1
|
Spieß V, Ribeiro RP, Helm C, Aguado MT. From two segments and beyond: Investigating the onset of regeneration in Syllis malaquini. Evol Dev 2024; 26:e12492. [PMID: 39403009 DOI: 10.1111/ede.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 11/09/2024]
Abstract
Annelids feature a diverse range of regenerative abilities, but complete whole-body regeneration is less common, particularly in the context of the head and anterior body regeneration. This study provides a detailed morphological description of Syllis malaquini regenerative abilities. By replicating previous experiments and performing diverse surgical procedures, we explored the capacity of this species for whole-body regeneration. We detailed the precise timing of regeneration of particular structures such as the eyes, proventricle, pharyngeal tooth, nuchal organs, and body pigmentation after amputation. Our high-resolution scanning electron microscopy and confocal laser-scanning microscopy images provide details of the blastema region, revealing that while anal opening remains in connection to the exterior environment, oral opening is formed "de novo" during blastema differentiation. Additionally, we performed amputations to isolate fragments consisting of one, two, and three segments from the intestinal trunk region. We found that S. malaquini requires at least two to three segments to successfully regenerate the whole body. In addition, we verified a variable capacity to regenerate depending upon the gut region, with structures of the foregut greatly impairing some steps of the regenerative process. Our work notably addresses the gap in knowledge concerning gut formation and its impact on regenerative capabilities. Ongoing research is crucial to unravel the role of gut tissue specificity and plasticity during regeneration in annelids, and particularly in syllids.
Collapse
Affiliation(s)
- Vanessa Spieß
- Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Rannyele P Ribeiro
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Conrad Helm
- Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - M Teresa Aguado
- Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Pieplow C, Furze A, Gregory P, Oulhen N, Wessel GM. Sex specific gene expression is present prior to metamorphosis in the sea urchin. Dev Biol 2024; 517:217-233. [PMID: 39427857 DOI: 10.1016/j.ydbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A profound collaboration between the germline and somatic cells of an organism is the creation of a functional gonad. Here we establish a foundation for studying molecular gonadogenesis in the sea urchin by use of RNA-seq, quantitative mRNA measurements, and in-situ hybridizations throughout the life cycle of the variegated sea urchin, Lytechinus variegatus (Lv). We found through three distinct analyses that the ovary and testis of this echinoderm expresses unique transcripts involved in gametogenesis, and also discovered uncharacterized gene products unique to each gonad. We further developed a pipeline integrating timepoint RNA-seq data throughout development to identify hallmark gene expression in gonads. We found that meiotic and candidate genes involved in sex determination are first expressed surprisingly early during larval growth, and well before metamorphosis. We further discovered that individual larvae express varying amounts of male- or female-hallmarks before metamorphosis, including germline, oocyte, sperm, and meiotic related genes. These distinct male- or female-gonad gene profiles may indicate the onset of, and commitment to, development of a bipotential gonad primordium, and may include metabolic differences, supported by the observation that transcripts involved in glycolysis are highly enriched in the ovary compared to the testis. Together these data support a hypothesis that sex determination is initiated prior to metamorphosis in the sea urchin and that the many uncharacterized genes unique to each gonad type characterized herein may reveal unique pathways and mechanisms in echinoderm reproduction.
