1
|
Qu J, Fang Y, Tao R, Zhao J, Xu T, Chen R, Zhang J, Meng K, Yang Q, Zhang K, Yan X, Sun D, Chen X. Advancing thyroid disease research: The role and potential of zebrafish model. Life Sci 2024; 357:123099. [PMID: 39374770 DOI: 10.1016/j.lfs.2024.123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Thyroid disorders significantly affect human metabolism, cardiovascular function, skeletal health, and reproductive systems, presenting a complex challenge due to their multifactorial nature. Understanding the underlying mechanisms and developing novel therapeutic approaches require appropriate models. Zebrafish, with their genetic tractability, short life cycle, and physiological relevance, have emerged as a valuable model for investigating thyroid diseases. This review provides a comprehensive analysis of the zebrafish thyroid gland's structure and function, explores its application in modeling thyroid pathologies such as hypothyroidism, hyperthyroidism, and thyroid cancer, and discusses current limitations and possible improvements. Furthermore, it outlines future directions for zebrafish-based research, focusing on enhancing the model's relevance to human thyroid disease and its potential to expedite the development of clinical therapies.
Collapse
Affiliation(s)
- Junying Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jing Zhao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Rongbing Chen
- Department of Biomedical, City university of Hong Kong, Kowloon 999077, Hong Kong
| | - Junbei Zhang
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Kaikai Meng
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China; Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| |
Collapse
|
2
|
Borisov V, Shkil F. Effects and phenotypic consequences of transient thyrotoxicosis and hypothyroidism at different stages of zebrafish Danio rerio (Teleostei; Cyprinidae) skeleton development. Anat Rec (Hoboken) 2024. [PMID: 39431292 DOI: 10.1002/ar.25592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
The effects and consequences of changes in thyroid hormones (THs) level are among the actively studied topics in teleost developmental and evolutionary biology. In most of the experimental models used, the altered hormonal status (either hypo- or hyperthyroidism) is a stable characteristic of the developing organism, and the observed phenotypic outcomes are the cumulative consequences of multiple TH-induced developmental changes. Meanwhile, the influence of the transient fluctuations of TH content on skeleton development has been much less studied. Here, we present experimental data on the developmental effects and phenotypic consequences of transient, pharmacologically induced thyrotoxicosis and hypothyroidism at different stages of ossified skeleton patterning in zebrafish. According to the results, the skeleton structures differed in TH sensitivity. Some showed a notable shift in the developmental timing and rate, while other demonstrated little or no response to changes in TH content. The developmental stages also differed in TH sensitivity. We identified a relatively short developmental period, during which changes in TH level significantly increased the developmental instability and plasticity, leading to phenotypic consequences comparable to those in fish with a persistent hypo- or hyperthyroidism. These findings allow this period to be considered as a critical developmental window.
Collapse
Affiliation(s)
- Vasily Borisov
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
| | - Fedor Shkil
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
- N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| |
Collapse
|
3
|
Woronowicz KC, Esin EV, Markevich GN, Martinez CS, McMenamin SK, Daane JM, Harris MP, Shkil FN. Phylogenomic analysis of the Lake Kronotskoe species flock of Dolly Varden charr reveals genetic and developmental signatures of sympatric radiation. Development 2024; 151:dev203002. [PMID: 39417576 DOI: 10.1242/dev.203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Recent adaptive radiations provide experimental opportunities to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetic analyses as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, charr species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotskoe represent the most extensive radiation described for the genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages within the clade. We find that changes in genes associated with thyroid signaling and craniofacial development provided a foundational shift in evolution to the lake. The thyroid axis is further implicated in subsequent lineage partitioning events. These results delineate a genetic scenario for the diversification of specialized lineages and highlight a common axis of change biasing the generation of specific forms during adaptive radiation.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- Department of Orthopedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Evgeny V Esin
- Laboratory of Lower Vertebrate Ecology, Severtsov Institute, Moscow 119071, Russian Federation
| | - Grigorii N Markevich
- Laboratory of Lower Vertebrate Ecology, Severtsov Institute, Moscow 119071, Russian Federation
