1
|
Korvyakova Y, Azarova I, Klyosova E, Postnikova M, Makarenko V, Bushueva O, Solodilova M, Polonikov A. The link between the ANPEP gene and type 2 diabetes mellitus may be mediated by the disruption of glutathione metabolism and redox homeostasis. Gene 2025; 935:149050. [PMID: 39489227 DOI: 10.1016/j.gene.2024.149050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aminopeptidase N (ANPEP), a membrane-associated ectoenzyme, has been identified as a susceptibility gene for type 2 diabetes (T2D) by genome-wide association and transcriptome studies; however, the mechanisms by which this gene contributes to disease pathogenesis remain unclear. The aim of this study was to determine the comprehensive contribution of ANPEP polymorphisms to T2D risk and annotate the underlying mechanisms. A total of 3206 unrelated individuals including 1579 T2D patients and 1627 controls were recruited for the study. Twenty-three common functional single nucleotide polymorphisms (SNP) of ANPEP were genotyped by the MassArray-4 system. Six polymorphisms, rs11073891, rs12898828, rs12148357, rs9920421, rs7111, and rs25653, were found to be associated with type 2 diabetes (Pperm ≤ 0.05). Common haplotype rs9920421G-rs4932143G-rs7111T was strongly associated with increased risk of T2D (Pperm = 5.9 × 10-12), whereas two rare haplotypes such as rs9920421G-rs4932143C-rs7111T (Pperm = 6.5 × 10-40) and rs12442778A-rs12898828A-rs6496608T-rs11073891C (Pperm = 1.0 × 10-7) possessed strong protection against disease. We identified 38 and 109 diplotypes associated with T2D risk in males and females, respectively (FDR ≤ 0.05). ANPEP polymorphisms showed associations with plasma levels of fasting blood glucose, aspartate aminotransferase, total protein and glutathione (P < 0.05), and several haplotypes were strongly associated with the levels of reactive oxygen species and uric acid (P < 0.0001). A deep literature analysis has facilitated the formulation of a hypothesis proposing that increased plasma levels of ANPEP as well as liver enzymes such as aspartate aminotransferase, alanine aminotransferase and gammaglutamyltransferase serve as an adaptive response directed towards the restoration of glutathione deficiency in diabetics by stimulating the production of amino acid precursors for glutathione biosynthesis.
Collapse
Affiliation(s)
- Yaroslava Korvyakova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation; Research Centre for Medical Genetics, 1 Moskvorechie St., Moscow 115522, Russian Federation.
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation; Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation.
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation; Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation.
| | - Maria Postnikova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation.
| | - Victor Makarenko
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Olga Bushueva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation.
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation.
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation.
| |
Collapse
|
2
|
Klyosova E, Azarova I, Petrukhina I, Khabibulin R, Polonikov A. The rs2341471-G/G genotype of activating transcription factor 6 (ATF6) is the risk factor of type 2 diabetes in subjects with obesity or overweight. Int J Obes (Lond) 2024; 48:1638-1649. [PMID: 39134692 DOI: 10.1038/s41366-024-01604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Numerous studies have demonstrated that the onset of type 2 diabetes (T2D) is linked to the reduction in ß-cell mass caused by apoptosis, a process initiated by endoplasmic reticulum (ER) stress. The aim of this study was to investigate the associations between single nucleotide polymorphisms (SNPs) in the ATF6 gene (activating transcription factor 6), a key sensor of ER stress, and T2D susceptibility. METHODS The study involved 3229 unrelated individuals, including 1569 patients with T2D and 1660 healthy controls from Central Russia. Four functionally significant intronic SNPs, namely rs931778, rs90559, rs2341471, and rs7517862, were genotyped using the MassARRAY-4 system. RESULTS The rs2341471-G/G genotype of ATF6 was found to be associated with an increased risk of T2D (OR = 1.61, 95% CI 1.37-1.90, PFDR < 0.0001). However, a BMI-stratified analysis showed that this genotype and haplotypes CGGA and TAGA are associated with T2D risk exclusively in subjects with obesity or overweight (PFDR < 0.05). Despite these patients being found to have higher consumption of high-carbohydrate and high-calorie diets compared to normal-weight individuals (P < 0.0001), the influence of the rs7517862 polymorphism on T2D risk was observed independently of these dietary habits. Functional SNP annotation revealed the following: (1) the rs2341471-G allele is associated with increased ATF6 expression; (2) the SNP is located in a region exhibiting enhancer activity epigenetically regulated in pancreatic islets; (3) the rs2341471-G was predicted to create binding sites for 18 activating transcription factors that are part of gene-regulatory networks controlling glucose metabolism and maintaining proteostasis. CONCLUSIONS The present study revealed, for the first time, a strong association between the rs2341471-G/G ATF6 genotype and an increased risk of type 2 diabetes in people with obesity or overweight, regardless of known dietary risk factors. Further research is needed to support the potential of silencing the ATF6 gene as a means for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia
| | - Irina Petrukhina
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
| | - Ramis Khabibulin
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia.
