57:2378876. [PMID: 39014962 DOI: 10.1080/08916934.2024.2378876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune system dysfunction that can lead to serious health issues and mortality. Recent investigations highlight the role of gut microbiota alterations in modulating inflammation and disease severity in SLE. This review specifically summaries the variations in gut microbiota composition across various murine models of lupus. By focusing on these differences, we aim to elucidate the intricate relationship between gut microbiota dysbiosis and the development and progression of SLE in preclinical settings.
Collapse
Affiliation(s)
- Ran Lu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
2
|
Huang J, Li X, Zhu Q, Wang M, Xie Z, Zhao T. Imbalance of Th17 cells, Treg cells and associated cytokines in patients with systemic lupus erythematosus: a meta-analysis. Front Immunol 2024; 15:1425847. [PMID: 39086480 PMCID: PMC11288813 DOI: 10.3389/fimmu.2024.1425847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This article aims to investigate the changes of T helper 17 (Th17) cells, regulatory T (Treg) cells and their associated cytokines in patients with systemic lupus erythematosus (SLE). Methods Multiple databases were investigated to identify articles that explored Th17 cells, Treg cells and relevant cytokines in SLE patients. A random effects model was used for calculating pooled standardized mean differences. Stata version 15.0 was utilized to conduct the meta-analysis. Results The levels of Th17 cells, IL-17, IL-6, IL-21 and IL-10 were higher in SLE patients than in healthy controls (HCs), but the TGF-β levels were lower. The percentage of Treg cells was lower than HCs in SLE individuals older than 33. Among studies that had 93% or lower females, the percentage of Th17 cells was greater in patients than in HCs. However, the percentage of Treg cells was lower when the proportion of females was less than 90%. Patients with lupus nephritis or active SLE had an increased proportion of Th17 cells and a decreased proportion of Treg cells. Conclusions The increased level of Th17 cells and related cytokines could be the main reason for the elevated Th17/Treg ratio in SLE. The percentages of Th17 and Treg cells were associated with gender, age, disease activity and kidney function. Furthermore, the reduced proportions of Treg cells may primarily result in a rise in the Th17/Treg ratio in older or active SLE patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero, identifier CRD42023454937.
Collapse
Affiliation(s)
- Jinge Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaolong Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingmiao Zhu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meijiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Zhang Y, Wang J, Fang Y, Liang W, Lei L, Wang J, Gao X, Ma C, Li M, Guo H, Wei L. IFN-α affects Th17/Treg cell balance through c-Maf and associated with the progression of EBV- SLE. Mol Immunol 2024; 171:22-35. [PMID: 38749236 DOI: 10.1016/j.molimm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease, of which the pathogens is remains obscure. Viral infection, particularly Epstein Barr viru (EBV) infection, has been considered a common pathogenic factor. This study suggests that c-Maf may be an important target in T cell differentiation during SLE progression, providing a potentially new perspective on the role of viral infection in the pathogenesis of autoimmune diseases. METHODS Cytokines of EBV-infected SLE patients were measured by ELISA and assessed in conjunction with their clinical data. IFN-α, c-Maf, and the differentiation of Th17/Treg cells in SLE patients and MRL/LPR mice were analyzed using FCM, WB, RT-PCR, etc. Following the infection of cells and mice with EBV or viral mimic poly (dA:dT), the changes of the aforementioned indicators were investigated. The relationship among IFN-α, STAT3, c-Maf and Th17 cells was determined by si-RNA technique. RESULTS Many SLE patients are found to be complicated by viral infections; Further, studies have demonstrated that viral infection, especially EBV, is involved in SLE development. This study showed that viral infections might promote IFN-α secretion, inhibit c-Maf expression by activating STAT3, increase Th17 cell differentiation, and lead to the immune imbalance of Th17/Treg cells, thus playing a role in the onset and progression of SLE. CONCLUSION This study demonstrates that EBV infections may contribute to SLE development by activating STAT3 through IFN-α, inhibiting c-Maf, and causing Th17/Treg immune imbalance. Our work provided a new insight into the pathogenesis and treatment of SLE.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China; Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiachao Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Yaqi Fang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Wenzhang Liang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Lingyan Lei
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Junhai Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Xue Gao
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Huifang Guo
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Carbone F, Colamatteo A, La Rocca C, Lepore MT, Russo C, De Rosa G, Matarese A, Procaccini C, Matarese G. Metabolic Plasticity of Regulatory T Cells in Health and Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1859-1866. [PMID: 38830147 DOI: 10.4049/jimmunol.2400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Immunometabolism has been demonstrated to control immune tolerance and the pathogenic events leading to autoimmunity. Compelling experimental evidence also suggests that intracellular metabolic programs influence differentiation, phenotype, proliferation, and effector functions of anti-inflammatory CD4+CD25+Foxp3+ regulatory T (Treg) cells. Indeed, alterations in intracellular metabolism associate with quantitative and qualitative impairments of Treg cells in several pathological conditions. In this review, we summarize the most recent advances linking how metabolic pathways control Treg cell homeostasis and their alterations occurring in autoimmunity. Also, we analyze how metabolic manipulations could be employed to restore Treg cell frequency and function with the aim to create novel therapeutic opportunities to halt immune-mediated disorders.