| | | | | | - Jacob M Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Matthew P Harris
- Department of Orthopedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Fedor N Shkil
- Laboratory of Evolutionary Morphology, Severtsov Institute, Moscow 119071, Russian Federation
- Laboratory of Postembryonic Development, Koltzov Institute, Moscow 119071, Russian Federation
| |
Collapse
|
4
|
Woronowicz KC, Esin EV, Markevich GN, Martinez CS, McMenamin SK, Daane JM, Harris MP, Shkil FN. Phylogenomic analysis of the Lake Kronotskoe species flock of Dolly Varden charr reveals genetic and developmental signatures of sympatric radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.24.529919. [PMID: 38712299 PMCID: PMC11071292 DOI: 10.1101/2023.02.24.529919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Recent adaptive radiations provide evolutionary case studies, which provide the context to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetics as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotske represent the most extensive radiation described for the charr genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages with little evidence of hybridization. We also find that specific selection on thyroid signaling and craniofacial genes forms a genomic basis for the radiation. Thyroid hormone is further implicated in subsequent lineage partitioning events. These results delineate a clear genetic basis for the diversification of specialized lineages, and highlight the role of developmental mechanisms in shaping the forms generated during adaptive radiation.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- Department of Orthopaedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Evgeny V Esin
- AN Severtsov Institute of Ecology and Evolution, RAS; Leninskiy-33, 119071 Moscow, Russian Federation
| | - Grigorii N Markevich
- Kronotsky Nature Biosphere Reserve; Ryabikova-48, 68400 Yelizovo, Russian Federation
| | | | | | - Jacob M Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
| | - Matthew P Harris
- Department of Orthopaedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Fedor N Shkil
- AN Severtsov Institute of Ecology and Evolution, RAS; Leninskiy-33, 119071 Moscow, Russian Federation
- NK Koltzov Institute of Developmental Biology, RAS; Vavilova-26, 119334 Moscow, Russian Federation
| |
Collapse
|
5
|
Zwahlen J, Gairin E, Vianello S, Mercader M, Roux N, Laudet V. The ecological function of thyroid hormones. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220511. [PMID: 38310932 PMCID: PMC10838650 DOI: 10.1098/rstb.2022.0511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024] Open
Abstract
Thyroid hormones (TH) are central hormonal regulators, orchestrating gene expression and complex biological processes vital for growth and reproduction in variable environments by triggering specific developmental processes in response to external cues. TH serve distinct roles in different species: inducing metamorphosis in amphibians or teleost fishes, governing metabolic processes in mammals, and acting as effectors of seasonality. These multifaceted roles raise questions about the underlying mechanisms of TH action. Recent evidence suggests a shared ecological role of TH across vertebrates, potentially extending to a significant portion of bilaterian species. According to this model, TH ensure that ontogenetic transitions align with environmental conditions, particularly in terms of energy expenditure, helping animals to match their ontogenetic transition with available resources. This alignment spans post-embryonic developmental transitions common to all vertebrates and more subtle adjustments during seasonal changes. The underlying logic of TH function is to synchronize transitions with the environment. This review briefly outlines the fundamental mechanisms of thyroid signalling and shows various ways in which animals use this hormonal system in natural environments. Lastly, we propose a model linking TH signalling, environmental conditions, ontogenetic trajectory and metabolism. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Jann Zwahlen
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Emma Gairin
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Stefano Vianello
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Lan 262, Taiwan
| | - Manon Mercader
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Natacha Roux
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Lan 262, Taiwan
| |
Collapse
|
6
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
7
|
