1
|
Chen C, Xu S, Wang Y, Wang X. Location-specific neural facilitation in marmoset auditory cortex. Nat Commun 2025; 16:2773. [PMID: 40113772 PMCID: PMC11926104 DOI: 10.1038/s41467-025-58034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
A large body of literature has shown that sensory neurons typically exhibit adaptation to repetitive stimulation. However, adaptation alone does not account for the ability of sensory systems to remain vigilant to the environment in spite of repetitive sensory stimulation. Here, we investigated single neuron responses to sequences of sounds repeatedly delivered from a particular spatial location. Instead of inducing adaptation, repetitive stimulation evoked long-lasting and location-specific facilitation (LSF) in firing rate of nearly 90% of recorded neurons. The LSF decreased with decreasing presentation probability and diminished when sounds were randomly delivered from multiple spatial locations. Intracellular recordings showed that repetitive sound stimulation evoked sustained membrane potential depolarization. Computational modeling showed that increased arousal, not decreased inhibition, underlies the LSF. Our findings reveal a novel form of contextual modulation in the marmoset auditory cortex that may play a role in tasks such as auditory streaming and the cocktail party effect.
Collapse
Affiliation(s)
- Chenggang Chen
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheng Xu
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yunyan Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Chen C, Remington ED, Wang X. Sound localization acuity of the common marmoset (Callithrix jacchus). Hear Res 2023; 430:108722. [PMID: 36863289 DOI: 10.1016/j.heares.2023.108722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023]
Abstract
The common marmoset (Callithrix jacchus) is a small arboreal New World primate which has emerged as a promising model in auditory neuroscience. One potentially useful application of this model system is in the study of the neural mechanism underlying spatial hearing in primate species, as the marmosets need to localize sounds to orient their head to events of interest and identify their vocalizing conspecifics that are not visible. However, interpretation of neurophysiological data on sound localization requires an understanding of perceptual abilities, and the sound localization behavior of marmosets has not been well studied. The present experiment measured sound localization acuity using an operant conditioning procedure in which marmosets were trained to discriminate changes in sound location in the horizontal (azimuth) or vertical (elevation) dimension. Our results showed that the minimum audible angle (MAA) for horizontal and vertical discrimination was 13.17° and 12.53°, respectively, for 2 to 32 kHz Gaussian noise. Removing the monaural spectral cues tended to increase the horizontal localization acuity (11.31°). Marmosets have larger horizontal MAA (15.54°) in the rear than the front. Removing the high-frequency (> 26 kHz) region of the head-related transfer function (HRTF) affected vertical acuity mildly (15.76°), but removing the first notch (12-26 kHz) region of HRTF substantially reduced the vertical acuity (89.01°). In summary, our findings indicate that marmosets' spatial acuity is on par with other species of similar head size and field of best vision, and they do not appear to use monaural spectral cues for horizontal discrimination but rely heavily on first notch region of HRTF for vertical discrimination.
Collapse
Affiliation(s)
- Chenggang Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Traylor 410, Baltimore, MD 21025, United States
| | - Evan D Remington
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Traylor 410, Baltimore, MD 21025, United States
| | - Xiaoqin Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Traylor 410, Baltimore, MD 21025, United States.