Collapse
Affiliation(s)
- Cosmo Pieplow
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Aidan Furze
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Pauline Gregory
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
3
|
Mohajer F, Khoradmehr A, Riazalhosseini B, Zendehboudi T, Nabipour I, Baghban N. In vitro detection of marine invertebrate stem cells: utilizing molecular and cellular biology techniques and exploring markers. Front Cell Dev Biol 2024; 12:1440091. [PMID: 39239558 PMCID: PMC11374967 DOI: 10.3389/fcell.2024.1440091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts. These unique cells persist throughout an organism's adult life and have been observed in various adult marine invertebrate phyla. MISCs play crucial roles in numerous biological processes, including developmental biology phenomena specific to marine invertebrates, such as senescence, delayed senescence, whole-body regeneration, and asexual reproduction. Furthermore, they serve as valuable models for studying stem cell biology. Despite their significance, information about MISCs remains scarce and scattered in the scientific literature. In this review, we have carefully collected and summarized valuable information about MISC detection by perusing the articles that study and detect MISCs in various marine invertebrate organisms. The review begins by defining MISCs and highlighting their unique features compared to vertebrates. It then discusses the common markers for MISC detection and in vitro techniques employed in invertebrate and vertebrates investigation. This comprehensive review provides researchers and scientists with a cohesive and succinct overview of MISC characteristics, detection methods, and associated biological phenomena in marine invertebrate organisms. We aim to offer a valuable resource to researchers and scientists interested in marine invertebrate stem cells, fostering a better understanding of their broader implications in biology. With ongoing advancements in scientific techniques and the continued exploration of marine invertebrate species, we anticipate that further discoveries will expand our knowledge of MISCs and their broader implications in biology.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behnaz Riazalhosseini
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tuba Zendehboudi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Food Control Laboratory, Food and Drug Deputy, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
4
|
Sato DS, Nakamura M, Teresa Aguado M, Miura T. Secondary-tail formation during stolonization in the Japanese green syllid, Megasyllis nipponica. Evol Dev 2024; 26:e12477. [PMID: 38644594 DOI: 10.1111/ede.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/23/2024]
Abstract
Benthic annelids belonging to the family Syllidae show a distinctive sexual reproduction mode called "stolonization," in which posterior segments are transformed into a reproductive individual-like unit called a "stolon." Megasyllis nipponica forms a stolon head and a secondary tail in the middle of the trunk before a stolon detaches, while, in the case of posterior amputation, posterior regeneration initiates at the wound after amputation. To understand the difference between posterior regeneration and secondary-tail formation during stolonization, detailed comparisons between the developmental processes of these two tail-formation types were performed in this study. Morphological and inner structural observations (i.e., cell proliferation and muscular/nervous development) showed that some processes of posterior regeneration, such as blastema formation and muscular/nervous regeneration at the amputation site, are missing during secondary-tail formation. In contrast, the secondary tail showed some unique features, such as the formation of ventrolateral half-tail buds that later fused in the middle and muscle/nerve branches formed before the detachment of the stolon. These novel features in the process of stolonization are suggested to be adaptive since the animals need to recover a posterior end quickly to stolonize again.
Collapse
Affiliation(s)
- Daisuke S Sato
- Misaki Marine Biological Station, The University of Tokyo, Miura, Kanagawa, Japan
| | - Mayuko Nakamura
- Misaki Marine Biological Station, The University of Tokyo, Miura, Kanagawa, Japan
| | - María Teresa Aguado
- Animal Evolution & Biodiversity, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Toru Miura
- Misaki Marine Biological Station, The University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
5
|
Nakamura M, Oguchi K, Sato DS, Kato S, Okanishi M, Hayashi Y, Aguado MT, Miura T. Morphological, histological and gene-expression analyses on stolonization in the Japanese Green Syllid, Megasyllis nipponica (Annelida, Syllidae). Sci Rep 2023; 13:19419. [PMID: 37993494 PMCID: PMC10665476 DOI: 10.1038/s41598-023-46358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
Benthic annelids belonging to the family Syllidae (Annelida, Errantia, Phyllodocida) exhibit a unique reproduction mode called "schizogamy" or "stolonization", in which the posterior body part filled with gametes detaches from the original body, as a reproductive unit (stolon) that autonomously swims and spawns. In this study, morphological and histological observations on the developmental processes during stolonization were carried out in Megasyllis nipponica. Results suggest that the stolon formation started with maturation of gonads, followed by the formation of a head ganglion in the anteriormost segment of the developing stolon. Then, the detailed stolon-specific structures such as stolon eyes and notochaetae were formed. Furthermore, expression profiles of genes involved in the anterior-posterior identity (Hox genes), head determination, germ-line, and hormone regulation were compared between anterior and posterior body parts during the stolonization process. The results reveal that, in the posterior body part, genes for gonadal development were up-regulated, followed by hormone-related genes and head-determination genes. Unexpectedly, Hox genes known to identify body parts along the anterior-posterior axis showed no significant temporal expression changes. These findings suggest that during stolonization, gonad development induces the head formation of a stolon, without up-regulation of anterior Hox genes.
Collapse
Affiliation(s)
- Mayuko Nakamura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Kohei Oguchi
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Daisuke S Sato
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Sumika Kato
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Masanori Okanishi
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan
- Faculty of Human Environmental Studies, Hiroshima Shudo University, Ozuka-Higashi, Asaminami, Hiroshima, 731-3195, Japan
| | - Yoshinobu Hayashi
- Department of Biology, Keio University, Hiyoshi, Yokohama, 223-8521, Japan
| | - M Teresa Aguado
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, 37073, Göttingen, Germany
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan.
