1
|
Lu Y, Lin L, Lin J, Wu B, Cai G, Wang X, Ma X. Superior detection of low-allele burden Janus kinase 2 V617F mutation and monitoring clonal evolution in myeloproliferative neoplasms using chip-based digital PCR. Ann Hematol 2024; 103:3553-3562. [PMID: 39043913 PMCID: PMC11358234 DOI: 10.1007/s00277-024-05896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
The JAK2 V617F is a prevalent driver mutation in Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-MPNs), significantly affecting disease progression, immunophenotype, and patient outcomes. The World Health Organization (WHO) guidelines highlight the JAK2 V617F mutation as one of the key diagnostic criterions for Ph-MPNs. In this study, we analyzed 283 MPN samples with the JAK2 V617F mutation to assess the effectiveness of three detection technologies: chip-based digital PCR (cdPCR), real-time quantitative PCR (qPCR), and next-generation sequencing (NGS). Additionally, we investigated the relationship between JAK2 V617F mutant allele burden (% JAK2 V617F) and various laboratory characteristics to elucidate potential implications in MPN diagnosis. Our findings demonstrated high conformance of cdPCR with qPCR/NGS for detecting % JAK2 V617F, but the mutant allele burdens detected by qPCR/NGS were lower than those detected by cdPCR. Moreover, the cdPCR exhibited high sensitivity with a limit of detection (LoD) of 0.08% and a limit of quantification (LoQ) of 0.2% for detecting % JAK2 V617F in MPNs. Clinical implications were explored by correlating % JAK2 V617F with various laboratory characteristics in MPN patients, revealing significant associations with white blood cell counts, lactate dehydrogenase levels, and particularly β2-microglobulin (β2-MG) levels. Finally, a case report illustrated the application of cdPCR in detecting low-allele burdens in a de novo chronic myeloid leukemia (CML) patient with a hidden JAK2 V617F subclone, which expanded during tyrosine kinase inhibitor (TKI) treatment. Our findings underscore the superior sensitivity and accuracy of cdPCR, making it a valuable tool for early diagnosis and monitoring clonal evolution.
Collapse
Affiliation(s)
- Yiyi Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jiafei Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Beiying Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Gang Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Xuefei Ma
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Patchell D, Keohane C, O'Shea S, Langabeer SE. Incidence and impact of non-canonical JAK2 p.(Val617Phe) mutations in myeloproliferative neoplasm molecular diagnostics. J Clin Pathol 2024:jcp-2023-209276. [PMID: 38772616 DOI: 10.1136/jcp-2023-209276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Affiliation(s)
| | - Clodagh Keohane
- Department of Haematology, Mercy University Hospital, Cork, Ireland
| | - Susan O'Shea
- Department of Haematology, Bon Secours Hospital Cork, Cork, Ireland
| | | |
Collapse
|
3
|
Dvořáček L, Marková J, Holoubek A, Grebeňová D, Kundrát D, Kuželová K, Schwarz J. A novel germline hyperactivating JAK2 mutation L604F. Ann Hematol 2023; 102:2725-2734. [PMID: 37639050 PMCID: PMC10492870 DOI: 10.1007/s00277-023-05423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
Somatic JAK2 mutations are the main molecular cause of the vast majority of polycythemia vera (PV) cases. According to a recent structural model, the prevalent acquired V617F mutation improves the stability of the JAK2 dimer, thereby enhancing the constitutive JAK2 kinase activity. Germline JAK2 mutations usually do not largely alter JAK2 signaling, although they may modulate the impact of V617F. We found an unusual germline JAK2 mutation L604F in homozygous form in a young PV patient, along with a low allele burden JAK2 V617F mutation, and in her apparently healthy sister. Their father with a PV-like disease had L604F in a heterozygous state, without V617F. The functional consequences of JAK2 L604Fmutation were compared with those induced by V617F in two different in vitro model systems: (i) HEK293T cells were transfected with plasmids for exogenous JAK2-GFP expression, and (ii) endogenous JAK2 modifications were introduced into HeLa cells using CRISPR/Cas9. Both mutations significantly increased JAK2 constitutive activity in transfected HEK293T cells. In the second model, JAK2 modification resulted in reduced total JAK2 protein levels. An important difference was also detected: as described previously, the effect of V617F on JAK2 kinase activity was abrogated in the absence of the aromatic residue F595. In contrast, JAK2 hyperactivation by L604F was only partially inhibited by the F595 change to alanine. We propose that the L604F mutation increases the probability of spontaneous JAK2 dimer formation, which is physiologically mediated by F595. In addition, L604F may contribute to dimer stabilization similarly to V617F.
Collapse
Affiliation(s)
- Lukáš Dvořáček
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jana Marková
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Dana Grebeňová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - David Kundrát
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | - Jiří Schwarz
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
4
|
Stuckey R, Bilbao-Sieyro C, Segura-Díaz A, Gómez-Casares MT. Molecular Studies for the Early Detection of Philadelphia-Negative Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:12700. [PMID: 37628880 PMCID: PMC10454334 DOI: 10.3390/ijms241612700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
JAK2 V617F is the predominant driver mutation in patients with Philadelphia-negative myeloproliferative neoplasms (MPN). JAK2 mutations are also frequent in clonal hematopoiesis of indeterminate potential (CHIP) in otherwise "healthy" individuals. However, the period between mutation acquisition and MPN diagnosis (known as latency) varies widely between individuals, with JAK2 mutations detectable several decades before diagnosis and even from birth in some individuals. Here, we will review the current evidence on the biological factors, such as additional mutations and chronic inflammation, which influence clonal expansion and may determine why some JAK2-mutated individuals will progress to an overt neoplasm during their lifetime while others will not. We will also introduce several germline variants that predispose individuals to CHIP (as well as MPN) identified from genome-wide association studies. Finally, we will explore possible mutation screening or interventions that could help to minimize MPN-associated cardiovascular complications or even delay malignant progression.
Collapse
Affiliation(s)
- Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
| | - Cristina Bilbao-Sieyro
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
- Morphology Department, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Adrián Segura-Díaz
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
| | - María Teresa Gómez-Casares
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
- Department of Medical Sciences, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
5
|
Giraldo-Rincón AI, Naranjo Molina S, Gomez-Lopera N, Aguirre Acevedo D, Ucroz Benavidez A, Gálvez Cárdenas K, Cuellar Ambrosí F, Torres JD, Ospina S, Palacio K, Gaviria Jaramillo L, Muñeton CM, Vasquez Palacio G. JAK2, CALR, and MPL Mutation Profiles in Colombian patients with BCR-ABL Negative Myeloproliferative Neoplasms. Colomb Med (Cali) 2023; 54:e2035353. [PMID: 38111518 PMCID: PMC10726695 DOI: 10.25100/cm.v54i3.5353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/25/2023] [Indexed: 12/20/2023] Open
Abstract
Background Among the chronic myeloproliferative neoplasms (MPNs) not associated with BCR-ABL mutations are polycythemia vera, primary myelofibrosis, and essential thrombocythemia. These diseases are caused by mutations in genes, such as the JAK2, MPL, and CALR genes, which participate in regulating the JAK-STAT signaling pathway. Objective This study aimed to establish the frequencies of mutations in the JAK2, MPL, and CALR genes in a group of Colombian patients with a negative clinical diagnosis of BCR-ABL chronic myeloproliferative neoplasms. Methods The JAK2 V617F and MPL W515K mutations and deletions or insertions in exon 9 of the CALR gene were analyzed in 52 Colombian patients with polycythemia vera, primary myelofibrosis, and essential thrombocythemia. Results The JAK2V617F mutation was carried by 51.9% of the patients, the CALR mutation by 23%, and the MPL mutation by 3.8%; 23% were triple-negative for the mutations analyzed. In these neoplasms, 6 mutation types in CALR were identified, one of which has not been previously reported. Additionally, one patient presented a double mutation in both the CALR and JAK2 genes. Regarding the hematological results for the mutations, significant differences were found in the hemoglobin level, hematocrit level, and platelet count among the three neoplasms. Conclusion Thus, this study demonstrates the importance of the molecular characterization of the JAK2, CALR and MPL mutations in Colombian patients (the genetic context of which remains unclear in the abovementioned neoplasms) to achieve an accurate diagnosis, a good prognosis, adequate management, and patient survival.
Collapse
Affiliation(s)
| | - Sara Naranjo Molina
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | - Natalia Gomez-Lopera
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | | | - Andrea Ucroz Benavidez
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | | | | | | | - Sigifredo Ospina
- Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Katherine Palacio
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | | | - Carlos Mario Muñeton
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | - Gonzalo Vasquez Palacio
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| |
Collapse
|
6
|
Pennisi MS, Di Gregorio S, Tirrò E, Romano C, Duminuco A, Garibaldi B, Giuffrida G, Manzella L, Vigneri P, Palumbo GA. Additional Genetic Alterations and Clonal Evolution of MPNs with Double Mutations on the MPL Gene: Two Case Reports. Hematol Rep 2023; 15:317-324. [PMID: 37367082 DOI: 10.3390/hematolrep15020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are two of the main BCR-ABL1-negative chronic myeloproliferative neoplasms (MPNs) characterized by abnormal megakaryocytic proliferation. Janus kinase 2 (JAK2) mutations are detected in 50-60% of ET and PMF, while myeloproliferative leukemia (MPL) virus oncogene mutations are present in 3-5% of cases. While Sanger sequencing is a valuable diagnostic tool to discriminate the most common MPN mutations, next-generation sequencing (NGS) is a more sensitive technology that also identifies concurrent genetic alterations. In this report, we describe two MPN patients with simultaneous double MPL mutations: a woman with ET presenting both MPLV501A-W515R and JAK2V617F mutations and a man with PMF displaying an uncommon double MPLV501A-W515L. Using colony-forming assays and NGS analyses, we define the origin and mutational landscape of these two unusual malignancies and uncover further gene alterations that may contribute to the pathogenesis of ET and PMF.