| |
Collapse
|
3
|
Nishimura M, Song WJ. Region-dependent Millisecond Time-scale Sensitivity in Spectrotemporal Integrations in Guinea Pig Primary Auditory Cortex. Neuroscience 2022; 480:229-245. [PMID: 34762984 DOI: 10.1016/j.neuroscience.2021.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Spectrotemporal integration is a key function of our auditory system for discriminating spectrotemporally complex sounds, such as words. Response latency in the auditory cortex is known to change with the millisecond time-scale depending on acoustic parameters, such as sound frequency and intensity. The functional significance of the millisecond-range latency difference in the integration remains unclear. Actually, whether the auditory cortex has a sensitivity to the millisecond-range difference has not been systematically examined. Herein, we examined the sensitivity in the primary auditory cortex (A1) using voltage-sensitive dye imaging techniques in guinea pigs. Bandpass noise bursts in two different bands (band-noises), centered at 1 and 16 kHz, respectively, were used for the examination. Onset times of individual band-noises (spectral onset-times) were varied to virtually cancel or magnify the latency difference observed with the band-noises. Conventionally defined nonlinear effects in integration were analyzed at A1 with varying sound intensities (or response latencies) and/or spectral onset-times of the two band-noises. The nonlinear effect measured in the high-frequency region of the A1 linearly changed depending on the millisecond difference of the response onset-times, which were estimated from the spatially-local response latencies and spectral onset-times. In contrast, the low-frequency region of the A1 had no significant sensitivity to the millisecond difference. The millisecond-range latency difference may have functional significance in the spectrotemporal integration with the millisecond time-scale sensitivity at the high-frequency region of A1 but not at the low-frequency region.
Collapse
Affiliation(s)
- Masataka Nishimura
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan.
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan; Program for Leading Graduate Schools HIGO Program, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
AIM: A network model of attention in auditory cortex. PLoS Comput Biol 2021; 17:e1009356. [PMID: 34449761 PMCID: PMC8462696 DOI: 10.1371/journal.pcbi.1009356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/24/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022] Open
Abstract
Attentional modulation of cortical networks is critical for the cognitive flexibility required to process complex scenes. Current theoretical frameworks for attention are based almost exclusively on studies in visual cortex, where attentional effects are typically modest and excitatory. In contrast, attentional effects in auditory cortex can be large and suppressive. A theoretical framework for explaining attentional effects in auditory cortex is lacking, preventing a broader understanding of cortical mechanisms underlying attention. Here, we present a cortical network model of attention in primary auditory cortex (A1). A key mechanism in our network is attentional inhibitory modulation (AIM) of cortical inhibitory neurons. In this mechanism, top-down inhibitory neurons disinhibit bottom-up cortical circuits, a prominent circuit motif observed in sensory cortex. Our results reveal that the same underlying mechanisms in the AIM network can explain diverse attentional effects on both spatial and frequency tuning in A1. We find that a dominant effect of disinhibition on cortical tuning is suppressive, consistent with experimental observations. Functionally, the AIM network may play a key role in solving the cocktail party problem. We demonstrate how attention can guide the AIM network to monitor an acoustic scene, select a specific target, or switch to a different target, providing flexible outputs for solving the cocktail party problem. Selective attention plays a key role in how we navigate our everyday lives. For example, at a cocktail party, we can attend to friend’s speech amidst other speakers, music, and background noise. In stark contrast, hundreds of millions of people with hearing impairment and other disorders find such environments overwhelming and debilitating. Understanding the mechanisms underlying selective attention may lead to breakthroughs in improving the quality of life for those negatively affected. Here, we propose a mechanistic network model of attention in primary auditory cortex based on attentional inhibitory modulation (AIM). In the AIM model, attention targets specific cortical inhibitory neurons, which then modulate local cortical circuits to emphasize a particular feature of sounds and suppress competing features. We show that the AIM model can account for experimental observations across different species and stimulus domains. We also demonstrate that the same mechanisms can enable listeners to flexibly switch between attending to specific targets sounds and monitoring the environment in complex acoustic scenes, such as a cocktail party. The AIM network provides a theoretical framework which can work in tandem with new experiments to help unravel cortical circuits underlying attention.
