1
|
Mao D, Li G, Liang M, Wang S, Ren X. Dietary patterns and multiple chronic diseases in older adults. Nutr Metab (Lond) 2024; 21:36. [PMID: 38915027 PMCID: PMC11194917 DOI: 10.1186/s12986-024-00814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND The prevalence rate of multiple chronic diseases among the elderly is relatively high, posing a risk to their health and also imposing a financial burden on them. Optimal dietary patterns have positive effects on multiple chronic diseases. This study aimed to identify dietary patterns associated with multiple chronic diseases in older adults. METHODS Dietary intake was assessed through two non-consecutive 24-hour dietary recalls. The presence of multiple chronic diseases was assessed based on the existence of dyslipidemia, hypertension, chronic kidney disease, sleep disorders, diabetes, moderate or severe depressive symptoms, and cognitive impairment, with two or more of these conditions being considered. Latent class analysis was used to identify types of multiple chronic diseases, and two-step cluster analysis was used to determine individual dietary patterns. Logistic regression analysis with robust standard errors was conducted to determine the associations between dietary patterns and types of multiple chronic diseases. RESULTS Three dietary patterns and three types of multiple chronic diseases were identified. Individuals following a diet rich in legumes, meat, vegetables and fruits (HLMVF dietary pattern) were 59% less likely to have the cardiometabolic cognitive impairment comorbidity (CCC) than those following a diet rich in milk and eggs but with low grain intake (HME-LG) (OR = 0.41, 95% CI: 0.27-0.64, P < 0.001) and 66% less likely to have the especially sleep disorders comorbidity (ESC) than those following a diet rich in grains but lacking milk and eggs (HG-LME) (OR = 0.34, 95% CI: 0.14-0.87, P < 0.05). DISCUSSION The HLMVF dietary pattern may serve as a healthy dietary pattern to reduce the incidence of multiple chronic diseases and should be promoted among the older adult population.
Collapse
Affiliation(s)
- Danhui Mao
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.
- Health Management and Policy Research Center, School of Management, Shanxi Medical University, Taiyuan, China.
| | - Gongkui Li
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Moxuan Liang
- Health Management and Policy Research Center, School of Management, Shanxi Medical University, Taiyuan, China
| | - Shiyun Wang
- Health Management and Policy Research Center, School of Management, Shanxi Medical University, Taiyuan, China
| | - Xiaojun Ren
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.
| |
Collapse
|
2
|
Tummolo A, Carella R, De Giovanni D, Paterno G, Simonetti S, Tolomeo M, Leone P, Barile M. Micronutrient Deficiency in Inherited Metabolic Disorders Requiring Diet Regimen: A Brief Critical Review. Int J Mol Sci 2023; 24:17024. [PMID: 38069347 PMCID: PMC10707160 DOI: 10.3390/ijms242317024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Many inherited metabolic disorders (IMDs), including disorders of amino acid, fatty acid, and carbohydrate metabolism, are treated with a dietary reduction or exclusion of certain macronutrients, putting one at risk of a reduced intake of micronutrients. In this review, we aim to provide available evidence on the most common micronutrient deficits related to specific dietary approaches and on the management of their deficiency, in the meanwhile discussing the main critical points of each nutritional supplementation. The emerging concepts are that a great heterogeneity in clinical practice exists, as well as no univocal evidence on the most common micronutrient abnormalities. In phenylketonuria, for example, micronutrients are recommended to be supplemented through protein substitutes; however, not all formulas are equally supplemented and some of them are not added with micronutrients. Data on pyridoxine and riboflavin status in these patients are particularly scarce. In long-chain fatty acid oxidation disorders, no specific recommendations on micronutrient supplementation are available. Regarding carbohydrate metabolism disorders, the difficult-to-ascertain sugar content in supplementation formulas is still a matter of concern. A ketogenic diet may predispose one to both oligoelement deficits and their overload, and therefore deserves specific formulations. In conclusion, our overview points out the lack of unanimous approaches to micronutrient deficiencies, the need for specific formulations for IMDs, and the necessity of high-quality studies, particularly for some under-investigated deficits.
Collapse
Affiliation(s)
- Albina Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Rosa Carella
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Donatella De Giovanni
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Giulia Paterno
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Simonetta Simonetti
- Regional Centre for Neonatal Screening, Department of Clinical Pathology and Neonatal Screening, Children’s Hospital “Giovanni XXIII”, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy;
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.T.); (P.L.)