Collapse
Grants
- 2022LNHZAP Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PE00000007 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PE00000006 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- RF-2019-12371111 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- PNRR-MAD-2022-12375634 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- GR-2018-12366154 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- 2022-PRsingle/013 Fondazione Italiana Sclerosi Multipla (FISM)
- P2022T4PKT Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PNRR-MAD-2022-12376126 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- GR-2021-12373337 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- 2022YMJXYT Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- P2022CMK43 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- 20225KH7BZ Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II," Napoli, Italy
| | - Giusy De Rosa
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| |
Collapse
|
5
|
Wang Z, Liu Z, Zheng J, Huang L, Jin R, Wang X, Chen D, Xie Y, Feng B. The effects of low-dose IL-2 on Th17/Treg cell imbalance in primary biliary cholangitis mouse models. BMC Gastroenterol 2024; 24:87. [PMID: 38408917 PMCID: PMC10895794 DOI: 10.1186/s12876-024-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND/AIMS Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease. The imbalance of Th17/Treg cells has been reported in PBC patients. Low-dose IL-2 can alleviate disease severity through modulating CD4 + T cell subsets in patients with autoimmune diseases. Hence, the present study aimed to examine the effects and mechanism of low-dose IL-2 in PBC mouse models. METHODS PBC models were induced in female C57BL/6 mice by two immunizations with 2OA-BSA at two-week intervals, and poly I: C every three days. PBC mouse models were divided into the IL-2 treated and untreated groups and low-dose IL-2 was injected at three different time points. Th17 and Tregs were analyzed by flow cytometry, and the related cytokines were analyzed by ELISA. Liver histopathology was examined by H&E and immunohistochemical staining. RESULTS Twelve weeks after modeling, the serum AMA was positive and the ALP was significantly increased in PBC mouse models (P<0.05). The pathology showed lymphocyte infiltration in the portal area, damage, and reactive proliferation of the small bile duct (P<0.05). The flow cytometric showed the imbalance of Th17/Treg cells in the liver of PBC mouse models, with decreased Treg cells, increased Th17 cells, and Th17/Treg ratio (P < 0.05). After the low-dose IL-2 intervention, biochemical index and liver pathologies showed improvement at 12 weeks. Besides, the imbalance of Th17 and Treg cells recovered. Public database mining showed that Th17 cell differentiation may contribute to poor response in PBC patients. CONCLUSION Low-dose IL-2 can significantly improve liver biochemistry and pathology by reversing the imbalance of Th17 and Treg cells, suggesting that it may be a potential therapeutic target for PBC.
Collapse
Affiliation(s)
- Zilong Wang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Zhicheng Liu
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Jiarui Zheng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Linxiang Huang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Rui Jin
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Xiaoxiao Wang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Dongbo Chen
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Yandi Xie
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China.
| | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China.
| |
Collapse
|
6
|
Hu JQ, Yan YH, Xie H, Feng XB, Ge WH, Zhou H, Yu LL, Sun LY, Xie Y. Targeting abnormal lipid metabolism of T cells for systemic lupus erythematosus treatment. Biomed Pharmacother 2023; 165:115198. [PMID: 37536033 DOI: 10.1016/j.biopha.2023.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which the immune system attacks its own tissues and organs. However, the causes of SLE remain unknown. Dyslipidemia is a common symptom observed in SLE patients and animal models and is closely correlated to disease activity. Lipid metabolic reprogramming has been considered as a hallmark of the dysfunction of T cells in patients with SLE, therefore, manipulating lipid metabolism provides a potential therapeutic target for treating SLE. A better understanding of the underlying mechanisms for the metabolic events of immune cells under pathological conditions is crucial for tuning immunometabolism to manage autoimmune diseases such as SLE. In this review, we aim to summarize the cross-link between lipid metabolism and the function of T cells as well as the underlying mechanisms, and provide light on the novel therapeutic strategies of active compounds from herbals for the treatment of SLE by targeting lipid metabolism in immune cells.
Collapse
Affiliation(s)
- Jia-Qin Hu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China
| | - Yan-Hua Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China; The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Xue-Bing Feng
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Wei-Hong Ge
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Hua Zhou
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China.
| | - Ling-Yun Sun
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.
| | - Ying Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Yao K, Xie Y, Wang J, Lin Y, Chen X, Zhou T. Gut microbiota: a newly identified environmental factor in systemic lupus erythematosus. Front Immunol 2023; 14:1202850. [PMID: 37533870 PMCID: PMC10390700 DOI: 10.3389/fimmu.2023.1202850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that predominantly affects women of childbearing age and is characterized by the damage to multiple target organs. The pathogenesis of SLE is complex, and its etiology mainly involves genetic and environmental factors. At present, there is still a lack of effective means to cure SLE. In recent years, growing evidence has shown that gut microbiota, as an environmental factor, triggers autoimmunity through potential mechanisms including translocation and molecular mimicry, leads to immune dysregulation, and contributes to the development of SLE. Dietary intervention, drug therapy, probiotics supplement, fecal microbiome transplantation and other ways to modulate gut microbiota appear to be a potential treatment for SLE. In this review, the dysbiosis of gut microbiota in SLE, potential mechanisms linking gut microbiota and SLE, and immune dysregulation associated with gut microbiota in SLE are summarized.
Collapse
|
8
|
Chen F, Wu Y, Ren G, Wen S. Impact of T helper cells on bone metabolism in systemic lupus erythematosus. Hum Immunol 2023:S0198-8859(23)00065-4. [PMID: 37100689 DOI: 10.1016/j.humimm.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Systemic lupus erythematosus (SLE), an autoimmune disease affecting multiple organs and tissues, is often complicated by musculoskeletal diseases. T helper cells (Th) play an important role in mediating lupus. With the rise of osteoimmunology, more studies have shown shared molecules and interactions between the immune system and bones. Th cells are vital in the regulation of bone metabolism by directly or indirectly regulating bone health by secreting various cytokines. Therefore, by describing the regulation of Th cells (including Th1, Th2, Th9, Th17, Th22, regulatory T cells (Treg), and follicular T helper cells (Tfh) in bone metabolism in SLE, this paper offers certain theoretical support for abnormal bone metabolism in SLE and provides new prospects for future drug development.
