1
|
Gabarin A, Yarmolinsky L, Budovsky A, Khalfin B, Ben-Shabat S. Cannabis as a Source of Approved Drugs: A New Look at an Old Problem. Molecules 2023; 28:7686. [PMID: 38067416 PMCID: PMC10707504 DOI: 10.3390/molecules28237686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Cannabis plants have been used in medicine since ancient times. They are well known for their anti-diabetic, anti-inflammatory, neuroprotective, anti-cancer, anti-oxidative, anti-microbial, anti-viral, and anti-fungal activities. A growing body of evidence indicates that targeting the endocannabinoid system and various other receptors with cannabinoid compounds holds great promise for addressing multiple medical conditions. There are two distinct avenues in the development of cannabinoid-based drugs. The first involves creating treatments directly based on the components of the cannabis plant. The second involves a singular molecule strategy, in which specific phytocannabinoids or newly discovered cannabinoids with therapeutic promise are pinpointed and synthesized for future pharmaceutical development and validation. Although the therapeutic potential of cannabis is enormous, few cannabis-related approved drugs exist, and this avenue warrants further investigation. With this in mind, we review here the medicinal properties of cannabis, its phytochemicals, approved drugs of natural and synthetic origin, pitfalls on the way to the widespread clinical use of cannabis, and additional applications of cannabis-related products.
Collapse
Affiliation(s)
- Adi Gabarin
- The Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; (A.G.); (L.Y.); (B.K.)
| | - Ludmila Yarmolinsky
- The Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; (A.G.); (L.Y.); (B.K.)
| | - Arie Budovsky
- Research and Development Authority, Barzilai University Medical Center, Ashkelon 7830604, Israel;
| | - Boris Khalfin
- The Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; (A.G.); (L.Y.); (B.K.)
| | - Shimon Ben-Shabat
- The Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; (A.G.); (L.Y.); (B.K.)
| |
Collapse
|
2
|
de Camargo RW, de Novais Júnior LR, da Silva LM, Meneguzzo V, Daros GC, da Silva MG, de Bitencourt RM. Implications of the endocannabinoid system and the therapeutic action of cannabinoids in autism spectrum disorder: A literature review. Pharmacol Biochem Behav 2022; 221:173492. [PMID: 36379443 DOI: 10.1016/j.pbb.2022.173492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, onset in early childhood and associated with cognitive, social, behavioral, and sensory impairments. The pathophysiology is still unclear, and it is believed that genetic and environmental factors are fully capable of influencing ASD, especially cell signaling and microglial functions. Furthermore, the endocannabinoid system (ECS) participates in the modulation of various brain processes and is also involved in the pathophysiological mechanisms of this condition. Due to the health and quality of life impacts of autism for the patient and his/her family and the lack of effective medications, the literature has elucidated the possibility that Cannabis phytocannabinoids act favorably on ASD symptoms, probably through the modulation of neurotransmitters, in addition to endogenous ligands derived from arachidonic acid, metabolizing enzymes and even transporters of the membrane. These findings support the notion that there are links between key features of ASD and ECS due to the favorable actions of cannabidiol (CBD) and other cannabinoids on symptoms related to behavioral and cognitive disorders, as well as deficits in communication and social interaction, hyperactivity, anxiety and sleep disorders. Thus, phytocannabinoids emerge as therapeutic alternatives for ASD.