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia.
| |
Collapse
|
3
|
Azarova I, Klyosova E, Azarova V, Polonikov A. NADPH oxidase 5 is a novel susceptibility gene for type 2 diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230527. [PMID: 39529984 PMCID: PMC11554360 DOI: 10.20945/2359-4292-2023-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/10/2024] [Indexed: 11/16/2024]
Abstract
Objective This pilot study investigated whether single nucleotide polymorphisms (SNP) in the NOX5 gene (NADPH oxidase 5) are associated with the type 2 diabetes (T2D) risk. Subjects and methods A total of 1579 patients with T2D and 1627 age- and sex-matched healthy subjects were recruited for this study. Genotyping of common SNPs, namely rs35672233, rs3743093, rs2036343, rs311886, and rs438866, was performed using the MassArray-4 system. Results SNP rs35672233 was associated with an increased risk of T2D (OR = 1.67, 95% CI 1.29-2.17, FDR = 0.003). The H3 haplotype (rs35672233T-rs3743093G-rs2036343A-rs311886C-rs438866C) increased T2D risk (OR = 1.65, 95% CI 1.27-2.13, FDR = 0.001). The rs35672233 polymorphism and H3 haplotype were found to have an association with T2D risk only in subjects with a body mass index greater than 25 kg/m2 (FDR < 0.01). Environmental risk factors, such as chronic psycho-emotional stress, sedentary lifestyle, high-calorie diet and SNP rs35672233 were jointly associated with T2D susceptibility. A haplotype comprising the allele rs35672233-C and conferring protection against T2D, was associated with elevated levels of antioxidants such as total glutathione and uric acid, as well as reduced levels of two-hour postprandial glucose in the plasma of patients. The NOX5 polymorphisms showed no associations with diabetic complications. Conclusion The present study is the first to establish associations between polymorphisms in NOX5 and the risk of type 2 diabetes mellitus, and provides a new line of evidence for the crucial role of oxidative stress-related genes in disease susceptibility.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological ChemistryKursk State Medical UniversityKurskRussian Federation Department of Biological Chemistry, Kursk State Medical University, Kursk, Russian Federation
- Laboratory of Biochemical Genetics and MetabolomicsResearch Institute for Genetic and Molecular EpidemiologyKursk State Medical UniversityKurskRussian Federation Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and MetabolomicsResearch Institute for Genetic and Molecular EpidemiologyKursk State Medical UniversityKurskRussian Federation Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
- Department of BiologyMedical Genetics and EcologyKursk State Medical UniversityKurskRussian Federation Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
| | - Valentina Azarova
- Kursk Emergency HospitalKurskRussian Federation Kursk Emergency Hospital, Kursk, Russian Federation
| | - Alexey Polonikov
- Department of BiologyMedical Genetics and EcologyKursk State Medical UniversityKurskRussian Federation Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
- Laboratory of Statistical Genetics and BioinformaticsResearch Institute for Genetic and Molecular EpidemiologyKursk State Medical UniversityKurskRussian Federation Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| |
Collapse
|
4
|
Han S, Jia M, Yao T, Xu Y, Wang Y. Targeting RAC1 might be a potential therapeutic strategy for diabetic kidney disease: a Mendelian randomization study. Int Urol Nephrol 2024:10.1007/s11255-024-04225-z. [PMID: 39368040 DOI: 10.1007/s11255-024-04225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE This study aimed to ascertain the causal association between Ras-related C3 botulinum toxin substrate 1 (RAC1) and the incidence and progression of diabetic kidney disease (DKD) through Mendelian randomization analysis. METHODS RAC1 expression, evaluated using expression quantitative trait loci data from the eQTLGen Consortium, was served as the exposure variable. Outcomes encompassed the risk of DKD, end-stage renal disease (ESRD), albuminuria assessed by the urinary albumin-to-creatinine ratio (ACR), and estimated glomerular filtration rate (eGFR) among individuals with diabetes. Causal