Collapse
Affiliation(s)
- Feng Chen
- Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region 530001, China
| | - Yukun Wu
- Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region 530011, China
| | - Guowu Ren
- Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region 530001, China.
| | - Shuaibo Wen
- Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region 530001, China
| |
Collapse
|
9
|
Dong Y, Gao L, Sun Q, Jia L, Liu D. Increased levels of IL-17 and autoantibodies following Bisphenol A exposure were associated with activation of PI3K/AKT/mTOR pathway and abnormal autophagy in MRL/lpr mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114788. [PMID: 36948005 DOI: 10.1016/j.ecoenv.2023.114788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is a common environmental endocrine disruptor which mimic the effect of estrogen. The immunotoxicity of BPA has attracted widespread attention in recent years. However, the effects and mechanism of BPA on autoimmune disease were rarely reported. Systemic lupus erythematosus (SLE) is a typical autoimmune disease, and its etiology and mechanism are complex and unclear. Currently, inflammation and the production of autoantibodies are considered to be important pathological mechanisms of SLE, and estrogen contributes to the occurrence and development of SLE. Therefore, in order to explore whether BPA exposure can affect the development of SLE and its possible mechanism, we used MRL/lpr (lupus-prone mice) and C57/BL6 female mice exposed to 0.1 and 0.2 µg/mL BPA for 6 weeks. We discovered that BPA exposure increased the concentration of serum anti-dsDNA antibody and IL-17, and the level of RORγt protein (the transcription factor of Th17 cells). Moreover, there were higher expression of p-PI3K, p-AKT, p-mTOR, ULK, Rubicon, P62, Becline1 and LC3 protein in spleen tissue of BPA exposed MRL/lpr mice compared with the control. However, there were no significant changes in the expression of IL-17, RORγt or mTOR in C57 mice exposed to BPA at the same dose. Our study implied that BPA exposure induced the development of SLE, which might be related to the up-regulation of PI3K/AKT/mTOR signaling pathway and abnormal autophagy. Our study indicated that lupus mice were more susceptible to BPA, and provided a new insight into the mechanism by which BPA exacerbated SLE. Therefore, our study suggested that autoimmune patients and susceptible population should be considered when setting thresholds for environmental BPA exposure.
Collapse
Affiliation(s)
- Youdan Dong
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Liang Gao
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Dongmei Liu
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| |
Collapse
|
10
|
Feng X, Li X, Liu N, Hou N, Sun X, Liu Y. Glutaminolysis and CD4+ T-cell metabolism in autoimmunity: From pathogenesis to therapy prospects. Front Immunol 2022; 13:986847. [PMID: 36211442 PMCID: PMC9537545 DOI: 10.3389/fimmu.2022.986847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
The recent increase in the pathogenesis of autoimmune diseases revealed the critical role of T cells. Investigation into immunometabolism has drawn attention to metabolic processes other than glycometabolism. In rapidly dividing immune cells, including T lymphocytes, the consumption of glutamine is similar to or higher than that of glucose even though glucose is abundant. In addition to contributing to many processes critical for cellular integrity and function, glutamine, as the most abundant amino acid, was recently regarded as an immunomodulatory nutrient. A better understanding of the biological regulation of glutaminolysis in T cells will provide a new perspective for the treatment of autoimmune diseases. In this review, we summarized the current knowledge of glutamine catabolism in CD4+ T-cell subsets of autoimmunity. We also focused on potential treatments targeting glutaminolysis in patients with autoimmune diseases. Knowledge of immunometabolism is constantly evolving, and glutamine metabolism may be a potential therapeutic target for autoimmune disease therapy.
Collapse
Affiliation(s)
- Xiaojin Feng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xue Li
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Yongping Liu,
| |
Collapse
|
11
|
Kuca-Warnawin E, Plebańczyk M, Ciechomska M, Olesińska M, Szczęsny P, Kontny E. Impact of Adipose-Derived Mesenchymal Stem Cells (ASCs) of Rheumatic Disease Patients on T Helper Cell Differentiation. Int J Mol Sci 2022; 23:ijms23105317. [PMID: 35628127 PMCID: PMC9140468 DOI: 10.3390/ijms23105317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Complex pathogenesis of systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) is associated with an imbalance of various Th-cell subpopulations. Mesenchymal stem cells (MSCs) have the ability to restore this balance. However, bone marrow-derived MSCs of SLE and SSc patients exhibit many abnormalities, whereas the properties of adipose derived mesenchymal stem cells (ASCS) are much less known. Therefore, we examined the effect of ASCs obtained from SLE (SLE/ASCs) and SSc (SSc/ASCs) patients on Th subset differentiation, using cells from healthy donors (HD/ASCs) as controls. ASCs were co-cultured with activated CD4+ T cells or peripheral blood mononuclear cells. Expression of transcription factors defining Th1, Th2, Th17, and regulatory T cell (Tregs) subsets, i.e., T-bet, GATA3, RORc, and FoxP3, were analysed by quantitative RT-PCR, the concentrations of subset-specific cytokines were measured by ELISA, and Tregs formation by flow cytometry. Compared with HD/ASCs, SLE/ASCs and especially SSc/ASCs triggered Th differentiation which was disturbed at the transcription levels of genes encoding Th1- and Tregs-related transcription factors. However, we failed to find functional consequences of this abnormality, because all tested ASCs similarly switched differentiation from Th1 to Th2 direction with accompanying IFNγ/IL-4 ratio decrease, up-regulated Th17 formation and IL-17 secretion, and up-regulated classical Tregs generation.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; (M.P.); (M.C.); (E.K.)
- Correspondence:
| | - Magdalena Plebańczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; (M.P.); (M.C.); (E.K.)
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; (M.P.); (M.C.); (E.K.)
| | - Marzena Olesińska
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.O.); (P.S.)
| | - Piotr Szczęsny
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.O.); (P.S.)
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; (M.P.); (M.C.); (E.K.)