Collapse
Affiliation(s)
- Rick Wilhiam de Camargo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| | | | - Larissa Mendes da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Vicente Meneguzzo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Guilherme Cabreira Daros
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina Goulart da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | | |
Collapse
|
3
|
Abstract
Given the aging Baby Boomer generation, changes in cannabis legislation, and the growing acknowledgment of cannabis for its therapeutic potential, it is predicted that cannabis use in the older population will escalate. It is, therefore, important to determine the interaction between the effects of cannabis and aging. The aim of this report is to describe the link between cannabis use and the aging brain. Our review of the literature found few and inconsistent empirical studies that directly address the impact of cannabis use on the aging brain. However, research focused on long-term cannabis use points toward cumulative effects on multimodal systems in the brain that are similarly affected during aging. Specifically, the effects of cannabis and aging converge on overlapping networks in the endocannabinoid, opioid, and dopamine systems that may affect functional decline particularly in the hippocampus and prefrontal cortex, which are critical areas for memory and executive functioning. To conclude, despite the limited current knowledge on the potential interactive effects between cannabis and aging, evidence from the literature suggests that cannabis and aging effects are concurrently present across several neurotransmitter systems. There is a great need for future research to directly test the interactions between cannabis and aging.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Jennifer DiMuzio
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
4
|
Proteomic profiling of whole-saliva reveals correlation between Burning Mouth Syndrome and the neurotrophin signaling pathway. Sci Rep 2019; 9:4794. [PMID: 30886243 PMCID: PMC6423135 DOI: 10.1038/s41598-019-41297-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/27/2019] [Indexed: 12/29/2022] Open
Abstract
Burning mouth syndrome (BMS) is characterized by a spontaneous and chronic sensation of burning in the oral mucosa, with no apparent signs. The underlying pathophysiological and neuropathic mechanisms remain unclear. Here, we attempt to elucidate some of these mechanisms using proteomic profiling and bioinformatic analyses of whole-saliva (WS) from BMS patients compared to WS from healthy individuals. Qualitative and quantitative proteomic profiling was performed using two dimensional gel electrophoresis (2-DE) and quantitative mass spectrometry (q-MS). In order to improve protein visibility, 21 high abundance proteins were depleted before proteomic profiling. Quantitative proteomic analysis revealed 100 BMS specific proteins and an additional 158 proteins up-regulated by more than threefold in those with BMS. Bioinformatic analyses of the altered protein expression profile of BMS group indicated high correlations to three cellular mechanisms including the neurotrophin signaling pathway. Based on this finding, we suggest that neurotrophin signaling pathway is involved in the pathophysiology of BMS by amplifying P75NTR activity, which in turn increases neural apoptosis thereby reducing sub-papillary nerve fiber density in the oral mucosa.
Collapse
|
5
|
Vigli D, Cosentino L, Raggi C, Laviola G, Woolley-Roberts M, De Filippis B. Chronic treatment with the phytocannabinoid Cannabidivarin (CBDV) rescues behavioural alterations and brain atrophy in a mouse model of Rett syndrome. Neuropharmacology 2018; 140:121-129. [DOI: 10.1016/j.neuropharm.2018.07.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/30/2018] [Accepted: 07/24/2018] [Indexed: 12/26/2022]
|
6
|
The Endocannabinoid System and Autism Spectrum Disorders: Insights from Animal Models. Int J Mol Sci 2017; 18:ijms18091916. [PMID: 28880200 PMCID: PMC5618565 DOI: 10.3390/ijms18091916] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) defines a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction with restricted or repetitive motor movements, frequently associated with general cognitive deficits. Although it is among the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact to the society, no effective treatment for ASD is yet available, possibly because its neurobiological basis is not clearly understood hence specific drugs have not yet been developed. The endocannabinoid (EC) system represents a major neuromodulatory system involved in the regulation of emotional responses, behavioral reactivity to context, and social interaction. Furthermore, the EC system is also affected in conditions often present in subsets of patients diagnosed with ASD, such as seizures, anxiety, intellectual disabilities, and sleep pattern disturbances. Despite the indirect evidence suggestive of an involvement of the EC system in ASD, only a few studies have specifically addressed the role of the EC system in the context of ASD. This review describes the available data on the investigation of the presence of alterations of the EC system as well as the effects of its pharmacological manipulations in animal models of ASD-like behaviors.
Collapse
|
7
|
Ramírez-López MT, Vázquez M, Lomazzo E, Hofmann C, Blanco RN, Alén F, Antón M, Decara J, Arco R, Orio L, Suárez J, Lutz B, Gómez de Heras R, Bindila L, Rodríguez de Fonseca F. A moderate diet restriction during pregnancy alters the levels of endocannabinoids and endocannabinoid-related lipids in the hypothalamus, hippocampus and olfactory bulb of rat offspring in a sex-specific manner. PLoS One 2017; 12:e0174307. [PMID: 28346523 PMCID: PMC5367805 DOI: 10.1371/journal.pone.0174307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/07/2017] [Indexed: 01/09/2023] Open
Abstract
Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid-related lipid signaling alterations might be involved in the long-term and sexual dimorphism effects commonly observed after undernutrition and low birth weight.