associations were computed using the inverse variance weighted (IVW), weighted median, and MR-PRESSO models. Additionally, we conducted analyses for heterogeneity, horizontal pleiotropy, and sensitivity. RESULTS This study revealed a causal association between the genetic activation of RAC1 and an elevated risk of DKD among individuals with diabetes [IVW, odds ratio (OR) = 1.28, 95% confidence intervals (CI) 1.08-1.51, P = 0.004]. Furthermore, increased expression of RAC1 was linked to a higher risk of ESRD (IVW, OR = 1.20, 95% CI 1.02-1.43, P = 0.032). Excessive RAC1 expression was causally associated with elevated ACR (IVW, β = 0.052, 95% CI 0.003-0.100, P = 0.036). However, the analysis regarding RAC1 and eGFR showed significant heterogeneity and pleiotropy, with no discernible causal relationship. CONCLUSIONS These findings suggested a positive correlation between the genetic activation of RAC1 and the incidence of DKD, the risk of ESRD, and exacerbated albuminuria among individuals with diabetes. Targeting RAC1 might potentially serve as a therapeutic strategy for DKD.
Collapse
Affiliation(s)
- Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Meng Jia
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
5
|
Song W, Zhao D, Guo F, Wang J, Wang Y, Wang X, Han Z, Fan W, Liu Y, Xu Z, Chen L. Additive manufacturing of degradable metallic scaffolds for material-structure-driven diabetic maxillofacial bone regeneration. Bioact Mater 2024; 36:413-426. [PMID: 39040493 PMCID: PMC11261217 DOI: 10.1016/j.bioactmat.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
The regeneration of maxillofacial bone defects associated with diabetes mellitus remains challenging due to the occlusal loading and hyperglycemia microenvironment. Herein, we propose a material-structure-driven strategy through the additive manufacturing of degradable Zn-Mg-Cu gradient scaffolds. The in situ alloying of Mg and Cu endows Zn alloy with admirable compressive strength for mechanical support and uniform degradation mode for preventing localized rupture. The scaffolds manifest favorable antibacterial, angiogenic, and osteogenic modulation capacity in mimicked hyperglycemic microenvironment, and Mg and Cu promote osteogenic differentiation in the early and late stages, respectively. In addition, the scaffolds expedite diabetic maxillofacial bone ingrowth and regeneration by combining the metabolic regulation effect of divalent metal cations and the hyperboloid and suitable permeability of the gradient structure. RNA sequencing further reveals that RAC1 might be involved in bone formation by regulating the transport and uptake of glucose related to GLUT1 in osteoblasts, contributing to cell function recovery. Inspired by bone healing and structural cues, this study offers an essential understanding of the designation and underlying mechanisms of the material-structure-driven strategy for diabetic maxillofacial bone regeneration.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Danlei Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Fengyuan Guo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xinyuan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhengshuo Han
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wenjie Fan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yijun Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
6
|
Baba RA, Mir HA, Mokhdomi TA, Bhat HF, Ahmad A, Khanday FA. Quercetin suppresses ROS production and migration by specifically targeting Rac1 activation in gliomas. Front Pharmacol 2024; 15:1318797. [PMID: 38362155 PMCID: PMC10867961 DOI: 10.3389/fphar.2024.1318797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