Chen X, Xu J, Cheng Z, Wang Q, Zhao Z, Jiang Q. Causal relationship between hypothyroidism and temporomandibular disorders: evidence from complementary genetic methods. BMC Oral Health 2024; 24:247. [PMID: 38368359 PMCID: PMC10873979 DOI: 10.1186/s12903-024-03999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND The role of thyroid health in temporomandibular disorders (TMDs) has been emphasized in observational studies. However, whether the causation exists is unclear, and controversy remains about which specific disorder, such as hypothyroidism or hyperthyroidism, is destructive in TMDs. This study aims to investigate the overall and specific causal effects of various thyroid conditions on TMDs. METHODS Mendelian randomization (MR) studies were performed using genetic instruments for thyrotropin (TSH, N = 119,715), free thyroxine (fT4, N = 49,269), hypothyroidism (N = 410,141), hyperthyroidism (N = 460,499), and TMDs (N = 211,023). We assessed the overall effect of each thyroid factor via inverse-variance weighted (IVW), weighted median, and MR-Egger methods, and performed extensive sensitivity analyses. Additionally, multivariable MR was conducted to evaluate the direct or indirect effects of hypothyroidism on TMDs whilst accounting for TSH, fT4 and hyperthyroidism, and vice versa. RESULTS Univariable MR analyses revealed a causal effect of hypothyroidism on an increased risk of TMDs (IVW OR: 1.12, 95% CI: 1.05-1.20, p = 0.001). No significant association between genetically predicted hyperthyroidism, TSH, or fT4 and TMDs. In the multivariable MR analyses, the effects of hypothyroidism on TMDs occurrence remained significant even after adjSusting for TSH, fT4 and hyperthyroidism (multivariable IVW OR: 1.10, 95% CI: 1.03-1.17, p = 0.006). No pleiotropy and heterogeneity were detected in the analyses (p > 0.05). CONCLUSIONS Hypothyroidism might causally increase the risk of TMDs through a direct pathway, highlighting the critical role of managing thyroid health in the prevention of TMDs. Clinicians should give heightened attention to patients with hypothyroidism when seeking medical advice for temporomandibular discomfort. However, caution is warranted due to the potential confounders, pleiotropy, and selection bias in the MR study.
Collapse
Affiliation(s)
- Xin Chen
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, No.163, Shoushan Road, Jiangyin, Jiangsu Province, 214400, China
| | - Junyu Xu
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, No.163, Shoushan Road, Jiangyin, Jiangsu Province, 214400, China
| | - Zheng Cheng
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, No.163, Shoushan Road, Jiangyin, Jiangsu Province, 214400, China
| | - Qianyi Wang
- Department of Cardiology, Jiangyin People's Hospital Affiliated to Nantong University, No.163, Shoushan Road, Jiangyin, Jiangsu Province, 214400, China.
| | - Zhibai Zhao
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Qianglin Jiang
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, No.163, Shoushan Road, Jiangyin, Jiangsu Province, 214400, China.
- Department of Periodontics, Jiangyin People's Hospital Affiliated to Nantong University, No.163, Shoushan Road, Jiangyin, Jiangsu Province, 214400, China.
| |
Collapse
|
8
|
Spanke T, Gabelaia M, Flury JM, Hilgers L, Wantania LL, Misof B, Wipfler B, Wowor D, Mokodongan DF, Herder F, Schwarzer J. A landmark-free analysis of the pelvic girdle in Sulawesi ricefishes (Adrianichthyidae): How 2D and 3D geometric morphometrics can complement each other in the analysis of a complex structure. Ecol Evol 2023; 13:e10613. [PMID: 37859830 PMCID: PMC10582673 DOI: 10.1002/ece3.10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Geometric morphometrics (GM) enable the quantification of morphological variation on various scales. Recent technical advances allow analyzing complex three-dimensional shapes also in cases where landmark-based approaches are not appropriate. Pelvic girdle bones (basipterygia) of Sulawesi ricefishes are 3D structures that challenge traditional morphometrics. We hypothesize that the pelvic girdle of ricefishes experienced sex-biased selection pressures in species where females provide brood care by carrying fertilized eggs supported by elongated pelvic fins ("pelvic brooding"). We test this by comparing pelvic bone shapes of both sexes in species exhibiting pelvic brooding and the more common reproductive strategy "transfer brooding," by using landmark-free 2D and 3D GM, as well as qualitative shape descriptions. Both landmark-free approaches revealed significant interspecific pelvic bone variation in the lateral process, medial facing side of the pelvic bone, and overall external and internal wing shape. Within pelvic brooders, the three analyzed species are clearly distinct, while pelvic bones of the genus Adrianichthys are more similar to transfer brooding Oryzias. Female pelvic brooding Oryzias exhibit prominent, medially pointing tips extending from the internal wing and basipterygial plate that are reduced or absent in conspecific males, Adrianichthys and transfer brooding Oryzias, supporting our hypothesis that selection pressures affecting pelvic girdle shape are sex-biased in Sulawesi ricefishes. Furthermore, both sexes of pelvic brooding Oryzias have overall larger pelvic bones than other investigated ricefishes. Based on these differences, we characterized two reproductive strategy- and sex-dependent pelvic girdle types for Sulawesi ricefishes. Morphological differences between the investigated pelvic brooding genera Adrianichthys and Oryzias provide additional evidence for two independent origins of pelvic brooding. Overall, our findings add to a better understanding on traits related to pelvic brooding in ricefishes and provide a basis for upcoming studies on pelvic girdle function and morphology.