Collapse
Affiliation(s)
- Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Andrea Duminuco
- Postgraduate School of Hematology, University of Catania, 95123 Catania, Italy
| | - Bruno Garibaldi
- Postgraduate School of Hematology, University of Catania, 95123 Catania, Italy
| | - Gaetano Giuffrida
- Hematology Unit and Bone Marrow Transplant, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Giuseppe A Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
7
|
Wu S, Luo P, Rouzi T, Yu Y, Xiong B, Wang Y, Zuo X. The Combination of JAK2V617F Allele Burden and WT1 Expression can Be Helpful in Distinguishing the Subtype of MPN Patients. Cancer Control 2023; 30:10732748231163648. [PMID: 36895113 PMCID: PMC10009047 DOI: 10.1177/10732748231163648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
INTRODUCTION Classical Philadelphia-negative myeloproliferative neoplasm (MPN) includes Essential Thrombocythemia (ET), Polycythemia Vera (PV) and Primary Myelofibrosis (PMF). The JAK2V617F mutation is part of the major criteria for diagnosis of MPN. WT1 is reported to be highly overexpressed in most hematological malignancy. Our aim was to explore the combination value of JAK2V617F allele burden and WT1 expression in distinguishing the subtype of MPN patients. METHODS Allele specific real-time quantitative fluorescence PCR (AS-qPCR) was conducted to detect JAK2V617F allele burden. WT1 expression was assessed by RQ-PCR. Our study is a retrospective study. RESULTS JAK2V617F allele burden and WT1 expression were different in MPN subgroups. The expression of WT1 in PMF and PV is higher than in ET. JAK2V617F allele burden in PMF and PV is also higher than in ET. ROC analysis indicated that combination of JAK2V617F allele burden and WT1 expression to discriminate ET and PV, ET and PMF, PV and PMF is 0.956, 0.871, 0.737 respectively. Furthermore, their ability to distinguish ET patients with high Hb levels from PV patients with high platelet counts is 0.891. CONCLUSIONS Our data revealed that combination of JAK2V617F allele burden and WT1 expression is useful in distinguishing the subtype of MPN patients.
Collapse
Affiliation(s)
- Sanyun Wu
- Department of Hematology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Luo
- Department of Hematology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tuerxunayi Rouzi
- Department of Hematology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yalan Yu
- Department of Hematology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bei Xiong
- Department of Hematology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingying Wang
- Department of Immunology, College of Basic Medicine, 12550Chongqing Medical University, Chongqing, China
| | - Xuelan Zuo
- Department of Hematology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Langabeer S. Molecular screening for an underlying myeloproliferative neoplasm in rheumatology patients. Arch Rheumatol 2022; 37:475-476. [PMID: 36589605 PMCID: PMC9791544 DOI: 10.46497/archrheumatol.2022.9274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/08/2022] [Indexed: 11/07/2022] Open
|
9
|
Genetic Background of Polycythemia Vera. Genes (Basel) 2022; 13:genes13040637. [PMID: 35456443 PMCID: PMC9027017 DOI: 10.3390/genes13040637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Polycythemia vera belongs to myeloproliferative neoplasms, essentially by affecting the erythroblastic lineage. JAK2 alterations have emerged as major driver mutations triggering PV-phenotype with the V617F mutation detected in nearly 98% of cases. That’s why JAK2 targeting therapeutic strategies have rapidly emerged to counter the aggravation of the disease. Over decades of research, to go further in the understanding of the disease and its evolution, a wide panel of genetic alterations affecting multiple genes has been highlighted. These are mainly involved in alternative splicing, epigenetic, miRNA regulation, intracellular signaling, and transcription factors expression. If JAK2 mutation, irrespective of the nature of the alteration, is known to be a crucial event for the disease to initiate, additional mutations seem to be markers of progression and poor prognosis. These discoveries have helped to characterize the complex genomic landscape of PV, resulting in potentially new adapted therapeutic strategies for patients concerning all the genetic interferences.
Collapse
|
10
|
Abedi E, Karimi M, Yaghobi R, Mohammadi H, Haghpanah S, Moghadam M, Bayat E, Rezvani A, Ramzi M. Oncogenic and tumor suppressor genes expression in myeloproliferative neoplasms: The hidden side of a complex pathology. J Clin Lab Anal 2022; 36:e24289. [PMID: 35176183 PMCID: PMC8993601 DOI: 10.1002/jcla.24289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Background The present study aimed to explore the changes in the expressions of six tumor‐related genes in myeloproliferative neoplasms (MPNs). The study population included 130 patients with MPNs (52 with chronic myeloid leukemia (CML), 49 with essential thrombocythemia (ET), 20 with polycythemia vera (PV), and 9 with primary myelofibrosis (PMF)) and 51 healthy individuals. Methods The expression profiling of six genes (ADAMTS18, CMTM5, CDKN2B, DCC, FHIT, and WNT5B) in the peripheral blood granulocyte cells was explored by real‐time quantitative reverse transcription polymerase chain reaction. Results The patients with MPNs showed significant downregulation of CMTM5 (EFC = 0.66) and DCC (EFC = 0.65) genes in contrast to a non‐significant upregulation of ADAMTS18, CDKN2B, FHIT, and WNT5B genes. Downregulation of DCC was consistent in all subtypes of MPN (EFC range: 0.591–0.860). However, CMTM5 had a 1.22‐fold upregulation in PMF in contrast to downregulation in other MPN subtypes (EFC range: 0.599–0.775). The results revealed a significant downregulation in CMTM5 and DCC at below 60‐years of age. Furthermore, female patients showed a clear‐cut downregulation in both CMTM5 and DCC (EFC DCC: 0.436 and CMTM5: 0.570), while male patients presented a less prominent downregulation with a borderline p‐value only in DCC (EFC: 0.69; p = 0.05). Conclusions Chronic myeloid leukemia cases showed a significant upregulation of WNT5B, as a known oncogenesis gene. Two tumor suppressor genes, namely DCC and CMTM5, were downregulated in the patients with MPNs, especially in females and patients below 60 years of age.
Collapse
Affiliation(s)
- Elham Abedi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Karimi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Mohammadi
- Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sezaneh Haghpanah
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Moghadam
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Bayat
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Rezvani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
The potential of proliferative and apoptotic parameters in clinical flow cytometry of myeloid malignancies. Blood Adv 2021; 5:2040-2052. [PMID: 33847740 DOI: 10.1182/bloodadvances.2020004094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Standardization of the detection and quantification of leukocyte differentiation markers by the EuroFlow Consortium has led to a major step forward in the integration of flow cytometry into classification of leukemia and lymphoma. In our opinion, this now enables introduction of markers for more dynamic parameters, such as proliferative and (anti)apoptotic markers, which have proven their value in the field of histopathology in the diagnostic process of solid tumors and lymphoma. Although use of proliferative and (anti)apoptotic markers as objective parameters in the diagnostic process of myeloid malignancies was studied in the past decades, this did not result in the incorporation of these biomarkers into clinical diagnosis. This review addresses the potential of these markers for implementation in the current, state-of-the-art multiparameter analysis of myeloid malignancies. The reviewed studies clearly recognize the importance of proliferation and apoptotic mechanisms in the pathogenesis of bone marrow (BM) malignancies. The literature is, however, contradictory on the role of these processes in myelodysplastic syndrome (MDS), MDS/myeloproliferative neoplasms, and acute myeloid leukemia. Furthermore, several studies underline the need for the analysis of the proliferative and apoptotic rates in subsets of hematopoietic BM cell lineages and argue that these results can have diagnostic and prognostic value in patients with myeloid malignancies. Recent developments in multiparameter flow cytometry now allow quantification of proliferative and (anti)apoptotic indicators in myeloid cells during their different maturation stages of separate hematopoietic cell lineages. This will lead to a better understanding of the biology and pathogenesis of these malignancies.
Collapse
|
12
|
Stuckey R, Gómez-Casares MT. Recent Advances in the Use of Molecular Analyses to Inform the Diagnosis and Prognosis of Patients with Polycythaemia Vera. Int J Mol Sci 2021; 22:5042. [PMID: 34068690 PMCID: PMC8126083 DOI: 10.3390/ijms22095042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/07/2023] Open
Abstract
Genetic studies in the past decade have improved our understanding of the molecular basis of the BCR-ABL1-negative myeloproliferative neoplasm (MPN) polycythaemia vera (PV). Such breakthroughs include the discovery of the JAK2V617F driver mutation in approximately 95% of patients with PV, as well as some very rare cases of familial hereditary MPN caused by inherited germline mutations. Patients with PV often progress to fibrosis or acute myeloid leukaemia, both associated with very poor clinical outcome. Moreover, thrombosis and major bleeding are the principal causes of morbidity and mortality. As a result of increasingly available and economical next-generation sequencing technologies, mutational studies have revealed the prognostic relevance of a few somatic mutations in terms of thrombotic risk and risk of transformation, helping to improve the risk stratification of patients with PV. Finally, knowledge of the molecular basis of PV has helped identify targets for directed therapy. The constitutive activation of the tyrosine kinase JAK2 is targeted by ruxolitinib, a JAK1/JAK2 tyrosine kinase inhibitor for PV patients who are resistant or intolerant to cytoreductive treatment with hydroxyurea. Other molecular mechanisms have also been revealed, and numerous agents are in various stages of development. Here, we will provide an update of the recent published literature on how molecular testing can improve the diagnosis and prognosis of patients with PV and present recent advances that may have prognostic value in the near future.
Collapse
Affiliation(s)
- Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas, Spain
| | | |
Collapse
|
13
|
Skov V. Next Generation Sequencing in MPNs. Lessons from the Past and Prospects for Use as Predictors of Prognosis and Treatment Responses. Cancers (Basel) 2020; 12:E2194. [PMID: 32781570 PMCID: PMC7464861 DOI: 10.3390/cancers12082194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
The myeloproliferative neoplasms (MPNs) are acquired hematological stem cell neoplasms characterized by driver mutations in JAK2, CALR, or MPL. Additive mutations may appear in predominantly epigenetic regulator, RNA splicing and signaling pathway genes. These molecular mutations are a hallmark of diagnostic, prognostic, and therapeutic assessment in patients with MPNs. Over the past decade, next generation sequencing (NGS) has identified multiple somatic mutations in MPNs and has contributed substantially to our understanding of the disease pathogenesis highlighting the role of clonal evolution in disease progression. In addition, disease prognostication has expanded from encompassing only clinical decision making to include genomics in prognostic scoring systems. Taking into account the decreasing costs and increasing speed and availability of high throughput technologies, the integration of NGS into a diagnostic, prognostic and therapeutic pipeline is within reach. In this review, these aspects will be discussed highlighting their role regarding disease outcome and treatment modalities in patients with MPNs.