Collapse
|
5
|
Xiong C, Liu X, Kong L, Yan J. Thalamic gating contributes to forward suppression in the auditory cortex. PLoS One 2020; 15:e0236760. [PMID: 32726372 PMCID: PMC7390390 DOI: 10.1371/journal.pone.0236760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/11/2020] [Indexed: 11/18/2022] Open
Abstract
The neural mechanisms underlying forward suppression in the auditory cortex remain a puzzle. Little attention is paid to thalamic contribution despite the important fact that the thalamus gates upstreaming information to the auditory cortex. This study compared the time courses of forward suppression in the auditory thalamus, thalamocortical inputs and cortex using the two-tone stimulus paradigm. The preceding and succeeding tones were 20-ms long. Their frequency and amplitude were set at the characteristic frequency and 20 dB above the minimum threshold of given neurons, respectively. In the ventral division of the medial geniculate body of the thalamus, we found that the duration of complete forward suppression was about 75 ms and the duration of partial suppression was from 75 ms to about 300 ms after the onset of the preceding tone. We also found that during the partial suppression period, the responses to the succeeding tone were further suppressed in the primary auditory cortex. The forward suppression of thalamocortical field excitatory postsynaptic potentials was between those of thalamic and cortical neurons but much closer to that of thalamic ones. Our results indicate that early suppression in the cortex could result from complete suppression in the thalamus whereas later suppression may involve thalamocortical and intracortical circuitry. This suggests that the complete suppression that occurs in the thalamus provides the cortex with a "silence" window that could potentially benefit cortical processing and/or perception of the information carried by the preceding sound.
Collapse
Affiliation(s)
- Colin Xiong
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiuping Liu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lingzhi Kong
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jun Yan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
6
|
Martin LM, García-Rosales F, Beetz MJ, Hechavarría JC. Processing of temporally patterned sounds in the auditory cortex of Seba's short-tailed bat,Carollia perspicillata. Eur J Neurosci 2018; 46:2365-2379. [PMID: 28921742 DOI: 10.1111/ejn.13702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022]
Abstract
This article presents a characterization of cortical responses to artificial and natural temporally patterned sounds in the bat species Carollia perspicillata, a species that produces vocalizations at rates above 50 Hz. Multi-unit activity was recorded in three different experiments. In the first experiment, amplitude-modulated (AM) pure tones were used as stimuli to drive auditory cortex (AC) units. AC units of both ketamine-anesthetized and awake bats could lock their spikes to every cycle of the stimulus modulation envelope, but only if the modulation frequency was below 22 Hz. In the second experiment, two identical communication syllables were presented at variable intervals. Suppressed responses to the lagging syllable were observed, unless the second syllable followed the first one with a delay of at least 80 ms (i.e., 12.5 Hz repetition rate). In the third experiment, natural distress vocalization sequences were used as stimuli to drive AC units. Distress sequences produced by C. perspicillata contain bouts of syllables repeated at intervals of ~60 ms (16 Hz). Within each bout, syllables are repeated at intervals as short as 14 ms (~71 Hz). Cortical units could follow the slow temporal modulation flow produced by the occurrence of multisyllabic bouts, but not the fast acoustic flow created by rapid syllable repetition within the bouts. Taken together, our results indicate that even in fast vocalizing animals, such as bats, cortical neurons can only track the temporal structure of acoustic streams modulated at frequencies lower than 22 Hz.
Collapse
Affiliation(s)
- Lisa M Martin
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt/Main, Germany
| | - Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt/Main, Germany
| | - M Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt/Main, Germany
| | - Julio C Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt/Main, Germany
| |
Collapse
|
7
|
Gao F, Chen L, Zhang J. Nonuniform impacts of forward suppression on neural responses to preferred stimuli and nonpreferred stimuli in the rat auditory cortex. Eur J Neurosci 2018; 47:1320-1338. [PMID: 29761576 DOI: 10.1111/ejn.13943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 11/29/2022]
Abstract
In natural conditions, human and animals need to extract target sound information from noisy acoustic environments for communication and survival. However, how the contextual environmental sounds impact the tuning of central auditory neurons to target sound source azimuth over a wide range of sound levels is not fully understood. Here, we determined the azimuth-level response areas (ALRAs) of rat auditory cortex neurons by recording their responses to probe tones varying with levels and sound source azimuths under both quiet (probe alone) and forward masking conditions (preceding noise + probe). In quiet, cortical neurons responded stronger to their preferred stimuli than to their nonpreferred stimuli. In forward masking conditions, an effective preceding noise reduced the extents of the ALRAs and suppressed the neural responses across the ALRAs by decreasing the response strength and lengthening the first-spike latency. The forward suppressive effect on neural response strength was increased with increasing masker level and decreased with prolonging the time interval between masker and probe. For a portion of cortical neurons studied, the effects of forward suppression on the response strength to preferred stimuli was weaker than those to nonpreferred stimuli, and the recovery from forward suppression of the response strength to preferred stimuli was earlier than that to nonpreferred stimuli. We suggest that this nonuniform forward suppression of neural responses to preferred stimuli and to nonpreferred stimuli is important for cortical neurons to maintain their relative stable preferences for target sound source azimuth and level in noisy acoustic environments.