| |
Collapse
|
12
|
Braga A, Neves E, Guimarães J, Braga J, Vasconcelos C. The dynamics of Th17 / Treg ratio in SLE patients during pregnancy. J Reprod Immunol 2022; 151:103622. [DOI: 10.1016/j.jri.2022.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
|
13
|
Padhi S, Sarangi S, Nayak N, Barik D, Pati A, Panda AK. Interleukin 17A rs2275913 polymorphism is associated with susceptibility to systemic lupus erythematosus: A meta and trial sequential analysis. Lupus 2022; 31:674-683. [PMID: 35353646 DOI: 10.1177/09612033221090172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The role of cytokines in the development of systemic lupus erythematosus (SLE) has received much attention. Interleukin-17 A upregulates several inflammation-related genes and is thought to have a crucial role in SLE development. The susceptibility to SLE development has been linked to functional genetic variations of the IL-17A gene; nevertheless, the findings have been conflicting. We conducted a meta-analysis that included previously published reports to establish a definitive conclusion on the role of the IL-17A rs2275913 polymorphism in SLE propensity. MATERIALS AND METHODS The PubMed, Google Scholar, and Scopus databases were used to find eligible published articles. All analyses were conducted using Comprehensive Meta-analysis V3.1. Funnel plots and Egger's regression analysis were used to assess publication bias. Q statistics and I2 test explored the heterogeneity among the included studies. Combined odds ratio, 95% confidence interval were calculated for each comparison model. RESULTS Based on the inclusion and exclusion criteria, a total of four reports, comprising of 608 SLE patients and 815 healthy controls, were considered for the present meta-analysis. The homozygous comparison (AA vs. GG: combined odds ratio= 2.046, p = 0.005) and recessive genetic model (AA vs. GG+GA: combined odds ratio=1.901, p = 0.010) analysis revealed a significant association of rs2275913 with susceptibility to the development of SLE. However, other genetic comparisons (A vs. G, GA vs. GG, AA+GA vs. GG) failed to demonstrate such association. Furthermore, trial sequential analysis revealed a sufficient number of studies, including enough cases and controls that have already been considered to conclude the role of IL17-A rs2275913 polymorphism in SLE. CONCLUSIONS IL-17A rs2275913 polymorphism is associated with susceptibility to SLE development.
Collapse
Affiliation(s)
- Sunali Padhi
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| | - Surjyapratap Sarangi
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| | - Nisha Nayak
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| | - Debashis Barik
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| | - Abhijit Pati
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| | - Aditya K Panda
- Department of Bioscience and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha, India
| |
Collapse
|
14
|
Gao X, Song Y, Lu S, Hu L, Zheng M, Jia S, Zhao M. Insufficient Iron Improves Pristane-Induced Lupus by Promoting Treg Cell Expansion. Front Immunol 2022; 13:799331. [PMID: 35296076 PMCID: PMC8918487 DOI: 10.3389/fimmu.2022.799331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/07/2022] [Indexed: 12/31/2022] Open
Abstract
Trace element iron affects T cell biology, but the knowledge about the role of iron in regulating Treg cell expansion is limited. Treg cells play an important role in keeping peripheral T cell tolerance, increasing Treg cell expansion is a promising therapeutic method for SLE. Here we showed that iron deficiency promotes Treg cell expansion by reducing ROS accumulation, improving the disease progression of pristane-induced lupus. Increased oxidative stress inhibits Treg cell differentiation by inducing cell apoptosis. Our data suggest that altering iron metabolism promotes Treg cell expansion by preventing oxidation-induced cell death, which may provide a potential therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Xiaofei Gao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Yang Song
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Shuang Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Longyuan Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Meiling Zheng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Sujie Jia
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Sujie Jia, ; Ming Zhao,
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
- *Correspondence: Sujie Jia, ; Ming Zhao,
| |
Collapse
|
15
|
Zhang J, Chang L, Sun Y, Qin M, Wang X, Guo Y. Disabled-2 (DAB2) overexpression mediates immune suppression in systemic lupus erythematosus by modulating Treg/Th17 cell differentiation. Clin Exp Pharmacol Physiol 2022; 49:596-607. [PMID: 35108421 DOI: 10.1111/1440-1681.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/27/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder. T helper 17 (Th17) and regulatory T (Treg) cells play key roles in SLE progression. Disabled-2 (DAB2) exhibits immunomodulatory effects in inflammatory diseases. However, the role of DAB2 in SLE and the precise mechanisms remain unknown. Herein, a decreased DAB2 expression and an increased miR-448-3p level were observed in PBMCs from SLE patients. DAB2 level was negatively correlated with SLE Disease Activity Index (SLEDAI), suggesting a functional correlation between DAB2 and SLE. To test this, we employed 8-week-old MRL/lpr mice and treated them with lentivirus-mediated DAB2 or its negative control (LV-NC). LV-DAB2 treatment increased DAB2 expression and reduced serum IgG and anti-dsDNA IgG levels. DAB2 up-regulation alleviated splenomegaly and lymphadenopathy and SLE-related organ damage. Moreover, DAB2 enhanced the percentage of CD25+ Foxp3+ Treg cells but reduced Th17 cell frequency in lupus, along with the reduction in TNF-α, IL-6 and IL-17A levels, and the elevation in IL-10. In vitro, naive CD4+ T cells isolated from MRL/lpr mice were polarized into Th17 or Treg phenotypes and treated with lentivirus. LV-DAB2 treatment down-regulated IL-17A expression and inhibited the generation of CD4+ IL-17A+ Th17 cells. Also, DAB2 triggered the production of IL-10 and the activation of Treg cells. Furthermore, DAB2 was verified as a direct target for miR-448-3p. MiR-448-3p overexpression canceled the promoting effect of DAB2 on Treg cell differentiation. Taken together, DAB2 exerts an immunosuppressive effect on SLE through promoting Treg cell activation and inhibiting Th17 cell differentiation, which may be modulated by miR-448-3p.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning, People's Republic of China
| | - Lihua Chang
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning, People's Republic of China
| | - Yue Sun
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning, People's Republic of China
| | - Muting Qin
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning, People's Republic of China
| | - Xiaofei Wang
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning, People's Republic of China
| | - Yun Guo
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning, People's Republic of China
| |
Collapse
|
16
|
Huang X, Zhang Q, Zhang H, Lu Q. A Contemporary Update on the Diagnosis of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2022; 63:311-329. [DOI: 10.1007/s12016-021-08917-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
|
17
|
Yang X, Guo Y, Chen C, Shao B, Zhao L, Zhou Q, Liu J, Wang G, Yuan W, Sun Z. Interaction between intestinal microbiota and tumour immunity in the tumour microenvironment. Immunology 2021; 164:476-493. [PMID: 34322877 PMCID: PMC8517597 DOI: 10.1111/imm.13397] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022] Open
Abstract
In recent years, an increasing number of studies have reported that intestinal microbiota have an important effect on tumour immunity by affecting the tumour microenvironment (TME). The intestinal microbiota are closely associated with various immune cells, such as T lymphocytes, natural killer cells (NK cells) and macrophages. Some bacteria, such as Akkermansia muciniphila (A. muciniphila) and Lactobacillus reuteri (L. reuteri), have been shown to improve the effect of tumour immunity. Furthermore, microbial imbalance, such as the increased abundance of Fusobacterium nucleatum (F. nucleatum) and Helicobacter hepaticus (H. hepaticus), generally causes tumour formation and progression. In addition, some microbiota also play important roles in tumour immunotherapy, especially PD-L1-related therapies. Therefore, what is the relationship between these processes and how do they affect each other? In this review, we summarize the interactions and corresponding mechanisms among the intestinal microbiota, immune system and TME to facilitate the research and development of new targeted drugs and provide new approaches to tumour therapy.