Collapse
Affiliation(s)
- Vibe Skov
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, 4000 Roskilde, Denmark
| |
Collapse
|
14
|
Kjær L. Clonal Hematopoiesis and Mutations of Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12082100. [PMID: 32731609 PMCID: PMC7464548 DOI: 10.3390/cancers12082100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are associated with the fewest number of mutations among known cancers. The mutations propelling these malignancies are phenotypic drivers providing an important implement for diagnosis, treatment response monitoring, and gaining insight into the disease biology. The phenotypic drivers of Philadelphia chromosome negative MPN include mutations in JAK2, CALR, and MPL. The most prevalent driver mutation JAK2V617F can cause disease entities such as essential thrombocythemia (ET) and polycythemia vera (PV). The divergent development is considered to be influenced by the acquisition order of the phenotypic driver mutation relative to other MPN-related mutations such as TET2 and DNMT3A. Advances in molecular biology revealed emergence of clonal hematopoiesis (CH) to be inevitable with aging and associated with risk factors beyond the development of blood cancers. In addition to its well-established role in thrombosis, the JAK2V617F mutation is particularly connected to the risk of developing cardiovascular disease (CVD), a pertinent issue, as deep molecular screening has revealed the prevalence of the mutation to be much higher in the background population than previously anticipated. Recent findings suggest a profound under-diagnosis of MPNs, and considering the impact of CVD on society, this calls for early detection of phenotypic driver mutations and clinical intervention.
Collapse
Affiliation(s)
- Lasse Kjær
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, DK-4000 Roskilde, Denmark
| |
Collapse
|
15
|
Kearney L, Lee Tokar L, Flynn C, Mykytiv V, Murphy K, Langabeer SE. Repeat JAK2 V617F testing in patients with suspected essential thrombocythaemia. J Clin Pathol 2020; 73:772. [PMID: 32646925 DOI: 10.1136/jclinpath-2020-206778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 11/04/2022]
Affiliation(s)
| | | | | | | | - Karen Murphy
- St. Vincent's University Hospital, Dublin, Ireland
| | | |
Collapse
|
16
|
Langabeer SE. Reduction in molecular diagnostics of myeloproliferative neoplasms during the COVID-19 pandemic. Ir J Med Sci 2020; 190:27-28. [PMID: 32638153 PMCID: PMC7340757 DOI: 10.1007/s11845-020-02303-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/02/2020] [Indexed: 01/20/2023]
|
17
|
Prefibrotic Myelofibrosis Presenting with Multiple Cerebral Embolic Infarcts and the Rare MPL W515S Mutation. Case Rep Hematol 2020; 2020:8375986. [PMID: 32637179 PMCID: PMC7322597 DOI: 10.1155/2020/8375986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
Acquired, activating mutations of MPL W515 are recognised driver mutations of the myeloproliferative neoplasms (MPN), namely, essential thrombocythemia and primary myelofibrosis. The most common mutation at this codon is W515L with several other mutations also described at a lower frequency. Of these less common mutations, MPL W515S has only been reported sporadically with limited information on clinicopathological associations. We describe the case of an elderly man with persistent thrombocytosis presenting with an ischemic cerebral event. Bone marrow biopsy showed evidence of prefibrotic myelofibrosis with targeted sequencing demonstrating the presence of the rare MPL W515S mutation. Thrombolytic and cytoreductive therapies resulted in a favorable outcome and follow-up. This case provides additional, necessary, and phenotypic data for the rare MPN-associated MPL W515S mutation.
Collapse
|
18
|
Saleh LM, Algamal R, Abd Elmasseh H, Barber E, Abdel-ghaffar H. Different CALR mutation subtypes in essential thrombocythemia and primary myelofibrosis patients without JAK2 mutation. MEMO - MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2020; 13:235-243. [DOI: 10.1007/s12254-020-00584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/11/2020] [Indexed: 09/02/2023]
|
19
|
Soliman EA, El-Ghlban S, El-Aziz SA, Abdelaleem A, Shamaa S, Abdel-Ghaffar H. JAK2, CALR, and MPL Mutations in Egyptian Patients With Classic Philadelphia-negative Myeloproliferative Neoplasms. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e645-e651. [PMID: 32591258 DOI: 10.1016/j.clml.2020.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Genetic mutations have been proven to be one of the major criteria in the diagnosis and distinction of different myeloproliferative neoplasm (MPN) subtypes. Therefore, the aim of this study was to determine the molecular profile of Egyptian patients with MPN subtypes and correlate with clinicopathological status. METHODS A series of 200 patients with MPNs (92 polycythemia vera, 68 essential thrombocythemia, and 40 primary myelofibrosis) were included in this study. DNA from each sample was amplified using polymerase chain reaction to detect Janus kinase 2 (JAK2), calreticulin (CALR), and myeloproliferative leukemia virus oncogene (MPL) mutations. Sanger sequencing was used to determine the mutation types. RESULTS Of the 200 samples, 44% had JAK2V617F and 10% were carrying CALR mutation with type 2 being the most frequent type in this study (55%). No MPL or JAK2 exon 12 mutations were detected. All clinical and hematological data had no differences with other populations except that our CALR-positive patients showed a decrease in the platelet count compared with JAK2V617F-positive patients. CONCLUSION Our study on Egyptian patients shows a specific molecular profile of JAK2 mutation, and CALR mutation type 2 was higher than type 1.
Collapse
Affiliation(s)
- Eman A Soliman
- Molecular Biology Department, Oncology Center Mansoura University (OCMU), Mansoura University, Mansoura, Egypt.
| | - Samah El-Ghlban
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufeia University, Shebin El-Kom, Egypt
| | - Sherin Abd El-Aziz
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Clinical Pathology Department, Oncology Center Mansoura University (OCMU), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelaleem Abdelaleem
- Chemistry Department, Faculty of Science, Menoufeia University, Shebin El-Kom, Egypt
| | - Sameh Shamaa
- Medical Oncology Department, Oncology Center Mansoura University (OCMU), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hassan Abdel-Ghaffar
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Clinical Pathology Department, Oncology Center Mansoura University (OCMU), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
La Rocca F, Grieco V, Ruggieri V, Zifarone E, Villani O, Zoppoli P, Russi S, Laurino S, Falco G, Calice G, Marinaccio A, Natalicchio MI, Albano F, Musto P. Superiority of Droplet Digital PCR Over Real-Time Quantitative PCR for JAK2 V617F Allele Mutational Burden Assessment in Myeloproliferative Neoplasms: A Retrospective Study. Diagnostics (Basel) 2020; 10:diagnostics10030143. [PMID: 32150880 PMCID: PMC7151190 DOI: 10.3390/diagnostics10030143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
JAK2V617F mutational status is an essential diagnostic index in myeloproliferative neoplasms (MPNs). Although widely used for detection of JAK2 V617F mutation in peripheral blood (PB), sensitive real-time quantitative PCR (qPCR) presents some methodological limitations. Recently, emerging alternative technologies, like digital droplet PCR (ddPCR), have been reported to overcome some of qPCR’s technical drawbacks. The purpose of this study was to compare the diagnostic utility of ddPCR to qPCR for JAK2 V617F detection and quantification in samples from MPNs patients. Sensitivity and specificity of qPCR and ddPCR in the detection of the mutation were assessed by using a calibrator panel of mutated DNA on 195 JAK2 positive MPN samples. Based on our results, ddPCR proved to be a suitable, precise, and sensitive method for detection and quantification of the JAK2 V617F mutation.
Collapse
Affiliation(s)
- Francesco La Rocca
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy; (F.L.R.); (V.G.)
| | - Vitina Grieco
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy; (F.L.R.); (V.G.)
| | - Vitalba Ruggieri
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB); 85028 Rionero in Vulture (Pz), Italy; (P.Z.); (S.R.); (S.L.); (G.C.)
- Correspondence:
| | - Emanuela Zifarone
- Trial Office, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy;
| | - Oreste Villani
- Hematology and Stem Cell Transplantation Unit, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy;
| | - Pietro Zoppoli
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB); 85028 Rionero in Vulture (Pz), Italy; (P.Z.); (S.R.); (S.L.); (G.C.)
| | - Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB); 85028 Rionero in Vulture (Pz), Italy; (P.Z.); (S.R.); (S.L.); (G.C.)
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB); 85028 Rionero in Vulture (Pz), Italy; (P.Z.); (S.R.); (S.L.); (G.C.)
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy;
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB); 85028 Rionero in Vulture (Pz), Italy; (P.Z.); (S.R.); (S.L.); (G.C.)
| | - Anna Marinaccio
- Section of Clinic Pathology, OO.RR., 71122 Foggia, Italy; (A.M.); (M.I.N.)
| | | | - Francesco Albano
- Unit of Hematology and Stem Cell Transplantation, AOU Policlinico Consorziale “Giovanni XXIII”, “Aldo Moro” University, 70124 Bari, Italy; (F.A.); (P.M.)