Collapse
Affiliation(s)
- Fei Gao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| | - Liang Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiping Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
8
|
Vocal sequences suppress spiking in the bat auditory cortex while evoking concomitant steady-state local field potentials. Sci Rep 2016; 6:39226. [PMID: 27976691 PMCID: PMC5156950 DOI: 10.1038/srep39226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/18/2016] [Indexed: 12/27/2022] Open
Abstract
The mechanisms by which the mammalian brain copes with information from natural vocalization streams remain poorly understood. This article shows that in highly vocal animals, such as the bat species Carollia perspicillata, the spike activity of auditory cortex neurons does not track the temporal information flow enclosed in fast time-varying vocalization streams emitted by conspecifics. For example, leading syllables of so-called distress sequences (produced by bats subjected to duress) suppress cortical spiking to lagging syllables. Local fields potentials (LFPs) recorded simultaneously to cortical spiking evoked by distress sequences carry multiplexed information, with response suppression occurring in low frequency LFPs (i.e. 2–15 Hz) and steady-state LFPs occurring at frequencies that match the rate of energy fluctuations in the incoming sound streams (i.e. >50 Hz). Such steady-state LFPs could reflect underlying synaptic activity that does not necessarily lead to cortical spiking in response to natural fast time-varying vocal sequences.
Collapse
|
9
|
Hechavarría JC, Beetz MJ, Macias S, Kössl M. Distress vocalization sequences broadcasted by bats carry redundant information. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:503-15. [DOI: 10.1007/s00359-016-1099-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
|
10
|
Abstract
UNLABELLED Stream segregation enables a listener to disentangle multiple competing sequences of sounds. A recent study from our laboratory demonstrated that cortical neurons in anesthetized cats exhibit spatial stream segregation (SSS) by synchronizing preferentially to one of two sequences of noise bursts that alternate between two source locations. Here, we examine the emergence of SSS along the ascending auditory pathway. Extracellular recordings were made in anesthetized rats from the inferior colliculus (IC), the nucleus of the brachium of the IC (BIN), the medial geniculate body (MGB), and the primary auditory cortex (A1). Stimuli consisted of interleaved sequences of broadband noise bursts that alternated between two source locations. At stimulus presentation rates of 5 and 10 bursts per second, at which human listeners report robust SSS, neural SSS is weak in the central nucleus of the IC (ICC), it appears in the nucleus of the brachium of the IC (BIN) and in approximately two-thirds of neurons in the ventral MGB (MGBv), and is prominent throughout A1. The enhancement of SSS at the cortical level reflects both increased spatial sensitivity and increased forward suppression. We demonstrate that forward suppression in A1 does not result from synaptic inhibition at the cortical level. Instead, forward suppression might reflect synaptic depression in the thalamocortical projection. Together, our findings indicate that auditory streams are increasingly segregated along the ascending auditory pathway as distinct mutually synchronized neural populations. SIGNIFICANCE STATEMENT Listeners are capable of disentangling multiple competing sequences of sounds that originate from distinct sources. This stream segregation is aided by differences in spatial location between the sources. A possible substrate of spatial stream segregation (SSS) has been described in the auditory cortex, but the mechanisms leading to those cortical responses are unknown. Here, we investigated SSS in three levels of the ascending auditory pathway with extracellular unit recordings in anesthetized rats. We found that neural SSS emerges within the ascending auditory pathway as a consequence of sharpening of spatial sensitivity and increasing forward suppression. Our results highlight brainstem mechanisms that culminate in SSS at the level of the auditory cortex.