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.T.); (P.L.)
| | - Maria Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.T.); (P.L.)
| |
Collapse
|
3
|
Pahlavani HA. Exercise therapy to prevent and treat Alzheimer's disease. Front Aging Neurosci 2023; 15:1243869. [PMID: 37600508 PMCID: PMC10436316 DOI: 10.3389/fnagi.2023.1243869] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease in the elderly with dementia, memory loss, and severe cognitive impairment that imposes high medical costs on individuals. The causes of AD include increased deposition of amyloid beta (Aβ) and phosphorylated tau, age, mitochondrial defects, increased neuroinflammation, decreased synaptic connections, and decreased nerve growth factors (NGF). While in animals moderate-intensity exercise restores hippocampal and amygdala memory through increased levels of p-AKT, p-TrkB, and p-PKC and decreased levels of Aβ, tau phosphorylation, and amyloid precursor proteins (APP) in AD. Aerobic exercise (with an intensity of 50-75% of VO2 max) prevents hippocampal volume reduction, spatial memory reduction, and learning reduction through increasing synaptic flexibility. Exercise training induces the binding of brain-derived neurotrophic factor (BDNF) to TrkB and the binding of NGF to TrkA to induce cell survival and neuronal plasticity. After aerobic training and high-intensity interval training, the increase of VEGF, angiopoietin 1 and 2, NO, tPA, and HCAR1 in cerebral vessels causes increased blood flow and angiogenesis in the cerebellum, motor cortex, striatum, and hippocampus. In the hippocampus, exercise training decreases mitochondrial fragmentation, DRP1, and FIS1, improving OPA1, MFN1, MFN2, and mitochondrial morphology. In humans, acute exercise as an anti-inflammatory condition causes an acute increase in IL-6 and an increase in anti-inflammatory factors such as IL-1RA and IL-10. Moderate-intensity exercise also inhibits inflammatory markers such as IFN-γ, IL-1β, IL-6, CRP, TNF-α, sTNFR1, COX-2, and NF-κB. Aerobic exercise significantly increases plasma levels of BDNF, nerve growth factor, synaptic plasticity, motor activity, spatial memory, and exploratory behavior in AD subjects. Irisin is a myokine released from skeletal muscle during exercise and protects the hippocampus by suppressing Aβ accumulation and promoting hippocampal proliferation through STAT3 signaling. Therefore, combined exercise training such as aerobic training, strength training, balance and coordination training, and cognitive and social activities seems to provide important benefits for people with AD.
Collapse
|
4
|
Rao RV, Subramaniam KG, Gregory J, Bredesen AL, Coward C, Okada S, Kelly L, Bredesen DE. Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer's Disease and MCI: A Review. Int J Mol Sci 2023; 24:ijms24021659. [PMID: 36675177 PMCID: PMC9865291 DOI: 10.3390/ijms24021659] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, progressive, neurodegenerative disease typically characterized by memory loss, personality changes, and a decline in overall cognitive function. Usually manifesting in individuals over the age of 60, this is the most prevalent type of dementia and remains the fifth leading cause of death among Americans aged 65 and older. While the development of effective treatment and prevention for AD is a major healthcare goal, unfortunately, therapeutic approaches to date have yet to find a treatment plan that produces long-term cognitive improvement. Drugs that may be able to slow down the progression rate of AD are being introduced to the market; however, there has been no previous solution for preventing or reversing the disease-associated cognitive decline. Recent studies have identified several factors that contribute to the progression and severity of the disease: diet, lifestyle, stress, sleep, nutrient deficiencies, mental health, socialization, and toxins. Thus, increasing evidence supports dietary and other lifestyle changes as potentially effective ways to prevent, slow, or reverse AD progression. Studies also have demonstrated that a personalized, multi-therapeutic approach is needed to improve metabolic abnormalities and AD-associated cognitive decline. These studies suggest the effects of abnormalities, such as insulin resistance, chronic inflammation, hypovitaminosis D, hormonal deficiencies, and hyperhomocysteinemia, in the AD process. Therefore a personalized, multi-therapeutic program based on an individual's genetics and biochemistry may be preferable over a single-drug/mono-therapeutic approach. This article reviews these multi-therapeutic strategies that identify and attenuate all the risk factors specific to each affected individual. This article systematically reviews studies that have incorporated multiple strategies that target numerous factors simultaneously to reverse or treat cognitive decline. We included high-quality clinical trials and observational studies that focused on the cognitive effects of programs comprising lifestyle, physical, and mental activity, as well as nutritional aspects. Articles from PubMed Central, Scopus, and Google Scholar databases were collected, and abstracts were reviewed for relevance to the subject matter. Epidemiological, pathological, toxicological, genetic, and biochemical studies have all concluded that AD represents a complex network insufficiency. The research studies explored in this manuscript confirm the need for a multifactorial approach to target the various risk factors of AD. A single-drug approach may delay the progression of memory loss but, to date, has not prevented or reversed it. Diet, physical activity, sleep, stress, and environment all contribute to the progression of the disease, and, therefore, a multi-factorial optimization of network support and function offers a rational therapeutic strategy. Thus, a multi-therapeutic program that simultaneously targets multiple factors underlying the AD network may be more effective than a mono-therapeutic approach.
Collapse
Affiliation(s)
- Rammohan V. Rao
- Apollo Health, Burlingame, CA 94011, USA
- Correspondence: (R.V.R.); (D.E.B.)
| | | | | | | | | | - Sho Okada
- Apollo Health, Burlingame, CA 94011, USA
| | | | - Dale E. Bredesen
- Apollo Health, Burlingame, CA 94011, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90024, USA
- Correspondence: (R.V.R.); (D.E.B.)
| |
Collapse
|