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, AOU Policlinico Consorziale “Giovanni XXIII”, “Aldo Moro” University, 70124 Bari, Italy; (F.A.); (P.M.)
| |
Collapse
|
21
|
Akiyama H, Umezawa Y, Watanabe D, Okada K, Ishida S, Nogami A, Miura O. Inhibition of USP9X Downregulates JAK2-V617F and Induces Apoptosis Synergistically with BH3 Mimetics Preferentially in Ruxolitinib-Persistent JAK2-V617F-Positive Leukemic Cells. Cancers (Basel) 2020; 12:cancers12020406. [PMID: 32050632 PMCID: PMC7072561 DOI: 10.3390/cancers12020406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/17/2023] Open
Abstract
JAK2-V617F plays a key role in the pathogenesis of myeloproliferative neoplasm. However, its inhibitor ruxolitinib has shown limited clinical efficacies because of the ruxolitinib-persistent proliferation of JAK2-V617F-positive cells. We here demonstrate that the USP9X inhibitor WP1130 or EOAI3402143 (G9) inhibited proliferation and induced apoptosis more efficiently in cells dependent on JAK2-V617F than on cytokine-activated JAK2. WP1130 preferentially downregulated activated and autophosphorylated JAK2-V617F by enhancing its K63-linked polyubiquitination and inducing its aggresomal translocation to block downstream signaling. Furthermore, JAK2-V617F associated physically with USP9X in leukemic HEL cells. Induction of apoptosis by inhibition of USP9X was mediated through the intrinsic mitochondria-mediated pathway, synergistically enhanced by BH3 mimetics, prevented by overexpression of Bcl-xL, and required oxidative stress to activate stress-related MAP kinases p38 and JNK as well as DNA damage responses in HEL cells. Although autophosphorylated JAK2-V617F was resistant to WP1130 in the ruxolitinib-persistent HEL-R cells, these cells expressed Bcl-2 and Bcl-xL at lower levels and showed an increased sensitivity to WP1130 as well as BH3 mimetics as compared with ruxolitinib-naive HEL cells. Thus, USP9X represents a promising target along with anti-apoptotic Bcl-2 family members for novel therapeutic strategies against JAK2-V617F-positive myeloproliferative neoplasms, particularly under the ruxolitinib persistence conditions.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Daisuke Watanabe
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Keigo Okada
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Shinya Ishida
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Ayako Nogami
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
- Department of Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
- Correspondence:
| |
Collapse
|
22
|
Eldeweny S, Ibrahim H, Elsayed G, Samra M. MPL W515 L/K mutations in myeloproliferative neoplasms. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0039-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Myeloproliferative neoplasms (MPNs) describe a group of diseases involving the bone marrow (BM). Classical MPNs are classified into chronic myelogenous leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). This classification is based on the presence of Philadelphia (Ph) chromosome (BCR/ABL1). CML is BCR/ABL1-positive while PV, ET, and PMF are negative. JAK2 p. Val617Phe pathological variant is the most associated mutation in BCR/ABL1-negative MPNs. The frequency of JAK2 p. Val617Phe is 90–95% in PV patients, 50–60% in ET, and 40–50% in patients with PMF. Studies on MPL gene led to the revelation of a gain of function pathological variants in JAK2 p. Val617Phe-negative myeloproliferative neoplasms (MPNs). MPL p. W515 L/K pathological variants are the most common across all mutations in MPL gene. The prevalence of these pathological variants over the Egyptian population is not clear enough. In the present study, we aimed to investigate the prevalence of MPL p. W515 L/K pathological variants in the Philadelphia (Ph)-negative MPNs over the Egyptian population.
Results
We have tested 60 patients with Ph-negative MPNs for MPL p. W515 L/K pathological variants. Median age was 51 (22–73) years. No MPL p. W515 L/K pathological variants were detected among our patients. JAK2 p. Val617Phe in PV and PMF patients showed significantly lower frequency than other studies. Splenomegaly was significantly higher in ET patients compared to other studies.
Conclusion
MPL p. W515 L/K pathological variants are rare across the Egyptian Ph-negative MPNs, and further studies on a large number are recommended. MPN patients in Egypt are younger compared to different ethnic groups.
Collapse
|
23
|
Levy MA, Santos S, Kerkhof J, Stuart A, Aref‐Eshghi E, Guo F, Hedley B, Wong H, Rauh M, Feilotter H, Berardi P, Semenuk L, Yang P, Knoll J, Ainsworth P, McLachlin CM, Chin‐Yee I, Kovacs M, Deotare U, Lazo‐Langner A, Hsia C, Keeney M, Xenocostas A, Howlett C, Lin H, Sadikovic B. Implementation of an NGS‐based sequencing and gene fusion panel for clinical screening of patients with suspected hematologic malignancies. Eur J Haematol 2019; 103:178-189. [DOI: 10.1111/ejh.13272] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Michael A. Levy
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
- Molecular Genetics Laboratory, Molecular Diagnostics Division London Health Sciences Centre London Ontario Canada
| | - Stephanie Santos
- Molecular Genetics Laboratory, Molecular Diagnostics Division London Health Sciences Centre London Ontario Canada
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Molecular Diagnostics Division London Health Sciences Centre London Ontario Canada
| | - Alan Stuart
- Molecular Genetics Laboratory, Molecular Diagnostics Division London Health Sciences Centre London Ontario Canada
| | - Erfan Aref‐Eshghi
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
- Molecular Genetics Laboratory, Molecular Diagnostics Division London Health Sciences Centre London Ontario Canada
| | - Fen Guo
- Molecular Genetics Laboratory, Molecular Diagnostics Division London Health Sciences Centre London Ontario Canada
| | - Ben Hedley
- Pathology and Laboratory Medicine London Health Sciences Centre London Ontario Canada
| | - Henry Wong
- Clinical Laboratories Kingston Health Sciences Centre Kingston Ontario Canada
| | - Michael Rauh
- Department of Pathology and Molecular Medicine Queen's University Kingston Ontario Canada
| | - Harriet Feilotter
- Department of Pathology and Molecular Medicine Queen's University Kingston Ontario Canada
- Molecular Diagnostics Kingston Health Sciences Centre Kingston Ontario Canada
| | - Philip Berardi
- University of Ottawa Ottawa Ontario Canada
- Eastern Ontario Regional Laboratory Association (EORLA) The Ottawa Hospital Ottawa Ontario Canada
| | - Laura Semenuk
- DNA Diagnostics & Cytogenetics Laboratory Kingston Health Sciences Centre Kingston Ontario Canada
| | - Ping Yang
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
- Cytogenetics Laboratory, Molecular Diagnostics Division London Health Sciences Centre London Ontario Canada
| | - Joan Knoll
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
- Molecular Diagnostics Division London Health Sciences Centre London Ontario Canada
| | - Peter Ainsworth
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
- Molecular Genetics Laboratory, Molecular Diagnostics Division London Health Sciences Centre London Ontario Canada
- Department of Biochemistry Western University London Ontario Canada
| | | | - Ian Chin‐Yee
- Hematology Division London Health Sciences Centre London Ontario Canada
| | - Michael Kovacs
- Hematology Division London Health Sciences Centre London Ontario Canada
| | - Uday Deotare
- Hematology Division London Health Sciences Centre London Ontario Canada
- Schulich School of Medicine and Dentistry Western University London Ontario Canada
- Departments of Medicine and Oncology London Health Sciences Centre London Ontario Canada
| | - Alejandro Lazo‐Langner
- Hematology Division London Health Sciences Centre London Ontario Canada
- Department of Epidemiology and Biostatistics Western University London Ontario Canada
| | - Cyrus Hsia
- Hematology Division London Health Sciences Centre London Ontario Canada
| | - Mike Keeney
- Hematology Division London Health Sciences Centre London Ontario Canada
| | - Anargyros Xenocostas
- Hematology Division London Health Sciences Centre London Ontario Canada
- Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Christopher Howlett
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
- Molecular Genetics Laboratory, Molecular Diagnostics Division London Health Sciences Centre London Ontario Canada
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
- Molecular Genetics Laboratory, Molecular Diagnostics Division London Health Sciences Centre London Ontario Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
- Molecular Genetics Laboratory, Molecular Diagnostics Division London Health Sciences Centre London Ontario Canada
| |
Collapse
|
24
|
Langabeer SE. " JAK2 V617F Mutation in Cervical Cancer Related to HPV & STIs" - Letter. J Cancer Prev 2019; 24:59-60. [PMID: 30993097 PMCID: PMC6453585 DOI: 10.15430/jcp.2019.24.1.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/15/2019] [Indexed: 12/05/2022] Open
|
25
|
Pich A, Riera L, Francia di Celle P, Beggiato E, Benevolo G, Godio L. JAK2V617F, CALR, and MPL Mutations and Bone Marrow Histology in Patients with Essential Thrombocythaemia. Acta Haematol 2018; 140:234-239. [PMID: 30404086 DOI: 10.1159/000493970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Mutations in the JAK2, CALR, and MPL genes have been shown to have prognostic value in essential thrombocythaemia (ET), but no clear association with morphological changes has been reported so far. We investigated the possible correlation between gene mutations and histopathological features in bone marrow (BM) biopsies of patients with ET. METHODS Marrow cellularity, fibrosis, and the number of total and dysmorphic megakaryocytes and clusters of megakaryocytes were compared to gene mutations in 90 cases of ET at diagnosis. RESULTS The JAK2V617F mutation was found in 58.9%, CALR in 28.9%, and MPL in 4.4% of the cases, and 7.8% were triple-negative. JAK2V617F-mutated ET showed a high BM cellularity, the lowest number of clusters of megakaryocytes and the highest number of dysmorphic megakaryocytes; CALR-mutated ET showed a reduced BM cellularity, many clusters of large megakaryocytes, and very few dysmorphic megakaryocytes; MPL-mutated ET showed the lowest BM cellularity, the highest number of clustered and large megakaryocytes, and the lowest number of dysmorphic megakaryocytes. Triple-negative ET cases had the highest BM cellularity. CONCLUSIONS Distinct morphological patterns were associated with gene mutations in ET, supporting the classification of ET into different subtypes.
Collapse
Affiliation(s)
- Achille Pich
- Section of Pathology, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy,
| | - Ludovica Riera
- Section of Pathology, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Centre for Experimental Research and Medical Studies (CERMS), Turin, Italy
| | | | - Eloise Beggiato
- Department of Haematology, AOU Città della Salute e della Scienza, Turin, Italy
| | - Giulia Benevolo
- Department of Haematology, AOU Città della Salute e della Scienza, Turin, Italy
| | - Laura Godio
- Section of Pathology, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Abstract
The introduction and advances on next-generation sequencing have led to novel ways to integrate simultaneous assessment of multiple target genes in routine laboratory analysis. Assessment of myeloid neoplasms with targeted next-generation sequencing panels shows evidence to improve diagnosis, assist therapeutic decisions, provide better information about prognosis, and better detection of minimal residual disease. Herein, we provide information for application and utilization of next-generation sequencing studies with a focus on the most important mutations in acute myeloid leukemia, myelodysplastic syndrome, myeloproliferative neoplasms, and other myelodysplastic / myeloproliferative neoplasms in order to integrate them into the daily clinical practice.