| |
Collapse
|
6
|
Duan H, Shao X, Liu W, Xiang J, Pan N, Wang X, Du G, Li Y, Zhou J, Sui L. Spatio-temporal patterns of ovarian development and VgR gene silencing reduced fecundity in parthenogenetic Artemia. Open Biol 2023; 13:230172. [PMID: 37963545 PMCID: PMC10645507 DOI: 10.1098/rsob.230172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
The halophilic zooplankton brine shrimp Artemia has been used as an experimental animal in multidisciplinary studies. However, the reproductive patterns and its regulatory mechanisms in Artemia remain unclear. In this study, the ovarian development process of parthenogenetic Artemia (A. parthenogenetica) was divided into five stages, and oogenesis or egg formation was identified in six phases. The oogenesis mode was assumed to be polytrophic. We also traced the dynamic translocation of candidate germline stem cells (cGSCs) using EdU labelling and elucidated several key cytological events in oogenesis through haematoxylin and eosin staining and fluorescence imaging. Distinguished from the ovary structure of insects and crustaceans, Artemia germarium originated from ovariole buds and are located at the base of the ovarioles. RNA-seq based on five stages of ovarian development identified 2657 upregulated genes related to reproduction by pair-to-pair comparison. Gbb, Dpp, piwi, vasa, nanos, VgA and VgR genes associated with cGSCs recognition and reproductive development were screened and verified using qPCR. Silencing of the VgR gene in A. parthenogenetica (Ap-VgR) at ovarian development Stage II led to a low level of gene expression (less than 10%) within 5 days, which resulted in variations in oogenesis-related gene expression and significantly inhibited vitellogenesis, impeded oocyte maturation, and eventually decreased the number of offspring. In conclusion, we have illustrated the patterns of ovarian development, outlined the key spatio-temporal features of oogenesis and identified the negative impacts of VgR gene knockdown on oogenesis using A. parthenogenetica as an experimental animal. The findings of this study also lay a foundation for the further study of reproductive biology of invertebrates.
Collapse
Affiliation(s)
- Hu Duan
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
- Key Laboratory of Marine Resource Chemistry and Food Technology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Xuanxuan Shao
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Wei Liu
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, People's Republic of China
| | - Namin Pan
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Xuehui Wang
- Tianjin Fisheries Research Institute, Tianjin 300221, People's Republic of China
| | - Guoru Du
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Ying Li
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Jiaping Zhou
- Research Center of Modern Analytical Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| | - Liying Sui
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
- Key Laboratory of Marine Resource Chemistry and Food Technology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, People's Republic of China
| |
Collapse
|
7
|
Kostyuchenko RP, Smirnova NP. Vasa, Piwi, and Pl10 Expression during Sexual Maturation and Asexual Reproduction in the Annelid Pristina longiseta. J Dev Biol 2023; 11:34. [PMID: 37606490 PMCID: PMC10443295 DOI: 10.3390/jdb11030034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Naidids are tiny, transparent freshwater oligochaetes, which are well known for their ability to propagate asexually. Despite the fact that sexually mature individuals and cocoons with embryos are sometimes found in nature, in long-period laboratory cultures, worms reproduce agametically only. In this paper, we showed, for the first time, the expression of Vasa, Piwi, and Pl10 homologs in mature Pristina longiseta worms with well-developed reproductive system structures and germ cells. Although the animals have been propagated asexually by paratomic fission for over 20 years in our lab, some individuals become sexualized under standard conditions for our laboratory culture and demonstrate various stages of maturation. The fully matured animals developed a complete set of sexual apparatus including spermatheca, atrium, seminal vesicles, and ovisac. They also had a clitellum and were able to form cocoons. The cues for the initiation of sexual maturation are still unknown for P. longiseta; nevertheless, our data suggest that the laboratory strain of P. longiseta maintains the ability to become fully sexually mature and to establish germline products even after a long period of agametic reproduction. On the other hand, many of the sexualized worms formed a fission zone and continued to reproduce asexually. Thus, in this species, the processes of asexual reproduction and sexual maturation do not preclude each other, and Vasa, Piwi, and Pl10 homologs are expressed in both somatic and germline tissue including the posterior growth zone, fission zone, nervous system, germline cells, and gametes.