Collapse
Affiliation(s)
- Tobias Spanke
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Mariam Gabelaia
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Jana M. Flury
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Leon Hilgers
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
- LOEWE‐Zentrum für Translationale BiodiversitätsgenomikFrankfurtGermany
| | - Letha Louisiana Wantania
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
- Faculty of Fisheries and Marine ScienceSam Ratulangi UniversityManadoIndonesia
| | - Bernhard Misof
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Benjamin Wipfler
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and EvolutionNational Research and Innovation Agency (BRIN)CibinongIndonesia
| | - Daniel F. Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and EvolutionNational Research and Innovation Agency (BRIN)CibinongIndonesia
| | - Fabian Herder
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Julia Schwarzer
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| |
Collapse
|
9
|
Matthews DG, Dial TR, Lauder GV. Genes, Morphology, Performance, and Fitness: Quantifying Organismal Performance to Understand Adaptive Evolution. Integr Comp Biol 2023; 63:843-859. [PMID: 37422435 DOI: 10.1093/icb/icad096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
To understand the complexities of morphological evolution, we must understand the relationships between genes, morphology, performance, and fitness in complex traits. Genomicists have made tremendous progress in finding the genetic basis of many phenotypes, including a myriad of morphological characters. Similarly, field biologists have greatly advanced our understanding of the relationship between performance and fitness in natural populations. However, the connection from morphology to performance has primarily been studied at the interspecific level, meaning that in most cases we lack a mechanistic understanding of how evolutionarily relevant variation among individuals affects organismal performance. Therefore, functional morphologists need methods that will allow for the analysis of fine-grained intraspecific variation in order to close the path from genes to fitness. We suggest three methodological areas that we believe are well suited for this research program and provide examples of how each can be applied within fish model systems to build our understanding of microevolutionary processes. Specifically, we believe that structural equation modeling, biological robotics, and simultaneous multi-modal functional data acquisition will open up fruitful collaborations among biomechanists, evolutionary biologists, and field biologists. It is only through the combined efforts of all three fields that we will understand the connection between evolution (acting at the level of genes) and natural selection (acting on fitness).