Collapse
Affiliation(s)
- Fulya Öz Puyan
- Department of Pathology, Trakya University School of Medicine, Edirne, Turkey
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, California, USA
| |
Collapse
|
27
|
Mansier O, Luque Paz D, Ianotto JC, Le Bris Y, Chauveau A, Boyer F, Conejero C, Fitoussi O, Riou J, Adiko D, Touati M, Chauzeix J, Viallard JF, Béné MC, Giraudier S, Ugo V, Lippert E. Clinical and biological characterization of MPN patients harboring two driver mutations, a French intergroup of myeloproliferative neoplasms (FIM) study. Am J Hematol 2018; 93:E84-E86. [PMID: 29266414 DOI: 10.1002/ajh.25014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Olivier Mansier
- UFR Sciences de la Vie et de la Santé; Université de Bordeaux; Bordeaux France
- CHU de Bordeaux, Laboratoire d'Hématologie; Bordeaux France
- INSERM U1218, ACTION, Université de Bordeaux; Bordeaux France
| | - Damien Luque Paz
- Université Angers, UFR Santé; Angers France
- CHU d'Angers, Laboratoire d'Hématologie; Angers France
- CRCINA, INSERM, Université d'Angers; Angers France
- Fédération Hospitalo-Universitaire ‘Grand Ouest Against Leukemia’ (FHU GOAL); Angers France
| | - Jean-Christophe Ianotto
- Fédération Hospitalo-Universitaire ‘Grand Ouest Against Leukemia’ (FHU GOAL); Angers France
- CHU de Brest, Service d'Hématologie Clinique; Brest France
| | - Yannick Le Bris
- Fédération Hospitalo-Universitaire ‘Grand Ouest Against Leukemia’ (FHU GOAL); Angers France
- CHU de Nantes, Laboratoire d'Hématologie; Nantes France
| | - Aurélie Chauveau
- Fédération Hospitalo-Universitaire ‘Grand Ouest Against Leukemia’ (FHU GOAL); Angers France
- CHU de Brest, Laboratoire d'Hématologie; Brest France
- INSERM U1078, CHRU Brest; Brest France
- Université de Bretagne Occidentale, UFR Médecine; Brest France
| | - Françoise Boyer
- Fédération Hospitalo-Universitaire ‘Grand Ouest Against Leukemia’ (FHU GOAL); Angers France
- CHU d'Angers, Service des Maladies du Sang; Angers France
| | - Carole Conejero
- AP-HP, CHU Henri Mondor, Laboratoire d'Hématologie; Créteil France
| | - Olivier Fitoussi
- Polyclinique Bordeaux Nord Aquitaine, Service d'hémato-oncologie; Bordeaux France
| | - Jérémie Riou
- INSERM 1066 MINT, Université d'Angers; Angers France
| | - Didier Adiko
- Service de Médecine-Hématologie; CH Robert Boulin; Libourne France
| | | | - Jasmine Chauzeix
- CHU de Limoges, Laboratoire d'Hématologie, CRBS; Limoges France
- UMR CNRS 7276; Limoges France
| | | | - Marie C. Béné
- Fédération Hospitalo-Universitaire ‘Grand Ouest Against Leukemia’ (FHU GOAL); Angers France
- CHU de Nantes, Laboratoire d'Hématologie; Nantes France
| | | | - Valérie Ugo
- Université Angers, UFR Santé; Angers France
- CHU d'Angers, Laboratoire d'Hématologie; Angers France
- CRCINA, INSERM, Université d'Angers; Angers France
- Fédération Hospitalo-Universitaire ‘Grand Ouest Against Leukemia’ (FHU GOAL); Angers France
| | - Eric Lippert
- Fédération Hospitalo-Universitaire ‘Grand Ouest Against Leukemia’ (FHU GOAL); Angers France
- CHU de Brest, Laboratoire d'Hématologie; Brest France
- INSERM U1078, CHRU Brest; Brest France
- Université de Bretagne Occidentale, UFR Médecine; Brest France
| |
Collapse
|
28
|
Langabeer SE. Reflective molecular testing for myeloproliferative neoplasms in patients with elevated serum vitamin B 12. Ann Clin Biochem 2018; 55:717-718. [PMID: 30056758 DOI: 10.1177/0004563218790986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Quantitation of JAK2 V617F Allele Burden by Using the QuantStudio™ 3D Digital PCR System. Methods Mol Biol 2018; 1768:257-273. [PMID: 29717448 DOI: 10.1007/978-1-4939-7778-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The JAK2 V617F mutation is highly prevalent in patients with myeloproliferative neoplasms (MPN). Furthermore, it has been shown that its allelic burden correlates with hematologic characteristics, drug response, and clinical endpoints in MPN patients. Digital PCR is an emerging technology for sensitive mutation detection and quantitation, based on dilution and high-grade partitioning of a sample. Here, we describe the use of the nanofluidic chip-based QuantStudio™ 3D Digital PCR System for quantitation of the JAK2 V617F mutation.
Collapse
|
30
|
Diagnostic, Prognostic, and Predictive Utility of Recurrent Somatic Mutations in Myeloid Neoplasms. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 17S:S62-S74. [PMID: 28760304 DOI: 10.1016/j.clml.2017.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/28/2017] [Indexed: 02/02/2023]
Abstract
The classification and risk stratification of myeloid neoplasms, including acute myeloid leukemia, myelodysplastic syndromes, myelodysplastic syndromes/myeloproliferative neoplasms, and myeloproliferative neoplasms, have increasingly been guided by molecular genetic abnormalities. Gene expression analysis and next-generation sequencing have led to the ever increasing discovery of somatic gene mutations in myeloid neoplasms. Mutations have been identified in genes involved in epigenetic modification, RNA splicing, transcription factors, DNA repair, and the cohesin complex. These new somatic/acquired gene mutations have refined the classification of myeloid neoplasms and have been incorporated into the 2016 update of the World Health Organization (WHO) classification and the National Comprehensive Cancer Network guidelines. They have also been helpful in the development of new targeted therapeutic agents. In the present review, we describe the clinical utility of recently identified, clinically important gene mutations in myeloid neoplasms, including those incorporated in the 2016 update of the WHO classification.
Collapse
|
31
|
pSTAT3/pSTAT5 Signaling Patterns in Molecularly Defined Subsets of Myeloproliferative Neoplasms. Appl Immunohistochem Mol Morphol 2018; 26:147-152. [DOI: 10.1097/pai.0000000000000391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
32
|
Senamela T, Kock M, Becker P, Potgieter JJ. Detection of the Janus kinase 2 V617F mutation using a locked nucleic-acid, real-time polymerase chain reaction assay. Afr J Lab Med 2018; 7:658. [PMID: 29435426 PMCID: PMC5806058 DOI: 10.4102/ajlm.v7i1.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/17/2017] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to develop a real time polymerase chain reaction (PCR) assay for the detection of the JAK2 V617F mutation that could be used in diagnostic laboratories. Sanger sequencing and a newly developed locked nucleic-acid, real-time PCR assay were used to detect the JAK2 V617F mutation. There was 100% agreement between the sequencing and PCR analysis. Both assays were able to detect the mutation in all 24 of the 60 test specimens harbouring the mutation.
Collapse
Affiliation(s)
- Tshiphiri Senamela
- National Health Laboratory Services, Pretoria, South Africa
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marleen Kock
- National Health Laboratory Services, Pretoria, South Africa
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Piet Becker
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Joachim J.C. Potgieter
- National Health Laboratory Services, Pretoria, South Africa
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
Frawley T, O'Brien CP, Conneally E, Vandenberghe E, Percy M, Langabeer SE, Haslam K. Development of a Targeted Next-Generation Sequencing Assay to Detect Diagnostically Relevant Mutations of JAK2, CALR, and MPL in Myeloproliferative Neoplasms. Genet Test Mol Biomarkers 2018; 22:98-103. [PMID: 29323541 DOI: 10.1089/gtmb.2017.0203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), consisting of polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a heterogeneous group of neoplasms that harbor driver mutations in the JAK2, CALR, and MPL genes. The detection of mutations in these genes has been incorporated into the recent World Health Organization (WHO) diagnostic criteria for MPN. Given a pressing clinical need to screen for mutations in these genes in a routine diagnostic setting, a targeted next-generation sequencing (NGS) assay for the detection of MPN-associated mutations located in JAK2 exon 14, JAK2 exon 12, CALR exon 9, and MPL exon 10 was developed to provide a single platform alternative to reflexive, stepwise diagnostic algorithms. METHODS Polymerase chain reaction (PCR) primers were designed to target mutation hotspots in JAK2 exon 14, JAK2 exon 12, MPL exon 10, and CALR exon 9. Multiplexed PCR conditions were optimized by using qualitative PCR followed by NGS. Diagnostic genomic DNA from 35 MPN patients, known to harbor driver mutations in one of the target genes, was used to validate the assay. RESULTS One hundred percent concordance was observed between the previously-identified mutations and those detected by NGS, with no false positives, nor any known mutations missed (specificity = 100%, CI = 0.96, sensitivity = 100%, CI = 0.89). Improved resolution of mutation sequences was also revealed by NGS analysis. CONCLUSION Detection of diagnostically relevant driver mutations of MPN is enhanced by employing a targeted multiplex NGS approach. This assay presents a robust solution to classical MPN mutation screening, providing an alternative to time-consuming sequential analyses.