Collapse
Affiliation(s)
- Roman P. Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia;
| | - Natalia P. Smirnova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia;
- Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0317 Oslo, Norway
- Hybrid Technology Hub-Centre for Organ on a Chip-Technology, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
8
|
Pieplow C, Wessel G. Functional annotation of a hugely expanded nanos repertoire in Lytechinus variegatus, the green sea urchin. Mol Reprod Dev 2023; 90:310-322. [PMID: 37039283 PMCID: PMC10225336 DOI: 10.1002/mrd.23684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/17/2023] [Accepted: 03/18/2023] [Indexed: 04/12/2023]
Abstract
Nanos genes encode essential RNA-binding proteins involved in germline determination and germline stem cell maintenance. When examining diverse classes of echinoderms, typically three, sometimes four, nanos genes are present. In this analysis, we identify and annotate nine nanos orthologs in the green sea urchin, Lytechinus variegatus (Lv). All nine genes are transcribed and grouped into three distinct classes. Class one includes the germline Nanos, with one member: Nanos2. Class two includes Nanos3-like genes, with significant sequence similarity to Nanos3 in the purple sea urchin, Strongylocentrotus purpuratus (Sp), but with wildly variable expression patterns. The third class includes several previously undescribed nanos zinc-finger genes that may be the result of duplications of Nanos2. All nine nanos transcripts occupy unique genomic loci and are expressed with unique temporal profiles during development. Importantly, here we describe and characterize the unique genomic location, conservation, and phylogeny of the Lv ortholog of the well-studied Sp Nanos2. However, in addition to the conserved germline functioning Nanos2, the green sea urchin appears to be an outlier in the echinoderm phyla with eight additional nanos genes. We hypothesize that this expansion of nanos gene members may be the result of a previously uncharacterized L1-class transposon encoded on the opposite strand of a nanos2 pseudogene present on chromosome 12 in this species. The expansion of nanos genes described here represents intriguing insights into germline specification and nanos evolution in this species of sea urchin.
Collapse
Affiliation(s)
- Cosmo Pieplow
- MCB Department, Division of Biomedicine, Brown University, Providence RI 02912
| | - Gary Wessel
- MCB Department, Division of Biomedicine, Brown University, Providence RI 02912
| |
Collapse
|
9
|
Hayashi Y, Oguchi K, Nakamura M, Koshikawa S, Miura T. Construction of a massive genetic resource by transcriptome sequencing and genetic characterization of Megasyllis nipponica (Annelida: Syllidae). Genes Genet Syst 2022; 97:153-166. [PMID: 36070927 DOI: 10.1266/ggs.21-00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Understanding the processes and consequences of the morphological diversity of organisms is one of the major goals of evolutionary biology. Studies on the evolution of developmental mechanisms of morphologies, or evo-devo, have been extensively conducted in many taxa and have revealed many interesting phenomena at the molecular level. However, many other taxa exhibiting intriguing morphological diversity remain unexplored in the field of evo-devo. Although the annelid family Syllidae shows spectacular diversity in morphological development associated with reproduction, its evo-devo study, especially on molecular development, has progressed slowly. In this study, we focused on Megasyllis nipponica as a new model species for evo-devo in syllids and performed transcriptome sequencing to develop a massive genetic resource, which will be useful for future molecular studies. From the transcriptome data, we identified candidate genes that are likely involved in morphogenesis, including genes involved in hormone regulation, sex determination and appendage development. Furthermore, a computational analysis of the transcriptome sequence data indicated the occurrence of DNA methylation in coding regions of the M. nipponica genome. In addition, flow cytometry analysis showed that the genome size of M. nipponica was approximately 524 megabases. These results facilitate the study of morphogenesis in molecular terms and contribute to our understanding of the morphological diversity in syllids.
Collapse
Affiliation(s)
| | - Kohei Oguchi
- Misaki Marine Biological Station, School of Science, The University of Tokyo.,National Institute of Advanced Industrial Science and Technology (AIST)
| | - Mayuko Nakamura
- Misaki Marine Biological Station, School of Science, The University of Tokyo
| | - Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University.,Graduate School of Environmental Science, Hokkaido University
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo
| |
Collapse
|
10
|
Sun M, Liu JQ, Du XL, Liu SQ, Wang L. Cloning and expression analysis of Shvasa and the molecular regulatory pathways implicated in Cd-induced reproductive toxicity in the freshwater crab Sinopotamon henanense. CHEMOSPHERE 2022; 288:132437. [PMID: 34627817 DOI: 10.1016/j.chemosphere.2021.132437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), a widespread, severely toxic heavy metal, can cause serious reproductive toxicity in animals. However, the molecular pathways associated with Cd-induced effects remain unknown. In this study, we first cloned the vasa gene (Shvasa) and characterized the VASA protein (ShVASA) in Sinopotamon henanense. We then investigated the molecular mechanisms of Cd-induced reproductive toxicity. Shvasa was specifically expressed in the ovary and testis. ShVASA was abundant in early ovarian development and significantly less abundant in mature ovaries. During oogenesis, ShVASA was abundant and evenly distributed in the cytoplasm of the oogonium and previtellogenic oocytes, but gradually accumulated in the nuclear periphery of vitellogenic and mature oocytes. As Cd concentration increased, ShVASA abundance decreased gradually in proliferation-stage ovaries, and increased gradually in mature ovaries. Notably, at the small and large growth stages, ShVASA was upregulated following exposure to 14.5 mg/L Cd and downregulated following exposure to 29 mg/L Cd. In contrast to the unexposed control, ShVASA accumulated around the nuclear periphery in Cd-exposed previtellogenic oocytes and scattered gradually into the cytoplasm in Cd-exposed vitellogenic and mature oocytes. Shvasa RNA interference (RNAi) downregulated Shnanos and Shpiwi, but simultaneous Cd exposure and Shvasa RNAi significantly upregulated Shnanos and downregulated Shpiwi. These data suggested that Cd disrupted Shvasa expression and function, as well as the functions of Shnanos and Shpiwi, leading to severe reproductive toxicity in S. henanense.
