1
|
Collier AD, Abdulai AR, Leibowitz SF. Utility of the Zebrafish Model for Studying Neuronal and Behavioral Disturbances Induced by Embryonic Exposure to Alcohol, Nicotine, and Cannabis. Cells 2023; 12:2505. [PMID: 37887349 PMCID: PMC10605371 DOI: 10.3390/cells12202505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances early in life and an increased risk of developing drug use disorders. After briefly summarizing evidence in rodents, this review focuses on the zebrafish model and its inherent advantages for studying the effects of embryonic exposure to drugs of abuse on behavioral and neuronal development, with an emphasis on neuropeptides known to promote drug-related behaviors. In addition to stimulating the expression and density of peptide neurons, as in rodents, zebrafish studies demonstrate that embryonic drug exposure has marked effects on the migration, morphology, projections, anatomical location, and peptide co-expression of these neurons. We also describe studies using advanced methodologies that can be applied in vivo in zebrafish: first, to demonstrate a causal relationship between the drug-induced neuronal and behavioral disturbances and second, to discover underlying molecular mechanisms that mediate these effects. The zebrafish model has great potential for providing important information regarding the development of novel and efficacious therapies for ameliorating the effects of early drug exposure.
Collapse
Affiliation(s)
| | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
2
|
Ponzoni L, Melzi G, Marabini L, Martini A, Petrillo G, Teh MT, Torres-Perez JV, Morara S, Gotti C, Braida D, Brennan CH, Sala M. Conservation of mechanisms regulating emotional-like responses on spontaneous nicotine withdrawal in zebrafish and mammals. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110334. [PMID: 33905756 PMCID: PMC8380689 DOI: 10.1016/j.pnpbp.2021.110334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nicotine withdrawal syndrome is a major clinical problem. Animal models with sufficient predictive validity to support translation of pre-clinical findings to clinical research are lacking. AIMS We evaluated the behavioural and neurochemical alterations in zebrafish induced by short- and long-term nicotine withdrawal. METHODS Zebrafish were exposed to 1 mg/L nicotine for 2 weeks. Dependence was determined using behavioural analysis following mecamylamine-induced withdrawal, and brain nicotinic receptor binding studies. Separate groups of nicotine-exposed and control fish were assessed for anxiety-like behaviours, anhedonia and memory deficits following 2-60 days spontaneous withdrawal. Gene expression analysis using whole brain samples from nicotine-treated and control fish was performed at 7 and 60 days after the last drug exposure. Tyrosine hydroxylase (TH) immunoreactivity in pretectum was also analysed. RESULTS Mecamylamine-precipitated withdrawal nicotine-exposed fish showed increased anxiety-like behaviour as evidenced by increased freezing and decreased exploration. 3H-Epibatidine labeled heteromeric nicotinic acethylcholine receptors (nAChR) significantly increased after 2 weeks of nicotine exposure while 125I-αBungarotoxin labeled homomeric nAChR remained unchanged. Spontaneous nicotine withdrawal elicited anxiety-like behaviour (increased bottom dwelling), reduced motivation in terms of no preference for the enriched side in a place preference test starting from Day 7 after withdrawal and a progressive decrease of memory attention (lowering discrimination index). Behavioural differences were associated with brain gene expression changes: nicotine withdrawn animals showed decreased expression of chrna 4 and chrna7 after 60 days, and of htr2a from 7 to 60 days.The expression of c-Fos was significantly increased at 7 days. Finally, Tyrosine hydroxylase (TH) immunoreactivity increased in dorsal parvocellular pretectal nucleus, but not in periventricular nucleus of posterior tuberculum nor in optic tectum, at 60 days after withdrawal. CONCLUSIONS Our findings show that nicotine withdrawal induced anxiety-like behaviour, cognitive alterations, gene expression changes and increase in pretectal TH expression, similar to those observed in humans and rodent models.