Collapse
Affiliation(s)
- Xiuxiu Yang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- School of MedicineZhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yaxin Guo
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Department of Basic MedicalAcademy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Academy of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Chen Chen
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Bo Shao
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Luyang Zhao
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Department of Basic MedicalAcademy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Academy of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Quanbo Zhou
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jinbo Liu
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guixian Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Weitang Yuan
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenqiang Sun
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
18
|
Circulating IL-17 Level Is Positively Associated with Disease Activity in Patients with Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9952463. [PMID: 34337065 PMCID: PMC8318742 DOI: 10.1155/2021/9952463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022]
Abstract
Previous studies on the relationship between the circulating level of interleukin-17 (IL-17) and disease activity in systemic lupus erythematosus (SLE) were contradictory. This study is aimed at quantitatively assessing the correlation between the circulating IL-17 level and disease activity in SLE patients. A systematic search for related literature was conducted via PubMed, Web of Science, EMBASE, and Cochrane Library (up to January 26, 2021). The relationship between circulating IL-17 levels and SLE activity was evaluated using Fisher's z value, which was then converted to r. The standardized mean difference (SMD) and its 95% confidence interval (CI) were used to describe the difference between the circulating IL-17 level in patients with active and inactive SLE. STATA 16.0 was used to perform statistical analysis. Random-effects model was performed to synthesize data. Twenty-six studies involving 1,560 SLE patients were included in this review. The pooled r value was 0.38 (95% CI: 0.25-0.50; I2 = 83.8%, P < 0.001) between the SLE activity and circulating level of IL-17. Patients with active SLE had higher level of circulating IL-17 than that of inactive (pooled SMD = 0.95, 95% CI: 0.38-1.53; I2 = 90.5%, P < 0.001). The subgroup analysis suggested that the region and detection method of circulating IL-17 might not be a source of heterogeneity. No significant publication bias was found. In summary, circulating IL-17 level has a low positive relationship with SLE activity. It is necessary to carefully consider the use of circulating IL-17 as a biomarker of the disease activity in SLE patients. The relationship between the circulating level of IL-17 and SLE activity should be further confirmed in randomized controlled studies.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with multiple manifestations, with a majority of SLE patients having cutaneous involvement. Despite ongoing research, the relationship between SLE and cutaneous lupus erythematosus (CLE) pathogeneses remains unknown. This review will compare advances in understanding the cause and pathogenesis of SLE and CLE. RECENT FINDINGS Recently, mechanisms by which immune cell populations contribute to the pathogenesis of SLE and CLE have been queried. Studies have pointed to transitional B cells and B-cell activating factor (BAFF) signaling as potential drivers of SLE and CLE, with belimumab clinical data supporting these hypotheses. Ustekinumab trials and an exciting regulatory T cell (Treg) adoptive transfer in an SLE patient with cutaneous disease have suggested a role for T-cell-targeted therapies. The theory that neutrophil extracellular traps may be a source of autoantigens in SLE remains controversial, while neutrophils have been suggested as early drivers of cutaneous disease. Finally, plasmacytoid dendritic cells (pDCs) have been studied as a potential therapeutic target in SLE, and anti-blood DC antigen (anti-BDCA) antibody clinical trials have shown promise in treating cutaneous disease. SUMMARY Although recent findings have contributed to understanding SLE and CLE pathogenesis, the mechanistic link between these diseases remains an area requiring further research.
Collapse
|
20
|
Chen Y, Tao T, Wang W, Yang B, Cha X. Dihydroartemisinin attenuated the symptoms of mice model of systemic lupus erythematosus by restoring the Treg/Th17 balance. Clin Exp Pharmacol Physiol 2021; 48:626-633. [PMID: 33469936 DOI: 10.1111/1440-1681.13461] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 09/29/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022]
Abstract
The Treg/Th17 imbalance is associated with the development of systemic lupus erythematosus (SLE). Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is isolated from the traditional Chinese herb Artemisia annua Artemisia annua L. This study aims to evaluate the effects of DHA alone or in combination with prednisone in immunodeficiency of SLE. In vivo, the therapeutical effect of DHA alone or in combination with prednisone was assessed in the pristane-induced SLE mouse model. Then, the level of serum antibodies, creatinine (Cre), blood urea nitrogen (BUN), urine protein, kidney histopathology, interleukin (IL)-17, IL-6, transforming growth factor (TGF)-β, the expression of RORγt and Foxp3, the percentages of Treg and Th17 in peripheral blood and spleen were assayed. In vitro, the mouse spleen lymphocytes were separated and treated with DHA alone or DHA in combination with prednisone. Then the percentages of Treg and Th17, the concentration of IL-17, IL-6, TGF-β, and the expression of RORγt and Foxp3 were assayed. It was shown that DHA alone or in combination with prednisone treatment significantly alleviated the manifestations of pristane-induced SLE mice, suppressed inflammation and restored the Treg/Th17 balance. DHA alone or in combination with prednisone significantly inhibited Th17 cell differentiation while induced Treg cell differentiation in vitro. DHA alone or in combination with prednisone also reduced the transcription of RORγt and increased Foxp3 in lymphocytes, as well as IL-17 and TGF-β levels. Our data indicated that DHA can produce synergistic effect with prednisone to attenuate the symptoms of SLE by restoring Treg/Th17 balance.