Collapse
Affiliation(s)
- Min Sun
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jun Qing Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiao Lin Du
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Si Qi Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
11
|
Nanos Is Expressed in Somatic and Germline Tissue during Larval and Post-Larval Development of the Annelid Alitta virens. Genes (Basel) 2022; 13:genes13020270. [PMID: 35205316 PMCID: PMC8871563 DOI: 10.3390/genes13020270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Nanos is a translational regulator that is involved in germline development in a number of diverse animals and is also involved in somatic patterning in several model organisms, including insects. Neither germline development nor somatic stem cell lines/undifferentiated multipotent cells have been characterized in the development of the annelid Alitta virens, nor is the mechanism of germ/stem-line specification generally well-understood in annelids. Here, I have cloned an Avi-nanos ortholog from A. virens and determined the spatial and temporal expression of Nanos. The results revealed that transcripts of nanos are expressed during differentiation of multiple tissues, including those that are derived from the 2d and 4d cells. In late embryonic stages and during larval development, these transcripts are expressed in the presumptive brain, ventral nerve cord, mesodermal bands, putative primordial germ cells (PGCs), and developing foregut and hindgut. During metamorphosis of the nectochaete larva into a juvenile worm, a posterior growth zone consisting of nanos-positive cells is established, and the PGCs begin to migrate. Later, the PGCs stop migrating and form a cluster of four nanos-expressing cells located immediately behind the jaws (segments 4–5). During posterior regeneration following caudal amputation, a robust Avi-nanos expression appears de novo at the site of injury and further accompanies all steps of regeneration. The obtained data suggest that blastemal cells are mostly derived from cells of the segment adjacent to the amputation site; this is consistent with the idea that the cluster of PGCs do not participate in regeneration.
Collapse
|
12
|
Aguado MT, Ponz-Segrelles G, Glasby CJ, Ribeiro RP, Nakamura M, Oguchi K, Omori A, Kohtsuka H, Fisher C, Ise Y, Jimi N, Miura T. Ramisyllis kingghidorahi n. sp., a new branching annelid from Japan. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-021-00538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractAmong over 20,000 species of Annelida, only two branching species with a highly modified body-pattern are known until now: the Syllidae Syllis ramosa McIntosh, 1879, and Ramisyllis multicaudata Glasby et al. (Zoological Journal of the Linnean Society, 164, 481–497, 2012). Both have unusual ramified bodies with one head and multiple branches and live inside the canals of host sponges. Using an integrative approach (combining morphology, internal anatomy, ecology, phylogeny, genetic divergence, and the complete mitochondrial genome), we describe a new branching species from Japan, Ramisyllis kingghidorahi n. sp., inhabiting an undescribed species of Petrosia (Porifera: Demospongiae) from shallow waters. We compare the new species with its closest relative, R. multicaudata; emend the diagnosis of Ramisyllis; and discuss previous reports of S. ramosa. This study suggests a much higher diversity of branching syllids than currently known. Finally, we discuss possible explanations for the feeding behaviour in the new species in relation to its highly ciliated wall of the digestive tubes (especially at the distal branches and anus), and provide a hypothesis for the evolution of branching body patterns as the result of an adaptation to the host sponge labyrinthic canal system.