Collapse
Affiliation(s)
- Thomas Frawley
- 1 Cancer Molecular Diagnostics, St. James's Hospital , Dublin, Ireland
| | - Cathal P O'Brien
- 1 Cancer Molecular Diagnostics, St. James's Hospital , Dublin, Ireland
| | | | | | - Melanie Percy
- 3 Department of Haematology, Belfast City Hospital , Belfast, United Kingdom
| | | | - Karl Haslam
- 1 Cancer Molecular Diagnostics, St. James's Hospital , Dublin, Ireland
| |
Collapse
|
34
|
Trifa AP, Bănescu C, Bojan AS, Voina CM, Popa Ș, Vișan S, Ciubean AD, Tripon F, Dima D, Popov VM, Vesa ȘC, Andreescu M, Török-Vistai T, Mihăilă RG, Berbec N, Macarie I, Coliţă A, Iordache M, Cătană AC, Farcaș MF, Tomuleasa C, Vasile K, Truică C, Todincă A, Pop-Muntean L, Manolache R, Bumbea H, Vlădăreanu AM, Gaman M, Ciufu CM, Popp RA. MECOM, HBS1L-MYB, THRB-RARB, JAK2, and TERT polymorphisms defining the genetic predisposition to myeloproliferative neoplasms: A study on 939 patients. Am J Hematol 2018; 93:100-106. [PMID: 29047144 DOI: 10.1002/ajh.24946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 12/13/2022]
Abstract
Polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) are classical myeloproliferative neoplasms (MPN), characterized by specific somatic mutations in JAK2, CALR or MPL genes. JAK2 46/1 and TERT rs2736100 polymorphisms are known to significantly predispose to MPN. This study aimed to establish the additional contribution of the recently described MECOM rs2201862, HBS1L-MYB rs9376092 and THRB-RARB rs4858647 polymorphisms to the occurrence of MPN. These three polymorphisms, along with JAK2 46/1 and TERT rs2736100 were genotyped in 939 MPN patients (454 with ET, 337 with PV and 148 with PMF) and 483 controls. MECOM rs2201862 associated significantly with each MPN entity, except for ET, and with all major molecular sub-types, especially those CALR-mutated (OR = 1.4; 95% CI = 1.1-1.8; P-value = .005). HBS1L-MYB rs9376092 associated only with JAK2 V617F-mutated ET (OR = 1.4; 95% CI = 1.1-1.7; P-value = .003). THRB-RARB rs4858647 had a weak association with PMF only (OR = 1.5; 95% CI = 1-2.1; P-value = .04). Surprisingly, JAK2 46/1 haplotype was associated significantly not only with JAK2 V617F-mutated MPN, but also with CALR-mutated MPN (OR = 1.4; 95% CI = 1.1-1.8; P-value = .01). TERT rs2736100 was associated equally strong with all MPN, regardless of phenotype or molecular sub-type. In conclusion, JAK2 46/1, TERT rs2736100 and MECOM rs2201862 are the chief predisposing polymorphisms to MPN.
Collapse
Affiliation(s)
- Adrian P. Trifa
- Department of Medical Genetics; Iuliu Haţieganu University of Medicine and Pharmacy; Cluj-Napoca Romania
- Department of Genetics; Ion Chiricuţă Cancer Institute; Cluj-Napoca Romania
| | - Claudia Bănescu
- Department of Genetics; Center for Advanced Medical and Pharmaceutical Research, University of Medicine and Pharmacy; Tîrgu-Mureș Romania
| | - Anca S. Bojan
- Department of Hematology; Ion Chiricuţă Cancer Institute, Iuliu Haţieganu University of Medicine and Pharmacy; Cluj-Napoca Romania
| | - Cristian M. Voina
- Department of Medical Genetics; Iuliu Haţieganu University of Medicine and Pharmacy; Cluj-Napoca Romania
| | - Ștefana Popa
- Department of Genetics; Ion Chiricuţă Cancer Institute; Cluj-Napoca Romania
| | - Simona Vișan
- Department of Genetics; Ion Chiricuţă Cancer Institute; Cluj-Napoca Romania
| | - Alina D. Ciubean
- Department of Pharmacology and Toxicology; Iuliu Haţieganu University of Medicine and Pharmacy; Cluj-Napoca Romania
| | - Florin Tripon
- Department of Genetics; Center for Advanced Medical and Pharmaceutical Research, University of Medicine and Pharmacy; Tîrgu-Mureș Romania
| | - Delia Dima
- Department of Hematology; Ion Chiricuţă Cancer Institute, Iuliu Haţieganu University of Medicine and Pharmacy; Cluj-Napoca Romania
| | - Viola M. Popov
- Department of Hematology; Colentina Hospital; Bucharest Romania
| | - Ștefan C. Vesa
- Department of Pharmacology and Toxicology; Iuliu Haţieganu University of Medicine and Pharmacy; Cluj-Napoca Romania
| | | | - Tünde Török-Vistai
- Department of Hematology; Ion Chiricuţă Cancer Institute, Iuliu Haţieganu University of Medicine and Pharmacy; Cluj-Napoca Romania
| | - Romeo G. Mihăilă
- Department of Hematology; Emergency County Hospital, Lucian Blaga University; Sibiu Romania
| | - Nicoleta Berbec
- Department of Hematology; Colţea Hospital, Carol Davila University of Medicine and Pharmacy; Bucharest Romania
| | - Ioan Macarie
- Department of Hematology; University of Medicine and Pharmacy; Romania Tîrgu-Mureș
| | - Andrei Coliţă
- Department of Hematology; Colţea Hospital, Carol Davila University of Medicine and Pharmacy; Bucharest Romania
| | - Maria Iordache
- Department of Hematology; Victor Babeș University of Medicine and Pharmacy; Timișoara Romania
| | - Alina C. Cătană
- Department of Hematology; Emergency County Hospital, Lucian Blaga University; Sibiu Romania
| | - Marius F. Farcaș
- Department of Medical Genetics; Iuliu Haţieganu University of Medicine and Pharmacy; Cluj-Napoca Romania
| | - Ciprian Tomuleasa
- Department of Hematology; Ion Chiricuţă Cancer Institute, Iuliu Haţieganu University of Medicine and Pharmacy; Cluj-Napoca Romania
| | - Kinga Vasile
- Department of Hematology; Emergency County Hospital; Deva Romania
| | - Cristina Truică
- Department of Hematology; Emergency County Hospital; Baia-Mare Romania
| | - Adriana Todincă
- Department of Hematology; Emergency County Hospital; Baia-Mare Romania
| | | | - Raluca Manolache
- Department of Hematology; Colţea Hospital, Carol Davila University of Medicine and Pharmacy; Bucharest Romania
| | - Horia Bumbea
- Department of Hematology; University Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy; Bucharest Romania
| | - Ana-Maria Vlădăreanu
- Department of Hematology; University Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy; Bucharest Romania
| | - Mihaela Gaman
- Department of Hematology; University Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy; Bucharest Romania
| | - Cristina M. Ciufu
- Department of Hematology; University Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy; Bucharest Romania
| | - Radu A. Popp
- Department of Medical Genetics; Iuliu Haţieganu University of Medicine and Pharmacy; Cluj-Napoca Romania
| |
Collapse
|
35
|
Pita ASA, Azevedo APDS, Reichert A, Silva CJPD, Henriques V, Mendes DS, Reis AMB, Cerqueira R, Torres F, Viana JF. Atypical haematological presentation in a case of polycythaemia vera with a new variant mutation detected in exon 12: c.1605G>T (p.Met535Ile). J Clin Pathol 2017; 71:180-184. [PMID: 29021147 DOI: 10.1136/jclinpath-2017-204556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/23/2023]
Abstract
One of the major genetic insights into the pathogenesis of polycythaemia vera included the identification of the somatic point gain-of-function mutations in Janus kinase 2 gene-first JAK2V617F on exon 14, present in 95%-97% of the cases, and later on exon 12. In the literature, we can find some reported studies where different exon 12 mutations are identified. Unlike patients with JAK2V617F mutation in exon 14, the mutation at exon 12 is not usually associated with an increase in the three haematopoietic series (erythrocytosis, leucocytosis and thrombocytosis). It appears to be associated with a distinct syndrome, mostly characterised by isolated and more marked erythrocytosis, independently of the mutational variant. We report here the case of a patient who is JAK2exon 12 positive, presenting a novel mutation-c.1605G>T (p.Met535Ile)-associated with c.1612C>T (p.His538Tyr) mutation previously described, evidencing an atypical clinical phenotype.
Collapse
Affiliation(s)
| | - Ana Paula da Silva Azevedo
- Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, Lisboa, Lisboa, Portugal.,Centre for Toxicogenomics and Human Health Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Alice Reichert
- Department of Haematology, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | | | - Vanessa Henriques
- Department of Pathology, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Diana Sousa Mendes
- Department of Transfusional Medicine, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Ana Maria Batalha Reis
- Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, Lisboa, Lisboa, Portugal
| | | | | | - João Faro Viana
- Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, Lisboa, Lisboa, Portugal
| |
Collapse
|
36
|
Kjaer L, Holmström MO, Cordua S, Andersen MH, Svane IM, Thomassen M, Kruse TA, Pallisgaard N, Skov V, Hasselbalch HC. Sorted peripheral blood cells identify CALR mutations in B- and T-lymphocytes. Leuk Lymphoma 2017; 59:973-977. [PMID: 28792253 DOI: 10.1080/10428194.2017.1359743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lasse Kjaer
- a Department of Hematology , Zealand University Hospital , Roskilde , Denmark
| | - Morten O Holmström
- a Department of Hematology , Zealand University Hospital , Roskilde , Denmark.,b Center for Cancer Immune Therapy , Herlev Hospital, University of Copenhagen , Herlev , Denmark
| | - Sabrina Cordua
- a Department of Hematology , Zealand University Hospital , Roskilde , Denmark
| | - Mads Hald Andersen
- b Center for Cancer Immune Therapy , Herlev Hospital, University of Copenhagen , Herlev , Denmark
| | - Inge Marie Svane
- b Center for Cancer Immune Therapy , Herlev Hospital, University of Copenhagen , Herlev , Denmark
| | - Mads Thomassen
- c Department of Clinical Genetics , Odense University Hospital , Odense , Denmark
| | - Torben A Kruse
- c Department of Clinical Genetics , Odense University Hospital , Odense , Denmark
| | - Niels Pallisgaard
- d Department of Surgical Pathology , Zealand University Hospital , Roskilde , Denmark
| | - Vibe Skov
- a Department of Hematology , Zealand University Hospital , Roskilde , Denmark
| | - Hans C Hasselbalch
- a Department of Hematology , Zealand University Hospital , Roskilde , Denmark
| |
Collapse
|
37
|
Langabeer SE, Haslam K, Kelly J, Quinn J, Morrell R, Conneally E. Targeted next-generation sequencing identifies clinically relevant mutations in patients with chronic neutrophilic leukemia at diagnosis and blast crisis. Clin Transl Oncol 2017; 20:420-423. [PMID: 28762112 DOI: 10.1007/s12094-017-1722-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/24/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE Chronic neutrophilic leukemia is a rare form of myeloproliferative neoplasm characterized by mature neutrophil hyperleukocytosis. The majority of patients harbor somatic mutations of CSF3R gene and are potentially amenable to targeted therapy with JAK inhibitors. The incidence and clinical significance of additional mutations requires clarification. MATERIALS AND METHODS A next-generation sequencing approach for myeloid malignancy-associated mutations was applied to diagnostic and matched blast crisis samples from four chronic neutrophilic leukemia patients. RESULTS Next-generation sequencing confirmed the CSF3R T618I in all patients with identification of concurrent SRSF2, SETBP1, NRAS and CBL mutations at diagnosis. At blast crisis, clonal evolution was evidenced by an increased CSF3R T618I allele frequency and by loss or acquisition of CBL and NRAS mutations. CONCLUSION The diagnostic utility of a targeted next-generation sequencing approach was clearly demonstrated with the identification of additional mutations providing the potential for therapeutic stratification of chronic neutrophilic leukemia patients.