Collapse
Affiliation(s)
- David G Matthews
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Terry R Dial
- Department of Biology and Ecology Center, Utah State University, Moab, UT 84322, USA
- Department of Environment and Society, Utah State University, Moab, UT 84322, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Nguyen S, Lee RS, Mohlmann E, Petrullo G, Blythe J, Ranieri I, McMenamin S. Craniofacial diversity across Danionins and the effects of TH status on craniofacial morphology of two Danio species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552728. [PMID: 37609193 PMCID: PMC10441423 DOI: 10.1101/2023.08.09.552728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The model zebrafish ( Danio rerio ) belongs to the Danioninae subfamily with a range of informative phenotypes. However, the craniofacial diversity across the subfamily is not fully described. To better understand craniofacial phenotypes across Danioninae we used microCT and 3D geometric morphometrics to capture skull shapes from nine species. The Danio species examined showed largely similar skull shapes, although D. aesculapii , the sister species to D. rerio showed a unique morphology. Two non- Danio species examined, Chela dadiburjori and Devario aequipinnatus showed distinct skull morphologies unique from those of other species examined. Thyroid hormone regulates skeletal development and remodeling, and we asked if changes in developmental thyroid hormone metabolism could underlie some of the craniofacial diversity across Danioninae. We reared two Danio species under altered thyroid profiles, finding that hypothyroid individuals from both species showed corresponding morphological shifts in skull shape. Hypothyroid Danios showed skull morphologies closer to that of Chela and unlike any of the examined wild-type Danio species. We provide an examination of the evolved craniofacial diversity across Danioninae, and demonstrate that alterations to thyroid hormone have the capacity to create unique skull phenotypes.
Collapse
|
11
|
Hou Y, Cai XW, Liang ZF, Duan DD, Diao XP, Zhang JL. An integrative investigation of developmental toxicities induced by triphenyltin in a larval coral reef fish, Amphiprion ocellaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161487. [PMID: 36638977 DOI: 10.1016/j.scitotenv.2023.161487] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Triphenyltin (TPT) is widely distributed on coastlines, which makes coral reef fish a potential target of TPT pollution. However, the negative effects of TPT on coral reef fish remain poorly understood. Therefore, in the present study, the larval coral reef fish Amphiprion ocellaris was used to investigate the developmental toxicities of TPT at environmentally relevant concentrations (0, 1, 10 and 100 ng/L). After TPT exposure for 14 d, the cumulative mortality increased, and growth was suppressed. In addition, TPT exposure inhibited the development of melanophores and xanthophores and delayed white strip formation, which might be responsible for the disruption of the genes (erbb3b, mitfa, kit, xdh, tyr, oca2, itk and trim33) related to pigmentation. TPT exposure also attenuated ossification of head skeletal elements and the vertebral column and inhibited the expression of genes (bmp2, bmp4 and sp7) related to skeletal development. The observed developmental toxicities on growth, pigmentation and skeleton development might be associated with the disruption of thyroid hormones and the genes related to thyroid hormone regulation (tshβ, thrα, thrβ, tg, tpo, dio2, and ttr). In addition, TPT exposure interfered with locomotor and shoaling behavior, and the related genes dbh, avp and avpr1aa. Taken together, our results suggest that TPT pollution might threaten the development of one of the most iconic coral reef fish, which might produce disastrous consequences on the health of coral reef ecosystems.
Collapse
Affiliation(s)
- Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xing-Wei Cai
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, China
| | - Zhi-Fang Liang
- Lingshui Wildlife Conservation Association, Lingshui, Hainan, China
| | - Dan-Dan Duan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xiao-Ping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; Lingshui Wildlife Conservation Association, Lingshui, Hainan, China.
| |
Collapse
|
12
|
Ren J, Flamant F. Thyroid hormone as a temporal switch in mouse development. Eur Thyroid J 2023; 12:e220225. [PMID: 36715693 PMCID: PMC10083660 DOI: 10.1530/etj-22-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023] Open
Abstract
Thyroid hormones are known to trigger metamorphosis in an amphibian. This review discusses the hypothesis according to which they act in a similar manner to synchronize the post-natal development of mice, using brain, brown adipose tissue, and heart as examples.