Collapse
|
13
|
Ponz-Segrelles G, Ribeiro RP, Aguado MT. Monsters reveal patterns: bifurcated annelids and their implications for the study of development and evolution. Biol Rev Camb Philos Soc 2021; 97:896-922. [PMID: 34931440 DOI: 10.1111/brv.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
During recent decades, the study of anatomical anomalies has been of great relevance for research on development and its evolution. Yet most animal groups have never been studied under this perspective. In annelids, one of the most common and remarkable anomalies is anteroposterior axis bifurcation, that is animals that have two or more heads and/or tails. Bifurcated annelids were first described in the 18th century and have been occasionally reported since then. However, these animals have rarely been considered other than curiosities, one-off anomalies, or monsters, and a condensed but comprehensive analysis of this phenomenon is lacking. Such an analysis of the existing knowledge is necessary for addressing the different patterns of annelid bifurcation, as well as to understand possible developmental mechanisms behind them and their evolution. In this review we summarize reports of annelid bifurcation published during the last 275 years and the wide variety of anatomies they present. Our survey reveals bifurcation as a widespread phenomenon found all over the annelid tree. Moreover, it also shows that bifurcations can be classified into different types according to anatomy (lateral versus dorsoventral) or developmental origin (embryonic versus postembryonic, the latter occurring in relation to regeneration, reproduction, or growth). Regarding embryos, three different types of bifurcation can be found: conjoined twins (in clitellates); Janus embryos (two posterior ends with a single head which shows duplicated structures); and duplicitas cruciata embryos (with anterior and posterior bifurcation with a 90° rotation). In adults, we show that while lateral bifurcation can result in well-integrated phenotypes, dorsoventral bifurcation cannot since it requires the discontinuity of at least some internal organs. The relevance of this distinction is highlighted in the case of the Ribbon Clade, a group of syllid annelids in which some species reproduce by collateral and successive gemmiparity (which involves dorsoventral bifurcation), while others grow by branching laterally. Although most known cases of bifurcation came from accidental findings in the wild or were unintentionally produced, experimental studies resulting in the induction of bifurcation of both embryos and adults are also reviewed. In embryos, these experimental studies show how mechanical or chemical disruption of the zygote can result in bifurcation. In adults, the ventral nervous system and the digestive tract seem to play a role in the induction of bifurcation. Based on the reviewed evidence, we argue that the long-forgotten study of annelid developmental anomalies should be incorporated into the growing field of annelid EvoDevo and examined with modern techniques and perspectives.
Collapse
Affiliation(s)
- Guillermo Ponz-Segrelles
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, Madrid, 28049, Spain
| | - Rannyele P Ribeiro
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, Madrid, 28049, Spain.,Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, U.S.A
| | - M Teresa Aguado
- Biodiversitätsmuseum, Animal Evolution & Biodiversity, Georg-August-Universität Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| |
Collapse
|
14
|
Tellez-Garcia AA, Álvarez-Martínez R, López-Martínez JM, Arellano-Carbajal F. Transcriptome analysis during early regeneration of Lumbriculus variegatus. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
On the Diversity of Phyllodocida (Annelida: Errantia), with a Focus on Glyceridae, Goniadidae, Nephtyidae, Polynoidae, Sphaerodoridae, Syllidae, and the Holoplanktonic Families. DIVERSITY-BASEL 2021. [DOI: 10.3390/d13030131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phyllodocida is a clade of errantiate annelids characterized by having ventral sensory palps, anterior enlarged cirri, axial muscular proboscis, compound chaetae (if present) with a single ligament, and of lacking dorsolateral folds. Members of most families date back to the Carboniferous, although the earliest fossil was dated from the Devonian. Phyllodocida holds 27 well-established and morphologically homogenous clades ranked as families, gathering more than 4600 currently accepted nominal species. Among them, Syllidae and Polynoidae are the most specious polychaete groups. Species of Phyllodocida are mainly found in the marine benthos, although a few inhabit freshwater, terrestrial and planktonic environments, and occur from intertidal to deep waters in all oceans. In this review, we (1) explore the current knowledge on species diversity trends (based on traditional species concept and molecular data), phylogeny, ecology, and geographic distribution for the whole group, (2) try to identify the main knowledge gaps, and (3) focus on selected families: Alciopidae, Goniadidae, Glyceridae, Iospilidae, Lopadorrhynchidae, Polynoidae, Pontodoridae, Nephtyidae, Sphaerodoridae, Syllidae, Tomopteridae, Typhloscolecidae, and Yndolaciidae. The highest species richness is concentrated in European, North American, and Australian continental shelves (reflecting a strong sampling bias). While most data come from shallow coastal and surface environments most world oceans are clearly under-studied. The overall trends indicate that new descriptions are constantly added through time and that less than 10% of the known species have molecular barcode information available.