Collapse
Affiliation(s)
- S E Langabeer
- Central Pathology Laboratory, Cancer Molecular Diagnostics, St. James's Hospital, Dublin 8, Ireland.
| | - K Haslam
- Central Pathology Laboratory, Cancer Molecular Diagnostics, St. James's Hospital, Dublin 8, Ireland
| | - J Kelly
- Department of Clinical Genetics, Our Lady's Children's Hospital, Dublin, Ireland
| | - J Quinn
- Department of Haematology, Beaumont Hospital, Dublin, Ireland
| | - R Morrell
- Department of Haematology, Letterkenny University Hospital, Letterkenny, Ireland
| | - E Conneally
- Department of Haematology, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
38
|
High-throughput sequencing for noninvasive disease detection in hematologic malignancies. Blood 2017; 130:440-452. [PMID: 28600337 DOI: 10.1182/blood-2017-03-735639] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
Noninvasive monitoring of minimal residual disease (MRD) has led to significant advances in personalized management of patients with hematologic malignancies. Improved therapeutic options and prolonged survival have further increased the need for sensitive tumor assessment that can inform treatment decisions and patient outcomes. At diagnosis or relapse of most hematologic neoplasms, malignant cells are often easily accessible in the blood as circulating tumor cells (CTCs), making them ideal targets to noninvasively profile the molecular features of each patient. In other cancer types, CTCs are generally rare and noninvasive molecular detection relies on circulating tumor DNA (ctDNA) shed from tumor deposits into circulation. The ability to precisely detect and quantify CTCs and ctDNA could minimize invasive procedures and improve prediction of clinical outcomes. Technical advances in MRD detection methods in recent years have led to reduced costs and increased sensitivity, specificity, and applicability. Among currently available tests, high-throughput sequencing (HTS)-based approaches are increasingly attractive for noninvasive molecular testing. HTS-based methods can simultaneously identify multiple genetic markers with high sensitivity and specificity without individual optimization. In this review, we present an overview of techniques used for noninvasive molecular disease detection in selected myeloid and lymphoid neoplasms, with a focus on the current and future role of HTS-based assays.
Collapse
|
39
|
Finazzi MC, Lussana F, Salmoiraghi S, Spinelli O, Rambaldi A. Detection of driver and subclonal mutations in myelofibrosis: clinical impact on pharmacologic and transplant based treatment strategies. Expert Rev Hematol 2017; 10:627-636. [PMID: 28504024 DOI: 10.1080/17474086.2017.1331125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Myelofibrosis (MF) is the most aggressive form among Philadelphia negative (Ph-) myeloproliferative neoplasms (MPNs). In the last years, the mutational landscape of MF has expanded remarkably by the identification of additional recurrent mutations, called subclonal mutations. Areas covered: Here we describe the available data about the currently identified subclonal mutations and their prognostic value in MF patients. We also review the practical value of including such molecular information in available prognostic models for both outcome prediction and possibly treatment decision with regards to transplant indication. Lastly, we covered the available data on the application of molecular markers for minimal residual disease (MRD) monitoring after transplantation. Expert commentary: The demonstration of the prognostic value of additional mutations suggests to define this molecular profile at diagnosis and when an allogeneic transplant can be advised, particularly in younger patients. The presence of molecular markers might offer the possibility to evaluate the depth of remission and to monitor MRD after transplantation. Prospective clinical studies are needed to validate the use of this molecular data in the routine clinical practice.
Collapse
Affiliation(s)
- Maria Chiara Finazzi
- a Hematology and Bone Marrow Transplant Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII , Bergamo , Italy
| | - Federico Lussana
- a Hematology and Bone Marrow Transplant Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII , Bergamo , Italy
| | - Silvia Salmoiraghi
- a Hematology and Bone Marrow Transplant Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII , Bergamo , Italy
| | - Orietta Spinelli
- a Hematology and Bone Marrow Transplant Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII , Bergamo , Italy
| | - Alessandro Rambaldi
- a Hematology and Bone Marrow Transplant Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII , Bergamo , Italy.,b Department of Oncology and Hematology , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
40
|
Guglielmelli P, Pietra D, Pane F, Pancrazzi A, Cazzola M, Vannucchi AM, Tura S, Barosi G. Recommendations for molecular testing in classical Ph1-neg myeloproliferative disorders-A consensus project of the Italian Society of Hematology. Leuk Res 2017; 58:63-72. [PMID: 28460339 DOI: 10.1016/j.leukres.2017.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/26/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
The discovery that Philadelphia-negative classical myeloproliferative neoplasms (MPNs) present with several molecular abnormalities, including the mostly represented JAK2V617F mutation, opened new horizons in the diagnosis, prognosis, and monitoring of these disorders. However, the great strides in the knowledge on molecular genetics need parallel progresses on the best approach to methods for detecting and reporting disease-associated mutations, and to shape the most effective and rationale testing pathway in the diagnosis, prognosis and monitoring of MPNs. The MPN taskforce of the Italian Society of Hematology (SIE) assessed the scientific literature and composed a framework of the best, possibly evidence-based, recommendations for optimal molecular methods as well as insights about the applicability and interpretation of those tests in the clinical practice, and clinical decision for testing MPNs patients. The issues dealt with: source of samples and nucleic acid template, the most appropriate molecular abnormalities and related detection methods required for diagnosis, prognosis, and monitoring of MPNs, how to report a diagnostic molecular test, calibration and quality control. For each of these issues, practice recommendations were provided.
Collapse
Affiliation(s)
- Paola Guglielmelli
- CRIMM-Centro Ricerca e Innovazione delle Malattie Mieloproliferative, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Pietra
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Alessandro Pancrazzi
- CRIMM-Centro Ricerca e Innovazione delle Malattie Mieloproliferative, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Haematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Alessandro M Vannucchi
- CRIMM-Centro Ricerca e Innovazione delle Malattie Mieloproliferative, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Biotechnology Research Area, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico S. Matteo, Pavia, Italy.
| |
Collapse
|
41
|
Langabeer SE. Chasing down the triple-negative myeloproliferative neoplasms: Implications for molecular diagnostics. JAKSTAT 2016; 5:e1248011. [PMID: 28144498 DOI: 10.1080/21623996.2016.1248011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
The majority of patients with classical myeloproliferative neoplasms (MPN) of polycythemia vera, essential thrombocythemia, and primary myelofibrosis harbor distinct disease-driving mutations within the JAK2, CALR, or MPL genes. The term triple-negative has been recently applied to those MPN without evidence of these consistent mutations, prompting whole or targeted exome sequencing approaches to determine the driver mutational status of this subgroup. These strategies have identified numerous novel mutations that occur in alternative exons of both JAK2 and MPL, the majority of which result in functional activation. Current molecular diagnostic approaches may possess insufficient coverage to detect these alternative mutations, prompting further consideration of targeted exon sequencing into routine diagnostic practice. How to incorporate these illuminating findings into the expanding molecular diagnostic algorithm for MPN requires continual attention.
Collapse
|
42
|
Monitoring Minimal Residual Disease in the Myeloproliferative Neoplasms: Current Applications and Emerging Approaches. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7241591. [PMID: 27840830 PMCID: PMC5093244 DOI: 10.1155/2016/7241591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022]
Abstract
The presence of acquired mutations within the JAK2, CALR, and MPL genes in the majority of patients with myeloproliferative neoplasms (MPN) affords the opportunity to utilise these mutations as markers of minimal residual disease (MRD). Reduction of the mutated allele burden has been reported in response to a number of therapeutic modalities including interferon, JAK inhibitors, and allogeneic stem cell transplantation; novel therapies in development will also require assessment of efficacy. Real-time quantitative PCR has been widely adopted for recurrent point mutations with assays demonstrating the specificity, sensitivity, and reproducibility required for clinical utility. More recently, approaches such as digital PCR have demonstrated comparable, if not improved, assay characteristics and are likely to play an increasing role in MRD monitoring. While next-generation sequencing is increasingly valuable as a tool for diagnosis of MPN, its role in the assessment of MRD requires further evaluation.
Collapse
|
43
|
Kjær L, Cordua S, Holmström MO, Thomassen M, Kruse TA, Pallisgaard N, Larsen TS, de Stricker K, Skov V, Hasselbalch HC. Differential Dynamics of CALR Mutant Allele Burden in Myeloproliferative Neoplasms during Interferon Alfa Treatment. PLoS One 2016; 11:e0165336. [PMID: 27764253 PMCID: PMC5072743 DOI: 10.1371/journal.pone.0165336] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/10/2016] [Indexed: 11/18/2022] Open
Abstract
Discovery of somatic mutations in the calreticulin gene (CALR) has identified a subgroup of Philadelphia-negative chronic myeloproliferative neoplasms (MPN) with separate haematological characteristics and prognosis. CALR mutations serve as novel markers both of diagnostic value and as targets for monitoring molecular responses during therapy. Interferon-α (IFN) selectively targets the malignant clone in a subset of MPN patients and can induce both haematological and molecular remissions in CALR mutated essential thrombocythemia (ET) patients. We investigated the response to IFN in a cohort of 21 CALR mutated MPN patients including ET, prefibrotic primary myelofibrosis (pre-PMF), and primary myelofibrosis (PMF) with a median follow-up of 31 months. For evaluation of a molecular response, we developed highly sensitive quantitative PCR (qPCR) assays for monitoring the mutant allele burden of the two most prevalent CALR mutations (type 1 and type 2). Thirteen patients (62%) experienced a decrease in the mutant allele burden with a median decline of 29% from baseline. However, only four patients, including patients with ET, pre-PMF, and PMF diagnosis, achieved molecular responder (MR) status with >50% reduction in mutant allele burden according to European LeukemiaNet (ELN) guidelines. MR patients displayed significant differences in the dynamics of the CALR mutant load with regard to time to response and dynamics in mutant allele burden after discontinuation of IFN treatment. Furthermore, we highlight the prognostic value of the CALR mutant allele burden by showing a close association with leucocyte- and platelet counts, hemoglobin concentration, in addition to plasma lactate dehydrogenase (LDH) irrespective of molecular response and treatment status.
