1
|
Carolin A, Yan K, Bishop CR, Tang B, Nguyen W, Rawle DJ, Suhrbier A. Tracking inflammation resolution signatures in lungs after SARS-CoV-2 omicron BA.1 infection of K18-hACE2 mice. PLoS One 2024; 19:e0302344. [PMID: 39531435 PMCID: PMC11556745 DOI: 10.1371/journal.pone.0302344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which can result in severe disease, often characterised by a 'cytokine storm' and the associated acute respiratory distress syndrome. However, many infections with SARS-CoV-2 are mild or asymptomatic throughout the course of infection. Although blood biomarkers of severe disease are well studied, less well understood are the inflammatory signatures in lung tissues associated with mild disease or silent infections, wherein infection and inflammation are rapidly resolved leading to sequelae-free recovery. Herein we described RNA-Seq and histological analyses of lungs over time in an omicron BA.1/K18-hACE2 mouse infection model, which displays these latter features. Although robust infection was evident at 2 days post infection (dpi), viral RNA was largely cleared by 10 dpi. Acute inflammatory signatures showed a slightly different pattern of cytokine signatures compared with severe infection models, and where much diminished 30 dpi and absent by 66 dpi. Cellular deconvolution identified significantly increased abundance scores for a number of anti-inflammatory pro-resolution cell types at 5/10 dpi. These included type II innate lymphoid cells, T regulatory cells, and interstitial macrophages. Genes whose expression trended downwards over 2-66 dpi included biomarkers of severe disease and were associated with 'cytokine storm' pathways. Genes whose expression trended upward during this period were associated with recovery of ciliated cells, AT2 to AT1 transition, reticular fibroblasts and innate lymphoid cells, indicating a return to homeostasis. Very few differentially expressed host genes were identified at 66 dpi, suggesting near complete recovery. The parallels between mild or subclinical infections in humans and those observed in this BA.1/K18-hACE2 mouse model are discussed with reference to the concept of "protective inflammation".
Collapse
Affiliation(s)
- Agnes Carolin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Cameron R. Bishop
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel J. Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Hopkins FR, Nordgren J, Fernandez-Botran R, Enocsson H, Govender M, Svanberg C, Svensson L, Hagbom M, Nilsdotter-Augustinsson Å, Nyström S, Sjöwall C, Sjöwall J, Larsson M. Pentameric C-reactive protein is a better prognostic biomarker and remains elevated for longer than monomeric CRP in hospitalized patients with COVID-19. Front Immunol 2023; 14:1259005. [PMID: 37724104 PMCID: PMC10505432 DOI: 10.3389/fimmu.2023.1259005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
The differing roles of the pentameric (p) and monomeric (m) C-reactive protein (CRP) isoforms in viral diseases are not fully understood, which was apparent during the COVID-19 pandemic regarding the clinical course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Herein, we investigated the predictive value of the pCRP and mCRP isoforms for COVID-19 severity in hospitalized patients and evaluated how the levels of the protein isoforms changed over time during and after acute illness. This study utilized samples from a well-characterized cohort of Swedish patients with SARS-CoV-2 infection, the majority of whom had known risk factors for severe COVID-19 and required hospitalization. The levels of pCRP were significantly raised in patients with severe COVID-19 and in contrast to mCRP the levels were significantly associated with disease severity. Additionally, the pCRP levels remained elevated for at least six weeks post inclusion, which was longer compared to the two weeks for mCRP. Our data indicates a low level of inflammation lasting for at least six weeks following COVID-19, which might indicate that the disease has an adverse effect on the immune system even after the viral infection is resolved. It is also clear that the current standard method of testing pCRP levels upon hospitalization is a useful marker for predicting disease severity and mCRP testing would not add any clinical relevance for patients with COVID-19.
Collapse
Affiliation(s)
- Francis R. Hopkins
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rafael Fernandez-Botran
- Department of Pathology & Laboratory Medicine, University of Louisville, Louisville, KY, United States
| | - Helena Enocsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Vrinnevi Hospital, Norrköping, Sweden
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Clinical Immunology and Transfusion Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Vrinnevi Hospital, Norrköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Hopkins FR, Govender M, Svanberg C, Nordgren J, Waller H, Nilsdotter-Augustinsson Å, Henningsson AJ, Hagbom M, Sjöwall J, Nyström S, Larsson M. Major alterations to monocyte and dendritic cell subsets lasting more than 6 months after hospitalization for COVID-19. Front Immunol 2023; 13:1082912. [PMID: 36685582 PMCID: PMC9846644 DOI: 10.3389/fimmu.2022.1082912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction After more than two years the Coronavirus disease-19 (COVID-19) pandemic continues to burden healthcare systems and economies worldwide, and it is evident that the effects on the immune system can persist for months post-infection. The activity of myeloid cells such as monocytes and dendritic cells (DC) is essential for correct mobilization of the innate and adaptive responses to a pathogen. Impaired levels and responses of monocytes and DC to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is likely to be a driving force behind the immune dysregulation that characterizes severe COVID-19. Methods Here, we followed a cohort of COVID-19 patients hospitalized during the early waves of the pandemic for 6-7 months. The levels and phenotypes of circulating monocyte and DC subsets were assessed to determine both the early and long-term effects of the SARS-CoV-2 infection. Results We found increased monocyte levels that persisted for 6-7 months, mostly attributed to elevated levels of classical monocytes. Myeloid derived suppressor cells were also elevated over this period. While most DC subsets recovered from an initial decrease, we found elevated levels of cDC2/cDC3 at the 6-7 month timepoint. Analysis of functional markers on monocytes and DC revealed sustained reduction in program death ligand 1 (PD-L1) expression but increased CD86 expression across almost all cell types examined. Finally, C-reactive protein (CRP) correlated positively to the levels of intermediate monocytes and negatively to the recovery of DC subsets. Conclusion By exploring the myeloid compartments, we show here that alterations in the immune landscape remain more than 6 months after severe COVID-19, which could be indicative of ongoing healing and/or persistence of viral antigens.
Collapse
Affiliation(s)
- Francis R. Hopkins
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hjalmar Waller
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Division of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Linköping University, Linköping, Sweden
| | - Anna J. Henningsson
- Division of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine in Jönköping, Ryhov County Hospital, Jönköping, Sweden
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sjöwall
- Division of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|