Collapse
MESH Headings
- Animals
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Artemisinins/pharmacology
- Artemisinins/therapeutic use
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Mice
- Disease Models, Animal
- Female
- Prednisone/pharmacology
- Prednisone/therapeutic use
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Forkhead Transcription Factors/metabolism
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Yan Chen
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, Yangjiang People's Hospital, Yangjiang, China
| | - Tingjun Tao
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, Yangjiang People's Hospital, Yangjiang, China
| | - Weiliang Wang
- Department of Dermatology, Yangjiang People's Hospital, Yangjiang, China
| | - Botao Yang
- Department of Dermatology, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, China
| | - Xushan Cha
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Kono M, Nagafuchi Y, Shoda H, Fujio K. The Impact of Obesity and a High-Fat Diet on Clinical and Immunological Features in Systemic Lupus Erythematosus. Nutrients 2021; 13:nu13020504. [PMID: 33557015 PMCID: PMC7913625 DOI: 10.3390/nu13020504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with multiple organ involvement predominantly affecting women of childbearing age. Environmental factors, as well as genetic predisposition, can cause immunological disturbances that manifest as SLE. A habitual high-fat diet and obesity have recently been reported to play a role in the pathogenesis of autoimmune diseases. The frequency of obesity is higher in patients with SLE than in general populations. Vitamin D and adipokines, such as leptin and adiponectin, are possible mediators connecting obesity and SLE. Serum leptin and adiponectin levels are elevated in patients with SLE and can impact innate and adaptive immunity. Vitamin D deficiency is commonly observed in SLE. Because vitamin D can modulate the functionality of various immune cells, we review vitamin D supplementation and its effects on the course of clinical disease in this work. We also discuss high-fat diets coinciding with alterations of the gut microbiome, or dysbiosis. Contingent upon dietary habits, microbiota can be conducive to the maintenance of immune homeostasis. A high-fat diet can give rise to dysbiosis, and patients who are affected by obesity and/or have SLE possess less diverse microbiota. Interestingly, a hypothesis about dysbiosis and the development of SLE has been suggested and reviewed here.
Collapse
|
22
|
Lee AY, Körner H. CC chemokine receptor 6 (CCR6) in the pathogenesis of systemic lupus erythematosus. Immunol Cell Biol 2020; 98:845-853. [PMID: 32634857 DOI: 10.1111/imcb.12375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
Abstract
The CC chemokine receptor 6 (CCR6) and its sole chemokine ligand, CCL20, are an intriguing pair that have been implicated in a growing number of inflammatory, autoimmune and malignant disease processes. Recent observations have also highlighted this chemokine axis in the regulation of humoral immune responses. Through this review article, we explore the emerging links of CCR6-CCL20 with an archetypal autoimmune disease of humoral dysregulation: systemic lupus erythematosus (SLE). CCR6 is expressed prominently on several immune cells involved in the pathogenesis of SLE, such as dendritic cells and T-helper 17 cells. CCR6's expression is correlated with disease activity and serological markers of disease severity, suggesting a possible role in disease pathogenesis. However, there are numerous holes in our understanding of the functions of CCR6 and CCL20, and future studies are required to determine if there are any diagnostic, prognostic or monitoring roles for these important molecules.
Collapse
Affiliation(s)
- Adrian Ys Lee
- Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, PR China
| |
Collapse
|
23
|
López P, Rodríguez-Carrio J, Martínez-Zapico A, Pérez-Álvarez ÁI, Benavente L, Caminal-Montero L, Suárez A. IgM anti-phosphorylcholine antibodies associate with senescent and IL-17+ T cells in SLE patients with a pro-inflammatory lipid profile. Rheumatology (Oxford) 2020; 59:407-417. [PMID: 31302689 DOI: 10.1093/rheumatology/kez264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/04/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The aim was to evaluate whether T cell subsets and the lipid profile could be linked to the cardioprotective effect of IgM anti-phosphorylcholine (PC) antibodies in SLE. METHODS Anti-PC antibodies were quantified by ELISA in 197 patients and 99 controls and analysed in relationship to clinical features, treatments and serum lipids. Carotid atheromatosis was evaluated by ultrasonography; Th1, Th17, Treg and CD4+CD28null cells by flow cytometry; and cytokine serum levels by immunoassays, in a subgroup of 120 SLE patients and 33 controls. RESULTS IgM anti-PC serum levels were reduced in SLE patients compared with controls (P < 0.001) and were associated with age (β= -0.252; P = 0.002), high-density lipoprotein (HDL; β = 0.271; P = 0.001), low-density lipoprotein (LDL; β= -0.192; P = 0.017) and glucocorticoid treatment (β= -0.201; P = 0.012), whereas the IgG-to-IgM anti-PC ratio was increased (P = 0.007) and associated with age (β = 0.194; P = 0.028) and SLEDAI (β = 0.250; P = 0.005). Also, patients with clinical or subclinical cardiovascular disease exhibited reduced IgM anti-PC levels compared with their cardiovascular disease-free counterparts, regardless of glucocorticoid usage (P = 0.001). CD4+CD28null and Th17 cells were increased in SLE patients compared with controls (P < 0.01) and correlated inversely with IgM anti-PC levels. These associations were observed in patients displaying high triglyceride or low HDL levels, even after adjusting for clinical parameters and treatments (CD4+CD28null: β = -0.455, P = 0.001; Th17: β= -0.280, P = 0.035), but not in those with a normal lipid profile. High triglyceride and low HDL profiles were related to low IgM anti-PC and Treg levels, respectively, whereas both lipid profiles were associated with inflammatory markers and cytokines. CONCLUSION The present study provides evidence for an association of IgM anti-PC antibodies with pro-atherogenic T cell subsets in SLE, with a high triglyceride/low HDL lipid profile playing a facilitating major role.