Collapse
Affiliation(s)
- María Teresa Ramírez-López
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Mariam Vázquez
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Rosario Noemi Blanco
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - María Antón
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Decara
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Rocío Arco
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Laura Orio
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Suárez
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología. IBIMA. Facultad de Ciencias, Universidad de Malaga. Campus de Teatinos s/n, Malaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Raquel Gómez de Heras
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- * E-mail: (FRF); (RGH)
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- * E-mail: (FRF); (RGH)
| |
Collapse
|
8
|
Ramírez-López MT, Arco R, Decara J, Vázquez M, Rivera P, Blanco RN, Alén F, Gómez de Heras R, Suárez J, Rodríguez de Fonseca F. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators. Front Behav Neurosci 2016; 10:241. [PMID: 28082878 PMCID: PMC5187359 DOI: 10.3389/fnbeh.2016.00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022] Open
Abstract
Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes (Faah, Daglα, Daglβ, Mgll) and several key regulators of fatty-acid β-oxidation (Cpt1b, Acox1), mitochondrial respiration (Cox4i1), and lipid flux (Pparγ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Pparα, Pparγ, the eCBs-degrading enzymes Faah and Mgll, the de novo lipogenic enzymes Acaca and Fasn, and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr. Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner.
Collapse
Affiliation(s)
- María T Ramírez-López
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Hospital Universitario de GetafeMadrid, Spain
| | - Rocío Arco
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Mariam Vázquez
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Rosario Noemi Blanco
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Raquel Gómez de Heras
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain; Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Ciencias, Universidad de MálagaMálaga, Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| |
Collapse
|
9
|
Ramírez-López MT, Vázquez M, Bindila L, Lomazzo E, Hofmann C, Blanco RN, Alén F, Antón M, Decara J, Arco R, Ouro D, Orio L, Suárez J, Lutz B, Gómez de Heras R, Rodríguez de Fonseca F. Maternal Caloric Restriction Implemented during the Preconceptional and Pregnancy Period Alters Hypothalamic and Hippocampal Endocannabinoid Levels at Birth and Induces Overweight and Increased Adiposity at Adulthood in Male Rat Offspring. Front Behav Neurosci 2016; 10:208. [PMID: 27847471 PMCID: PMC5088205 DOI: 10.3389/fnbeh.2016.00208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
Exposure to inadequate nutritional conditions in critical windows of development has been associated to disturbances on metabolism and behavior in the offspring later in life. The role of the endocannabinoid system, a known regulator of energy expenditure and adaptive behaviors, in the modulation of these processes is unknown. In the present study, we investigated the impact of exposing rat dams to diet restriction (20% less calories than standard diet) during pre-gestational and gestational periods on: (a) neonatal outcomes; (b) endocannabinoid content in hypothalamus, hippocampus and olfactory bulb at birth; (c) metabolism-related parameters; and (d) behavior in adult male offspring. We found that calorie-restricted dams tended to have a reduced litter size, although the offspring showed normal weight at birth. Pups from calorie-restricted dams also exhibited a strong decrease in the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA) and palmitoylethanolamide (PEA) in the hypothalamus at birth. Additionally, pups from diet-restricted dams displayed reduced levels of AEA in the hippocampus without significant differences in the olfactory bulb. Moreover, offspring exhibited increased weight gain, body weight and adiposity in adulthood as well as increased anxiety-related responses. We propose that endocannabinoid signaling is altered by a maternal caloric restriction implemented during the preconceptional and pregnancy periods, which might lead to modifications of the hypothalamic and hippocampal circuits, potentially contributing to the long-term effects found in the adult offspring.
Collapse
Affiliation(s)
| | - Mariam Vázquez
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Rosarío Noemí Blanco
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - María Antón
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Rocío Arco
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Daniel Ouro
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Laura Orio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Raquel Gómez de Heras
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| |
Collapse
|
10
|
Harkany T, Zeilhofer HU, Cattaneo A. Neurotrophin and endocannabinoid interactions in the neurobiology of pain. Eur J Neurosci 2014; 39:331-3. [PMID: 24494673 DOI: 10.1111/ejn.12483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|