Collapse
Affiliation(s)
- Juan Ren
- ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | - Frédéric Flamant
- ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| |
Collapse
|
13
|
Si W, Zhao M, Che H, Wu Z, Xiao Y, Xie X, Duan J, Shen T, Xu D, Zhao S. Microcystin-LR induced transgenerational effects of thyroid disruption in zebrafish offspring by endoplasmic reticulum stress-mediated thyroglobulin accumulation and apoptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121117. [PMID: 36690294 DOI: 10.1016/j.envpol.2023.121117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
MC-LR can interfere with thyroid function in fish, but the underlying mechanism is still unclear. Current study focuses to study the intergenerational inheritance of MC-LR-induced thyroid toxicity in zebrafish and in rat thyroid cells. In vivo experiments, adult female zebrafish (F0) were exposed to MC-LR (0, 5, and 25 μg/L) for 90 days and mated with male zebrafish without MC-LR exposure to generate F1 generation. F1 embryos were allowed to develop normally to 7 days post-fertilization (dpf) in clear water. In the F0 generation, MC-LR induced disturbance of the hypothalamic-pituitary-thyroid (HPT) axis, leading to a decrease in the production of thyroid hormones. Maternal MC-LR exposure also induced growth inhibition by altering thyroid hormones (THs) homeostasis and interfering with thyroid metabolism and development in F1 offspring. Mechanistically, MC-LR caused excessive accumulation of ROS and induced ER stress that further lead to activation of UPR in the F0 and F1 offspring of zebrafish. Interestingly, our findings suggested that MC-LR exposure hampered thyroglobulin turnover by triggering IRE1 and PERK pathway in zebrafish and FRTL-5 thyroid cells, thus disturbing the thyroid endocrine system and contributing to the thyroid toxicity from maternal to its F1 offspring of zebrafish. Particularly, inhibition of the IRE1 pathway by siRNA could alleviate thyroid development injury induced by MC-LR in FRTL-5 cells. In addition, MC-LR induced thyroid cell apoptosis by triggering ER stress. Taken together, our results demonstrated that maternal MC-LR exposure causes thyroid endocrine disruption by ER stress contributing to transgenerational effects in zebrafish offspring.
Collapse
Affiliation(s)
- Weirong Si
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Mengjie Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Huimin Che
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zaiwei Wu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yuchun Xiao
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xinxin Xie
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jiayao Duan
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Tong Shen
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
14
|
Conith MR, Ringo D, Conith AJ, Deleon A, Wagner M, McMenamin S, Cason C, Cooper WJ. The Evolution of Feeding Mechanics in the Danioninae, or Why Giant Danios Don't Suck Like Zebrafish. Integr Org Biol 2022; 4:obac049. [PMID: 36518182 PMCID: PMC9730500 DOI: 10.1093/iob/obac049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/11/2022] [Accepted: 11/11/2022] [Indexed: 08/24/2023] Open
Abstract
By linking anatomical structure to mechanical performance we can improve our understanding of how selection shapes morphology. Here we examined the functional morphology of feeding in fishes of the subfamily Danioninae (order Cypriniformes) to determine aspects of cranial evolution connected with their trophic diversification. The Danioninae comprise three major lineages and each employs a different feeding strategy. We gathered data on skull form and function from species in each clade, then assessed their evolutionary dynamics using phylogenetic-comparative methods. Differences between clades are strongly associated with differences in jaw protrusion. The paedomorphic Danionella clade does not use jaw protrusion at all, members of the Danio clade use jaw protrusion for suction production and prey capture, and members of the sister clade to Danio (e.g., Devario and Microdevario) use jaw protrusion to retain prey after capture. The shape of the premaxillary bone is a major determinant of protrusion ability, and premaxilla morphology in each of these lineages is consistent with their protrusion strategies. Premaxilla shapes have evolved rapidly, which indicates that they have been subjected to strong selection. We compared premaxilla development in giant danio (Devario aequipinnatus) and zebrafish (Danio rerio) and discuss a developmental mechanism that could shift danionine fishes between the feeding strategies employed by these species and their respective clades. We also identified a highly integrated evolutionary module that has been an important factor in the evolution of trophic mechanics within the Danioninae.
Collapse
Affiliation(s)
- M R Conith
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - D Ringo
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - A J Conith
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - A Deleon
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - M Wagner
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - S McMenamin
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - C Cason
- Marine and Coastal Science, Western Washington University, Bellingham, WA 98225, USA
| | - W J Cooper
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
- Marine and Coastal Science, Western Washington University, Bellingham, WA 98225, USA
| |
Collapse
|