Collapse
Affiliation(s)
- Patricia López
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo.,Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)
| | - Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo.,Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)
| | - Aleida Martínez-Zapico
- Department of Internal Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Lorena Benavente
- Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Luis Caminal-Montero
- Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA).,Department of Internal Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ana Suárez
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo.,Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)
| |
Collapse
|
24
|
Shan J, Jin H, Xu Y. T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus. Front Immunol 2020; 11:1027. [PMID: 32528480 PMCID: PMC7257669 DOI: 10.3389/fimmu.2020.01027] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
The Th17/T-regulatory (Treg) cell imbalance is involved in the occurrence and development of organ inflammation in systemic lupus erythematosus (SLE). Metabolic pathways can regulate T cell differentiation and function, thus contributing to SLE inflammation. Increasingly, data have shown metabolism influences and reprograms the Th17/Treg cell balance, and the metabolic pattern of T cells is different in SLE. Notably, metabolic characteristics of SLE T cells, such as enhanced glycolysis, lipid synthesis, glutaminolysis, and highly activated mTOR, all favored Th17 differentiation and function, which underlie the Th17/Treg cell imbalance in SLE patients. Targeting metabolic pathways to reverse Th17/Treg imbalance offer a promising method for SLE therapy.
Collapse
Affiliation(s)
- Juan Shan
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Hong Jin
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yan Xu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
25
|
Shen HH, Fan Y, Wang YN, Zhao CN, Zhang ZK, Pan HF, Wu GC. Elevated Circulating Interleukin-17 Levels in Patients with Systemic Lupus Erythematosus: A Meta-analysis. Immunol Invest 2019; 49:662-675. [PMID: 31847623 DOI: 10.1080/08820139.2019.1699107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Previous studies concerning the circulating interleukin-17 (IL-17) in systemic lupus erythematosus (SLE) were contradictory. AIMS To further precisely investigate circulating IL-17 in SLE and evaluate its influential factors by meta-analysis. METHODS EMBASE, PubMed and Cochrane Library were comprehensively searched to obtain studies on circulating IL-17 in SLE patients by November 22, 2018. The results were illustrated by pooled standard mean difference (SMD) with corresponding 95% confidence interval (CI) using random-effects model as there was significant heterogeneity, which was estimated using Cochran Q and I2 statistics. Subgroup analyses and sensitivity analyses were also conducted. RESULTS Overall, 1872 articles were reviewed and 20 studies involving 1067 subjects with SLE and 721 healthy controls (HCs) were enrolled in the final analysis according to inclusion criteria. Compared with HCs, circulating IL-17 levels in SLE patients were elevated (SMD: 1.183, 95% CI: 0.763-1.603; P < .001). Moreover, in comparison to HCs, European and Asian SLE patients, age <30 years, disease duration ≥5 years, NOS scores <7 and using ELISA showed increased circulating IL-17 status, whereas no significant change was observed in other subgroups. There was no significant publication bias. Sensitivity analyses demonstrated that the results of our meta-analysis were robust. CONCLUSIONS SLE patients have higher circulating IL-17 levels, which is influenced by ethnic, age and disease duration, literature quality and measurements.
Collapse
Affiliation(s)
- Hui-Hui Shen
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University , Hefei, Anhui, China
| | - Ye Fan
- Department of Environmental Health, School of Public Health, Shanxi Medical University , TaiYuan, Shanxi, China
| | - Ya-Ni Wang
- Department of Respiratory and Critical Care Medicine, The Geriatric Institute of Anhui, The First Affiliated Hospital of Anhui Medical University , Hefei, Anhui, China.,Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing, China
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases , Hefei, Anhui, China
| | - Zhi-Kang Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University , Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases , Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University , Hefei, Anhui, China
| |
Collapse
|
26
|
Leptin: an unappreciated key player in SLE. Clin Rheumatol 2019; 39:305-317. [PMID: 31707542 DOI: 10.1007/s10067-019-04831-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023]
Abstract
Leptin is the forerunner of the adipokine superfamily and plays a key role in regulating energy expenditure and neuroendocrine function. Researches into leptin put emphasize not only on the metabolic role but also its immunoregulatory effect on immune response through immunocyte activation and cytokine secretion. Leptin acts on receptors that are widespread throughout the body and that are expressed across many tissue types. As a consequence, the abnormal expression of leptin has been found to correlate with a number of diseases, including cancers, autoimmune diseases, and cardiovascular diseases. The significance of leptin in the development of autoimmune diseases is becoming increasingly prominent. Systemic lupus erythematosus (SLE) is a severe atypical autoimmune disease that causes damage to multiple organ systems. It is characterised by the following: impaired clearance of apoptotic cells, loss of tolerance to self-antigens, aberrant activation of T cells and B cells, and chronic inflammation. The heightened immunocyte response in SLE means that these physiological systems are particularly vulnerable to regulation by leptin in addition to being of great significance to the research field. Our current review provides insight into the regulatory roles that leptin plays on immune effector cells in SLE.
Collapse
|
27
|
Shao Q, Gao H. Progress in interleukin-2 therapy for rheumatic immune diseases by regulating the immune balance of T cells. Scand J Immunol 2019; 90:e12822. [PMID: 31494958 DOI: 10.1111/sji.12822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Breaking the balance between effector T cells, including Th17 (T helper cell 17) cells, and regulatory T cells (Tregs) is a key link in the pathogenesis of rheumatic immune diseases, which lead to a new concept of regulating immune balance in the treatment of rheumatic immune diseases. Interleukin (IL)-2 can effectively regulate the differentiation, development and functional activity of regulatory T cells, thus restoring the immune balance between regulatory T cells and effector T cells. Therefore, low-dose IL-2 has been used in the treatment of rheumatic immune diseases, and it has become a promising new choice to achieve therapeutic purpose by regulating the immune balance of T cell. Here, we discuss the role of T cells immune imbalance in the pathogenesis of rheumatic immune diseases and the mechanism of IL-2 in the treatment of rheumatic immune diseases by regulating T cells immune balance and summarize the relevant clinical trials.