P66Shc and Rac1 proteins are responsible for tumor-associated inflammation, particularly in brain tumors characterized by elevated oxidative stress and increased reactive oxygen species (ROS) production. Quercetin, a natural polyphenolic flavonoid, is a well-known redox modulator with anticancer properties. It has the capacity to cross the blood-brain barrier and, thus, could be a possible drug against brain tumors. In this study, we explored the effect of quercetin on Rac1/p66Shc-mediated tumor cell inflammation, which is the principal pathway for the generation of ROS in brain cells. Glioma cells transfected with Rac1, p66Shc, or both were treated with varying concentrations of quercetin for different time points. Quercetin significantly reduced the viability and migration of cells in an ROS-dependent manner with the concomitant inhibition of Rac1/p66Shc expression and ROS production in naïve and Rac1/p66Shc-transfected cell lines, suggestive of preventing Rac1 activation. Through molecular docking simulations, we observed that quercetin showed the best binding compared to other known Rac1 inhibitors and specifically blocked the GTP-binding site in the A-loop of Rac1 to prevent GTP binding and, thus, Rac1 activation. We conclude that quercetin exerts its anticancer effects via the modulation of Rac1-p66Shc signaling by specifically inhibiting Rac1 activation, thus restraining the production of ROS and tumor growth.
Collapse
Affiliation(s)
- Rafia A. Baba
- Department of Biotechnology, University of Kashmir, Srinagar, India
- Cancer Diagnostic & Research Centre, Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Hilal A. Mir
- Department of Biotechnology, University of Kashmir, Srinagar, India
- Departments of Ophthalmology, Columbia University, New York, NY, United States
| | | | - Hina F. Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
7
|
Kowluru A. Regulatory roles of CARD9-BCL10-Rac1 (CBR) signalome in islet β-cell function in health and metabolic stress: Is there room for MALT1? Biochem Pharmacol 2023; 218:115889. [PMID: 37991197 PMCID: PMC10872519 DOI: 10.1016/j.bcp.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
It is widely accepted that pancreatic islet β-cell failure and the onset of type 2 diabetes (T2DM) constitute an intricate interplay between the genetic expression of the disease and a host of intracellular events including increased metabolic (oxidative, endoplasmic reticulum) stress under the duress of glucolipotoxicity. Emerging evidence implicates unique roles for Caspase Recruitment Domain containing protein 9 (CARD9) in the onset of metabolic diseases, including obesity and insulin resistance. Mechanistically, CARD9 has been implicated in the regulation of p38MAPK and NFkB signaling pathways culminating in cellular dysfunction. Several regulatory factors, including B-cell lymphoma/leukemia 10 (BCL10) have been identified as modulators of CARD9 function in multiple cell types. Despite this evidence on regulatory roles of CARD9-BCL10 signalome in the onset of various pathological states, putative roles of this signaling module in islet β-cell dysfunction in metabolic stress remain less understood. This brief review is aimed at highlighting roles for CARD9 in islet β-cell function under acute (physiological insulin secretion) and long-term (cell dysfunction) exposure to glucose. Emerging roles of other signaling proteins, such as Rac1, BCL10 and MALT1 as contributors to CARD9 signaling in the islet β-cells are also reviewed. Potential avenues for future research toward the development of novel therapeutics for the prevention CARD9-BCL10-Rac1 (CBR) signalome-induced β-cell defects under metabolic stress are discussed.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
8
|
Azarova YE, Klyosova EY, Ivakin VE, Churilin MI, Kolomoets II, Sunyaykina OA, Ragulina VA, Polonikov AV. Polymorphisms of the NCF4 Gene Increase the Risk of Chronic Heart Failure in Patients with Type 2 Diabetes Mellitus. Bull Exp Biol Med 2023; 176:77-81. [PMID: 38085396 DOI: 10.1007/s10517-023-05974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 12/19/2023]
Abstract
We showed for the first time that polymorphisms rs2075938 and rs2075938 of the NCF4 gene are associated with the risk of chronic heart failure in patients with type 2 diabetes mellitus (n=1310). In particular, haplotypes ATGTCTAT (OR=1.74, 95%CI=1.23-2.47; p=0.0017) and ATATTCAC (OR=2.83, 95%CI=1.33-6.03; p=0.0072) of NCF4 increase the risk of chronic heart failure in type 2 diabetes mellitus patients. The results show that NADPH oxidase subunit NCF4 is involved in the molecular mechanisms of myocardial damage in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yu E Azarova
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia.