Collapse
|
16
|
Peter MJ, Maceren-Pates M, Pates G, Yoshikuni M, Kurita Y. Germ Cell Development in Male Perinereis nuntia and Gamete Spawning Mechanisms in Males and Females. Zoolog Sci 2021; 37:519-528. [PMID: 33269867 DOI: 10.2108/zs200080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022]
Abstract
Perinereis nuntia is a fully segmented worm with complete intersegmental septa. A previous study of females revealed that germ cells of this animal originate in the tail end segment, called the pygidium. Germ cells were duplicated in the pygidium, transferred to a newly generated segment, and then settled in the parapodia. Within each segment, the settled germ cells proliferated in the parapodia and then migrated into a body cavity area to begin meiotic development. Currently, there is not much information about differences between male and female germ cell development. Therefore, we conducted monthly in situ hybridization analyses using the germ cell marker Pn-piwi and histological examinations. Germ cells detected by Pn-piwi initially settled in the distal areas of the parapodia on both sides of each segment, then formed a large germ cell cluster in each parapodium, and finally, small germ cell clusters were formed by the separation of the large clusters. The small clusters migrated to the deeper body cavity area during growth by segment addition. Until the female germ cells began vitellogenesis, the sex of germ cells could not be identified by morphological observation. Thus, male and female P. nuntia may have the same mechanism of germ cell provision to all segments. At the time of spawning, sperm were released from nephridiopores at the 2nd through 15th segments from the pygidium, while eggs were released through ruptures in the skin of 2-3 segments between the 10th and 30th segments from the tail.
Collapse
Affiliation(s)
- Maria January Peter
- Fishery Research Laboratory, Kyushu University, 4-46-24, Tsuyazaki, Fukutsu 811-3304, Japan
| | - Mercedes Maceren-Pates
- Mindanao State University-Naawan, Pedro Pagalan St. Poblacion, Naawan, 9023 Misamis Oriental, Philippines
| | - Gaudioso Pates
- Fishery Research Laboratory, Kyushu University, 4-46-24, Tsuyazaki, Fukutsu 811-3304, Japan
| | - Michiyasu Yoshikuni
- Fishery Research Laboratory, Kyushu University, 4-46-24, Tsuyazaki, Fukutsu 811-3304, Japan
| | - Yoshihisa Kurita
- Fishery Research Laboratory, Kyushu University, 4-46-24, Tsuyazaki, Fukutsu 811-3304, Japan,
| |
Collapse
|
17
|
Xu CM, Sun SC. Expression of Piwi Genes during the Regeneration of Lineus sanguineus (Nemertea, Pilidiophora, Heteronemertea). Genes (Basel) 2020; 11:E1484. [PMID: 33321919 PMCID: PMC7764242 DOI: 10.3390/genes11121484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The transposon silencer piwi genes play important roles in germline determination and maintenance, gametogenesis, and stem-cell self-renewal, and the expression of certain piwi genes is indispensable for regeneration. Knowledge about piwi genes is needed for phylum Nemertea, which contains members (e.g., Lineus sanguineus) with formidable regeneration capacity. By searching the L. sanguineus genome, we identified six Argonaute genes including three ago (Ls-Ago2, Ls-Ago2a, and Ls-Ago2b) and three piwi (Ls-piwi1, Ls-piwi2, and Ls-piwi3) genes. In situ hybridization revealed that, in intact females, Ls-piwi2 and Ls-piwi3 were not expressed, while Ls-piwi1 was expressed in ovaries. During regeneration, Ls-piwi1 and Ls-pcna (proliferating cell nuclear antigen) had strong and similar expressions. The expression of Ls-piwi1 became indetectable while Ls-pcna continued to be expressed when the differentiation of new organs was finished. During anterior regeneration, expression signals of Ls-piwi2 and Ls-piwi3 were weak and only detected in the blastema stage. During posterior regeneration, no expression was observed for Ls-piwi2. To date, no direct evidence has been found for the existence of congenital stem cells in adult L. sanguineus. The "pluripotent cells" in regenerating tissues are likely to be dedifferentiated from other type(s) of cells.