Collapse
Affiliation(s)
- Qin Shao
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Hongyan Gao
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
28
|
Zhao C, Mao Y, Liu L, Wu Q, Dan Y, Pan H. Plasma galectin‐3 levels do not differ in systemic lupus erythematosus patients. Int J Rheum Dis 2019; 22:1820-1824. [DOI: 10.1111/1756-185x.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/15/2019] [Accepted: 07/14/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Chan‐Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- Anhui Province Key Laboratory of Major Autoimmune Diseases Hefei China
| | - Yan‐Mei Mao
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- Anhui Province Key Laboratory of Major Autoimmune Diseases Hefei China
| | - Li‐Na Liu
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- Anhui Province Key Laboratory of Major Autoimmune Diseases Hefei China
| | - Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- Anhui Province Key Laboratory of Major Autoimmune Diseases Hefei China
| | - Yi‐Lin Dan
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- Anhui Province Key Laboratory of Major Autoimmune Diseases Hefei China
| | - Hai‐Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- Anhui Province Key Laboratory of Major Autoimmune Diseases Hefei China
| |
Collapse
|
29
|
Álvarez-Rodríguez L, Martínez-Taboada V, Calvo-Alén J, Beares I, Villa I, López-Hoyos M. Altered Th17/Treg Ratio in Peripheral Blood of Systemic Lupus Erythematosus but Not Primary Antiphospholipid Syndrome. Front Immunol 2019; 10:391. [PMID: 30894863 PMCID: PMC6414457 DOI: 10.3389/fimmu.2019.00391] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction: The role of the immune response in the pathogenesis of antiphospholipid syndrome (APS) remains elusive. It is possible that differences in the frequencies of Th17 cells and/or defects in the immunoregulatory mechanisms are involved in the pathogenesis of APS. Our aim was to determine the peripheral blood Th cells phenotype and the circulating cytokine profile in patients with primary APS (pAPS) and compare it with systemic lupus erythemathosus (SLE) as disease control group. Methods: The frequencies of circulating regulatory T cells (Tregs) were determined in PBMCs from 36 patients with pAPS by flow cytometry. As control groups we included 21 age- and gender-matched healthy controls (HC) and 11 patients with SLE. The suppressive capacity of Tregs was evaluated in vitro by coculture assay. On the other hand, intracellular cytokine production was assessed in Th1, Th2, and Th17 cells and circulating IL-6, IL-10, and IL-35 were measured by Cytometric Bead Array and ELISA. The quantification of Th master gene expression levels was performed by real time quantitative PCR. Results: pAPS patients and SLE patients did not show differences in the percentage or number of Tregs compared to HC. The suppressive capacity of Tregs was also similar in the three study group. Instead, we found higher FoxP3·mRNA expression levels in pAPS patients and HC than SLE patients. Regarding the Th17 response, patients with pAPS and HC showed a significantly lower frequency of circulating Th17 cells than SLE. However, no differences were observed in the Th1 response between patients and controls. Thus, increased Th17/Th1 and Th17/Treg ratios were found in SLE patients but not in pAPS patients. pAPS and SLE patients had higher serum IL-6 levels than HC but there was not difference between both disease groups. Besides, a significant increase in the immunosuppressive cytokine levels was observed only in pAPS as compared to HC. Conclusions: Our data demonstrate an increased inflammatory profile of peripheral blood CD4+ T cells from SLE as compared with pAPS mostly due to an increased Th17 response. In conclusion, there seems not to be a direct pathogenic role for Th cells in pAPS but in SLE.
Collapse
Affiliation(s)
- Lorena Álvarez-Rodríguez
- Transplantation and Autoimmunity Laboratory, Rheumatology Department, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Víctor Martínez-Taboada
- Faculty of Medicine, Rheumatology Department, University Hospital Marqués de Valdecilla-IDIVAL, Cantabria University, Santander, Spain
| | - Jaime Calvo-Alén
- Rheumatology Department, University Hospital Araba, Vitoria-Gasteiz, Spain
| | - Iñaki Beares
- Transplantation and Autoimmunity Laboratory, Rheumatology Department, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Ignacio Villa
- Rheumatology Department, Hospital Sierrallana, Torrelavega, Spain
| | - Marcos López-Hoyos
- Immunology Department, University Hospital Marqués de Valdecilla-IDIVAL, Cantabria University, Santander, Spain
| |
Collapse
|
30
|
Sung CT, Choi FD, Juhász M, Mesinkovska NA. The Immunological Association between Alopecia Areata and Respiratory Diseases: A Systematic Review. Skin Appendage Disord 2019; 5:230-237. [PMID: 31367601 DOI: 10.1159/000496445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/14/2018] [Indexed: 11/19/2022] Open
Abstract
Background While alopecia areata (AA) has been associated with atopy, the immunological relationship is unclear, with the association of specific atopic and systemic respiratory diseases not established. The relationship between T-helper (Th)1-mediated AA and Th2-mediated atopy challenges the conventional Th1/Th2 paradigm of autoimmune disease categorization. Objectives To determine the association between AA and atopic respiratory diseases in adults and children, and respiratory diseases in general. Method All primary literature, excluding case reports, were identified within PubMed/MEDLINE, CINAHL, and Web of Science in May 2018 using the following search terms: "(alopecia OR hair loss) AND (respiratory OR pulmonary OR lungs OR asthma OR rhinitis OR bronchitis OR COPD OR atopy OR atopic)." Information from 32 articles meeting the inclusion and exclusion criteria was reviewed. Results Among the 32 articles identified for inclusion, the prevalence of AA was more strongly associated with allergic rhinitis compared to asthma among pediatric and adult populations. While a significant association was identified between AA, allergic rhinitis, and a late age of onset, the association of AA and asthma remains controversial despite asthma's prevalence among AA patients. No significant difference was identified with regard to the association of AA and non-atopic respiratory diseases between adult and pediatric patients. Conclusions Adult and pediatric patients with AA warrant further workup for atopic respiratory diseases such as allergic rhinitis. AA may have an underlying Th2-mediated immunological component, which supports its association with atopic respiratory diseases and provides a new avenue for targeted therapies in select cases.
Collapse
Affiliation(s)
- Calvin T Sung
- Department of Dermatology, University of California, Irvine, Irvine, California, USA.,School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Franchesca D Choi
- Department of Dermatology, University of California, Irvine, Irvine, California, USA.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Margit Juhász
- Department of Dermatology, University of California, Irvine, Irvine, California, USA
| | | |
Collapse
|