Collapse
Affiliation(s)
- Lasse Kjær
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
- * E-mail:
| | - Sabrina Cordua
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Niels Pallisgaard
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Thomas S. Larsen
- Department of Haematology, Odense University Hospital, Odense, Denmark
| | - Karin de Stricker
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Vibe Skov
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | | |
Collapse
|
44
|
TERT rs2736100 genotypes are associated with differential risk of myeloproliferative neoplasms in Swedish and Chinese male patient populations. Ann Hematol 2016; 95:1825-32. [PMID: 27561898 PMCID: PMC5040742 DOI: 10.1007/s00277-016-2787-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/19/2022]
Abstract
The telomerase reverse transcriptase (TERT) gene rs2736100_C allele has recently been shown to be associated with an increased risk for myeloproliferative neoplasms (MPNs) among Caucasians. However, it is unknown if this association is present in other ethnical populations and whether rs2736100 allele frequencies mirror the incidence of MPNs in a population. Here we genotyped TERT rs2736100 variants in 126 Swedish and 101 Chinese MPN patients and their age-, sex-, and ethnically-matched healthy controls. Healthy Chinese adults had a higher frequency of the A allele and lower frequencies of the C allele compared to Swedish counterparts (57.4 vs 47.0 % for A, 42.6 vs 53.0 % for C, P = 0.006). Both Swedish and Chinese patients harbored significantly higher C allele frequency than their controls (62.7 vs 53.0 % and 57.4 vs 42.6 % for Swedish and Chinese, respectively, P = 0.004). Swedes and Chinese bearing the CC genotype had a significantly increased risk of MPN compared to AA carriers (OR = 2.47; 95 % CI: 1.33-4.57, P = 0.003, for Swedes, and OR = 3.45; 95 % CI: 1.52-7.85, P = 0.005, for Chinese). Further analyses showed that rs2736100_CC was associated with robustly enhanced risk in males only (CC vs AA, OR = 5.11; 95 % CI: 2.19-11.92, P < 0.0001). The CC-carrying MPN patients exhibited significantly higher TERT expression than patients with the AC genotype. Collectively, the rs2736100_C is a risk allele for MPNs in Swedish and Chinese males, and the lower incidence of MPNs in the Chinese population is correlated with a lower rs2736100_C risk allele frequency.
Collapse
|
45
|
Nelson ND, Marcogliese A, Bergstrom K, Scheurer M, Mahoney D, Bertuch AA. Thrombopoietin Measurement as a Key Component in the Evaluation of Pediatric Thrombocytosis. Pediatr Blood Cancer 2016; 63:1484-7. [PMID: 27100794 PMCID: PMC4916014 DOI: 10.1002/pbc.26032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/31/2016] [Indexed: 01/12/2023]
Abstract
JAK2, MPL, and CALR mutations, which underlie essential thrombocythemia (ET) in most adults, are infrequent in children. Consequently, additional tests are needed to confirm pediatric ET diagnoses. We report a child with suspected ET and normal JAK2, MPL, and CALR analyses. Serum thrombopoietin (TPO) was markedly elevated, leading to analysis of the TPO gene, TPHO, which contains an upstream open reading frame (uORF) known to repress THPO translation. Sequencing revealed a de novo, germline stopgain mutation in the uORF, explaining the elevated TPO and thrombocytosis. This finding suggests that screening TPO levels and, if elevated, THPO 5' UTR sequencing could be diagnostic.
Collapse
Affiliation(s)
- Nya D. Nelson
- Medical Scientist Training Program, Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX
| | - Andrea Marcogliese
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX,Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Katie Bergstrom
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Michael Scheurer
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Donald Mahoney
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Alison A. Bertuch
- Department of Pediatrics, Baylor College of Medicine, Houston, TX,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
46
|
Cheng Pettersson A, Viskari A, Odén U, Sibrian C, Hansson U, Johansson P, Andréasson B, Palmqvist L, Asp J. Improved MPL mutation screening with multiplex PCR and capillary electrophoresis. Br J Haematol 2016; 179:838-840. [PMID: 27434077 DOI: 10.1111/bjh.14253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/07/2016] [Indexed: 11/29/2022]
Affiliation(s)
| | - Anita Viskari
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulrika Odén
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carlos Sibrian
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulrika Hansson
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Johansson
- Haematology and Coagulation Section, Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.,Hematology Section, Department of Medicine, NU Hospital Group, Uddevalla, Sweden
| | - Björn Andréasson
- Hematology Section, Department of Medicine, NU Hospital Group, Uddevalla, Sweden
| | - Lars Palmqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julia Asp
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
47
|
Haslam K, Conneally E, Flynn CM, Cahill MR, Gilligan O, O'Shea D, Langabeer SE. CALR mutation profile in Irish patients with myeloproliferative neoplasms. Hematol Oncol Stem Cell Ther 2016; 9:112-5. [PMID: 27352261 DOI: 10.1016/j.hemonc.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 11/17/2022] Open
Abstract
Insertion and/or deletion mutations of the CALR gene have recently been demonstrated to be the second most common driver mutations in the myeloproliferative neoplasms (MPNs) of essential thrombocythemia (ET) and primary myelofibrosis (PMF). Given the diagnostic and emerging prognostic significance of these mutations, in addition to the geographical heterogeneity reported, the incidence of CALR mutations was determined in an Irish cohort of patients with MPNs with a view to incorporate this analysis into a prospective screening program. A series of 202 patients with known or suspected ET and PMF were screened for the presence of CALR mutations. CALR mutations were detected in 58 patients. Type 1 and Type 1-like deletion mutations were the most common (n=40) followed by Type 2 and Type 2-like insertion mutations (n=17). The CALR mutation profile in Irish ET and PMF patients appears similar to that in other European populations. Establishment of this mutational profile allows the introduction of a rational, molecular diagnostic algorithm in cases of suspected ET and PMF that will improve clinical management.
Collapse
Affiliation(s)
- Karl Haslam
- Cancer Molecular Diagnostics, St. James's Hospital, Dublin, Ireland
| | | | | | - Mary R Cahill
- Department of Haematology, Cork University Hospital, Cork, Ireland
| | - Oonagh Gilligan
- Department of Haematology, Cork University Hospital, Cork, Ireland
| | - Derville O'Shea
- Department of Haematology, Cork University Hospital, Cork, Ireland
| | | |
Collapse
|
48
|
Clinton A, McMullin MF. TheCalreticulingene and myeloproliferative neoplasms. J Clin Pathol 2016; 69:841-5. [DOI: 10.1136/jclinpath-2016-203899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 11/03/2022]
|
49
|
Benetatos L. Occurrence of JAK2V617F mutation in previously triple negative essential thrombocythemia. Leuk Lymphoma 2016; 58:503-504. [DOI: 10.1080/10428194.2016.1196816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Tiong IS, Casolari DA, Moore S, Nguyen T, Van Velzen MJM, Zantomio D, Scott HS, D'Andrea RJ, Hahn CN, Ross DM. Apparent ‘JAK2
-negative’ polycythaemia vera due to compound mutations in exon 14. Br J Haematol 2016; 178:333-336. [DOI: 10.1111/bjh.14126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/05/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Ing Soo Tiong
- Haematology Directorate; SA Pathology/Royal Adelaide Hospital; Adelaide Australia
- School of Medicine; University of Adelaide; Adelaide Australia
| | - Debora A. Casolari
- Haematology Directorate; SA Pathology/Royal Adelaide Hospital; Adelaide Australia
- Centre for Cancer Biology; University of South Australia/SA Pathology; Adelaide Australia
| | - Sarah Moore
- Genetics and Molecular Pathology Directorate; SA Pathology; Adelaide Australia
| | - Tran Nguyen
- Haematology Directorate; SA Pathology/Royal Adelaide Hospital; Adelaide Australia
- Centre for Cancer Biology; University of South Australia/SA Pathology; Adelaide Australia
| | - Merel J. M. Van Velzen
- Haematology Directorate; SA Pathology/Royal Adelaide Hospital; Adelaide Australia
- Centre for Cancer Biology; University of South Australia/SA Pathology; Adelaide Australia
- School of Medical Sciences; VUmc; Amsterdam The Netherlands
| | - Daniela Zantomio
- Department of Clinical Haematology; Austin Hospital; Melbourne Australia
| | - Hamish S. Scott
- School of Medicine; University of Adelaide; Adelaide Australia
- Centre for Cancer Biology; University of South Australia/SA Pathology; Adelaide Australia
- Genetics and Molecular Pathology Directorate; SA Pathology; Adelaide Australia
| | - Richard J. D'Andrea
- Haematology Directorate; SA Pathology/Royal Adelaide Hospital; Adelaide Australia
- Centre for Cancer Biology; University of South Australia/SA Pathology; Adelaide Australia
| | - Christopher N. Hahn
- School of Medicine; University of Adelaide; Adelaide Australia
- Centre for Cancer Biology; University of South Australia/SA Pathology; Adelaide Australia
- Genetics and Molecular Pathology Directorate; SA Pathology; Adelaide Australia
| | - David M. Ross
- Haematology Directorate; SA Pathology/Royal Adelaide Hospital; Adelaide Australia
- School of Medicine; University of Adelaide; Adelaide Australia
| |
Collapse
|