Collapse
Affiliation(s)
| | - Shi-Chun Sun
- College of Fisheries, Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
| |
Collapse
|
18
|
Ponz-Segrelles G, Ribeiro RP, Bleidorn C, Aguado Molina MT. Sex-specific gene expression differences in reproducing Syllis prolifera and Nudisyllis pulligera (Annelida, Syllidae). Mar Genomics 2020; 54:100772. [DOI: 10.1016/j.margen.2020.100772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 01/22/2023]
|
19
|
Ribeiro RP, Ponz-Segrelles G, Bleidorn C, Aguado MT. Comparative transcriptomics in Syllidae (Annelida) indicates that posterior regeneration and regular growth are comparable, while anterior regeneration is a distinct process. BMC Genomics 2019; 20:855. [PMID: 31726983 PMCID: PMC6854643 DOI: 10.1186/s12864-019-6223-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/24/2019] [Indexed: 02/23/2023] Open
Abstract
Background Annelids exhibit remarkable postembryonic developmental abilities. Most annelids grow during their whole life by adding segments through the action of a segment addition zone (SAZ) located in front of the pygidium. In addition, they show an outstanding ability to regenerate their bodies. Experimental evidence and field observations show that many annelids are able to regenerate their posterior bodies, while anterior regeneration is often limited or absent. Syllidae, for instance, usually show high abilities of posterior regeneration, although anterior regeneration varies across species. Some syllids are able to partially restore the anterior end, while others regenerate all lost anterior body after bisection. Here, we used comparative transcriptomics to detect changes in the gene expression profiles during anterior regeneration, posterior regeneration and regular growth of two syllid species: Sphaerosyllis hystrix and Syllis gracilis; which exhibit limited and complete anterior regeneration, respectively. Results We detected a high number of genes with differential expression: 4771 genes in S. hystrix (limited anterior regeneration) and 1997 genes in S. gracilis (complete anterior regeneration). For both species, the comparative transcriptomic analysis showed that gene expression during posterior regeneration and regular growth was very similar, whereas anterior regeneration was characterized by up-regulation of several genes. Among the up-regulated genes, we identified putative homologs of regeneration-related genes associated to cellular proliferation, nervous system development, establishment of body axis, and stem-cellness; such as rup and JNK (in S. hystrix); and glutamine synthetase, elav, slit, Hox genes, β-catenin and PL10 (in S. gracilis). Conclusions Posterior regeneration and regular growth show no significant differences in gene expression in the herein investigated syllids. However, anterior regeneration is associated with a clear change in terms of gene expression in both species. Our comparative transcriptomic analysis was able to detect differential expression of some regeneration-related genes, suggesting that syllids share some features of the regenerative mechanisms already known for other annelids and invertebrates.
Collapse
Affiliation(s)
- Rannyele Passos Ribeiro
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
| | - Guillermo Ponz-Segrelles
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Christoph Bleidorn
- Animal Evolution & Biodiversity, Georg-August-Universität Göttingen, 37073, Göttingen, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Maria Teresa Aguado
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. .,Animal Evolution & Biodiversity, Georg-August-Universität Göttingen, 37073, Göttingen, Germany. .,Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, 28049, España.
| |
Collapse
|
20
|
Miura T, Oguchi K, Nakamura M, Jimi N, Miura S, Hayashi Y, Koshikawa S, Aguado MT. Life Cycle of the Japanese Green Syllid, Megasyllis nipponica (Annelida: Syllidae): Field Collection and Establishment of Rearing System. Zoolog Sci 2019; 36:372-379. [PMID: 33319960 DOI: 10.2108/zs190058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/05/2019] [Indexed: 11/17/2022]
Abstract
Some polychaete species in the family Syllidae exhibit distinctive life cycles, in which a posterior part of the body of an individual detaches as a reproductive individual called a "stolon". This type of reproductive mode is known as stolonization or schizogamy. Although a number of observations have been reported, and techniques using molecular markers have recently been applied to characterize this phenomenon, little is known about the developmental and physiological mechanisms underlying stolonization. In the present study, Megasyllis nipponica, a common syllid species distributed throughout Japan, is proposed as a model to reveal the developmental and physiological mechanism of stolonization, and the rearing system to maintain it in laboratory conditions is described. This species was repeatedly sampled around Hokkaido, where more dense populations were found from August to October. The animals were maintained in the laboratory under stable long-day condition (20°C, 16L:8D), and fed mainly with spinach powder. Stolonization processes, spawning, embryonic and postembryonic development were observed and documented, and the required period of time for each developmental stage was recorded. The complete generation time was around two months under the rearing condition. The information provided is valuable to maintain this and other syllid species in the laboratory, and hence contributes to the establishment of new evolutionary and developmental research lines in this group of annelids.
Collapse
Affiliation(s)
- Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan, .,Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Kohei Oguchi
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan.,Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Mayuko Nakamura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Naoto Jimi
- Bioscience Group, National Institute of Polar Research, Tachikawa, Tokyo 190-0014, Japan
| | - Sakiko Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan.,Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yoshinobu Hayashi
- Department of Biology, Keio University, Yokohama, Kanagawa 223-8521, Japan
| | - Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - M Teresa Aguado
- Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Göttingen, Germany.,Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|