Collapse
|
11
|
Gai Y. ON and OFF inhibition as mechanisms for forward masking in the inferior colliculus: a modeling study. J Neurophysiol 2016; 115:2485-500. [PMID: 26912597 DOI: 10.1152/jn.00892.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/23/2016] [Indexed: 11/22/2022] Open
Abstract
Masking effects of a preceding stimulus on the detection or perception of a signal have been found in several sensory systems in mammals, including humans and rodents. In the auditory system, it has been hypothesized that a central "OFF-inhibitory" mechanism, which is generated by neurons that respond after a sound is terminated, may contribute to the observed psychophysics. The present study constructed a systems model for the inferior colliculus that includes major ascending monaural and binaural auditory pathways. The fundamental characteristics of several neuron types along the pathways were captured by Hodgkin-Huxley models with specific membrane and synaptic properties. OFF responses were reproduced with a model of the superior paraolivary nucleus containing a hyperpolarization-activated h current and a T-type calcium current. When the gap between the end of the masker and the onset of the signal was large, e.g., >5 ms, OFF inhibition generated strong suppressive effects on the signal response. For smaller gaps, an additional inhibitory source, which was modeled as ON inhibition from the contralateral dorsal nucleus of the lateral lemniscus, showed the potential of explaining the psychophysics. Meanwhile, the effect of a forward masker on the binaural sensitivity to a low-frequency signal was examined, which was consistent with previous psychophysical findings related to sound localization.
Collapse
Affiliation(s)
- Yan Gai
- Biomedical Engineering Department, St. Louis University, St. Louis, Missouri
| |
Collapse
|
12
|
Cortical Transformation of Spatial Processing for Solving the Cocktail Party Problem: A Computational Model(1,2,3). eNeuro 2016; 3:eN-NWR-0086-15. [PMID: 26866056 PMCID: PMC4745179 DOI: 10.1523/eneuro.0086-15.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 12/04/2022] Open
Abstract
In multisource, “cocktail party” sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. In multisource, “cocktail party” sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem.
Collapse
|
13
|
High-field functional magnetic resonance imaging of vocalization processing in marmosets. Sci Rep 2015; 5:10950. [PMID: 26091254 PMCID: PMC4473644 DOI: 10.1038/srep10950] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/29/2015] [Indexed: 11/17/2022] Open
Abstract
Vocalizations are behaviorally critical sounds, and this behavioral importance is reflected in the ascending auditory system, where conspecific vocalizations are increasingly over-represented at higher processing stages. Recent evidence suggests that, in macaques, this increasing selectivity for vocalizations might culminate in a cortical region that is densely populated by vocalization-preferring neurons. Such a region might be a critical node in the representation of vocal communication sounds, underlying the recognition of vocalization type, caller and social context. These results raise the questions of whether cortical specializations for vocalization processing exist in other species, their cortical location, and their relationship to the auditory processing hierarchy. To explore cortical specializations for vocalizations in another species, we performed high-field fMRI of the auditory cortex of a vocal New World primate, the common marmoset (Callithrix jacchus). Using a sparse imaging paradigm, we discovered a caudal-rostral gradient for the processing of conspecific vocalizations in marmoset auditory cortex, with regions of the anterior temporal lobe close to the temporal pole exhibiting the highest preference for vocalizations. These results demonstrate similar cortical specializations for vocalization processing in macaques and marmosets, suggesting that cortical specializations for vocal processing might have evolved before the lineages of these species diverged.