| | - E Yu Klyosova
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - V E Ivakin
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - M I Churilin
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - I I Kolomoets
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - O A Sunyaykina
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - V A Ragulina
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - A V Polonikov
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| |
Collapse
|
9
|
Dong Z, Yang J, Tian M, Wang X, Qin X, Huang Q, Wang J. Mechanism of Bile‐Processed Coptidis Rhizoma to Treat Nonalcoholic Fatty Liver Disease in Type 2 Diabetes Mellitus Based on UPLC‐Q‐TOF/MS and Network Pharmacology. ChemistrySelect 2023. [DOI: 10.1002/slct.202204236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Zhaowei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jingjing Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Maoying Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaoyan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
10
|
Azarova I, Klyosova E, Polonikov A. Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes. Biomedicines 2023; 11:biomedicines11030981. [PMID: 36979960 PMCID: PMC10046239 DOI: 10.3390/biomedicines11030981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Single nucleotide polymorphisms (SNP) in the RAC1 (Rac family small GTPase 1) gene have recently been linked to type 2 diabetes (T2D) and hyperglycemia due to their contribution to impaired redox homeostasis. The present study was designed to determine whether the common SNPs of the RAC1 gene are associated with diabetic complications such as neuropathy (DN), retinopathy (DR), nephropathy, angiopathy of the lower extremities (DA), and diabetic foot syndrome. A total of 1470 DNA samples from T2D patients were genotyped for six common SNPs by the MassArray Analyzer-4 system. The genotype rs7784465-T/C of RAC1 was associated with an increased risk of DR (p = 0.016) and DA (p = 0.03) in males, as well as with DR in females (p = 0.01). Furthermore, the SNP rs836478 showed an association with DR (p = 0.005) and DN (p = 0.025) in males, whereas the SNP rs10238136 was associated with DA in females (p = 0.002). In total, three RAC1 haplotypes showed significant associations (FDR < 0.05) with T2D complications in a sex-specific manner. The study's findings demonstrate, for the first time, that the RAC1 gene's polymorphisms represent novel and sex-specific markers of neuropathy and microvascular complications in type 2 diabetes, and that the gene could be a new target for the pharmacological inhibition of oxidative stress as a means of preventing diabetic complications.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia
| |
Collapse
|
11
|
Azarova I, Polonikov A, Klyosova E. Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054738. [PMID: 36902173 PMCID: PMC10003739 DOI: 10.3390/ijms24054738] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Numerous studies have shown that oxidative stress resulting from an imbalance between the production of free radicals and their neutralization by antioxidant enzymes is one of the major pathological disorders underlying the development and progression of type 2 diabetes (T2D). The present review summarizes the current state of the art advances in understanding the role of abnormal redox homeostasis in the molecular mechanisms of T2D and provides comprehensive information on the characteristics and biological functions of antioxidant and oxidative enzymes, as well as discusses genetic studies conducted so far in order to investigate the contribution of polymorphisms in genes encoding redox state-regulating enzymes to the disease pathogenesis.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Correspondence:
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|