Collapse
|
14
|
Abstract
Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical "modulation masking," in which the presentation of a modulated "masker" signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly. Whether cortical modulation tuning is compatible with such models remains unknown. By recording responses to pairs of sinusoidally amplitude modulated (SAM) tones in the auditory cortex of awake squirrel monkeys, we show that the prior presentation of the SAM masker elicited persistent and tuned suppression of the firing rate to subsequent SAM signals. Population averages of these effects are compatible with adaptation in broadly tuned modulation channels. In contrast, modulation context had little effect on the synchrony of the cortical representation of the second SAM stimuli and the tuning of such effects did not match that observed for firing rate. Our results suggest that, although the temporal representation of modulated signals is more robust to changes in stimulus context than representations based on average firing rate, this representation is not fully exploited and psychophysical modulation masking more closely mirrors physiological rate suppression and that rate tuning for a given stimulus feature in a given neuron's signal pathway appears sufficient to engender context-sensitive cortical adaptation.
Collapse
|
15
|
Lui LL, Mokri Y, Reser DH, Rosa MGP, Rajan R. Responses of neurons in the marmoset primary auditory cortex to interaural level differences: comparison of pure tones and vocalizations. Front Neurosci 2015; 9:132. [PMID: 25941469 PMCID: PMC4403308 DOI: 10.3389/fnins.2015.00132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
Interaural level differences (ILDs) are the dominant cue for localizing the sources of high frequency sounds that differ in azimuth. Neurons in the primary auditory cortex (A1) respond differentially to ILDs of simple stimuli such as tones and noise bands, but the extent to which this applies to complex natural sounds, such as vocalizations, is not known. In sufentanil/N2O anesthetized marmosets, we compared the responses of 76 A1 neurons to three vocalizations (Ock, Tsik, and Twitter) and pure tones at cells' characteristic frequency. Each stimulus was presented with ILDs ranging from 20 dB favoring the contralateral ear to 20 dB favoring the ipsilateral ear to cover most of the frontal azimuthal space. The response to each stimulus was tested at three average binaural levels (ABLs). Most neurons were sensitive to ILDs of vocalizations and pure tones. For all stimuli, the majority of cells had monotonic ILD sensitivity functions favoring the contralateral ear, but we also observed ILD sensitivity functions that peaked near the midline and functions favoring the ipsilateral ear. Representation of ILD in A1 was better for pure tones and the Ock vocalization in comparison to the Tsik and Twitter calls; this was reflected by higher discrimination indices and greater modulation ranges. ILD sensitivity was heavily dependent on ABL: changes in ABL by ±20 dB SPL from the optimal level for ILD sensitivity led to significant decreases in ILD sensitivity for all stimuli, although ILD sensitivity to pure tones and Ock calls was most robust to such ABL changes. Our results demonstrate differences in ILD coding for pure tones and vocalizations, showing that ILD sensitivity in A1 to complex sounds cannot be simply extrapolated from that to pure tones. They also show A1 neurons do not show level-invariant representation of ILD, suggesting that such a representation of auditory space is likely to require population coding, and further processing at subsequent hierarchical stages.
Collapse
Affiliation(s)
- Leo L Lui
- Department of Physiology, Monash University Clayton, VIC, Australia ; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Clayton, VIC, Australia
| | - Yasamin Mokri
- Department of Physiology, Monash University Clayton, VIC, Australia
| | - David H Reser
- Department of Physiology, Monash University Clayton, VIC, Australia
| | - Marcello G P Rosa
- Department of Physiology, Monash University Clayton, VIC, Australia ; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Clayton, VIC, Australia
| | - Ramesh Rajan
- Department of Physiology, Monash University Clayton, VIC, Australia ; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Clayton, VIC, Australia ; Ear Sciences Institute of Australia Subiaco, WA, Australia
| |
Collapse
|