Collapse
Affiliation(s)
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Laura Marabini
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | | | | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, England, UK
| | - Jose V Torres-Perez
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | | | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
3
|
Becerra-Amezcua MP, Hernández-Sámano AC, Puch-Hau C, Aguilar MB, Collí-Dulá RC. Effect of pterois volitans (lionfish) venom on cholinergic and dopaminergic systems. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103359. [PMID: 32146351 DOI: 10.1016/j.etap.2020.103359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Pterois volitans venom induces muscular fibrillation, which results from nerve transmission caused by the presence of acetylcholine (ACh). It also has cardiovascular effects that are due to its actions on muscarinic and nicotinic cholinergic receptors. In this study, we characterized the effects of P. volitans venom on nicotinic acetylcholine receptors (nAChRs) and dopaminergic neurons. After exposure to P. volitans venom, acetylcholinesterase (AChE) mRNA levels and the expression of the α2 subunit of nAChR increased in zebrafish embryos (15-20 somites). In addition, the lionfish venom blocked zebrafish α2 nAChR subunit functional expression and the ACh-induced response of human neuronal α3β2 receptors. The latter receptor was blocked by a protein fraction named F2, which was isolated from P. volitans venom using reversed phase high performance liquid chromatography (RP-HPLC). This venom causes death in dopaminergic neurons, and affects the cholinergic system. The effect of these two systems may result in retarded embryonic development of zebrafish, since the two systems function in a related manner to control growth hormone secretion.
Collapse
Affiliation(s)
- Mayra P Becerra-Amezcua
- Laboratorio de Biotecnología y Toxicología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico.
| | - Arisaí C Hernández-Sámano
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, 76230, Mexico
| | - Carlos Puch-Hau
- Laboratorio de Biotecnología y Toxicología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico
| | - Manuel B Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, 76230, Mexico
| | - Reyna C Collí-Dulá
- Laboratorio de Biotecnología y Toxicología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico
| |
Collapse
|
4
|
Wronikowska O, Michalak A, Skalicka-Woźniak K, Crawford AD, Budzyńska B. Fishing for a deeper understanding of nicotine effects using zebrafish behavioural models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109826. [PMID: 31783041 DOI: 10.1016/j.pnpbp.2019.109826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 01/02/2023]
Abstract
Nicotine, the primary psychoactive component of tobacco, is the most widely used drug of abuse. Although the substance is well-known, there is still a lack of information concerning its long-term neurological and physiological effects and its mechanisms of action. In order to search for new, effective drugs in the therapy of nicotinism, as well as to design new drugs that exert positive nicotine-like effects, further experiments are needed, ideally also using new behavioural models and paradigms. A wide range of complex behaviours - including aggression, anxiety, long- and short-term memory, object discrimination and colour preference - have recently been comprehensively classified and characterized in the zebrafish model. Zebrafish offer an attractive experimental platform, based on a microscale in vivo bioassays, which can be used to investigate psychoactive drugs, their effects on the central nervous system and potential treatments of drug addictions. In this review, we present recent data revealing the potential of the zebrafish model to evaluate the effects and molecular mechanisms of nicotine by taking into consideration its impact on anxiety, learning and memory, addiction and social behaviours.
Collapse
Affiliation(s)
- Olga Wronikowska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Agnieszka Michalak
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Department of Pharmacognosy, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Alexander D Crawford
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| |
Collapse
|
5
|
JavadiEsfahani R, Kwong RWM. The sensory-motor responses to environmental acidosis in larval zebrafish: Influences of neurotransmitter and water chemistry. CHEMOSPHERE 2019; 235:383-390. [PMID: 31271998 DOI: 10.1016/j.chemosphere.2019.06.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
The sensory-motor function in larval zebrafish (Danio rerio) following exposure to low water pH was investigated. The results suggested that acid exposure (pH 4.0-5.0; control: pH 7.4) significantly reduced the touch-evoked escape response of larval zebrafish at 3 days post fertilization (dpf). A significant number of pH 4.0-exposed larvae also exhibited a lack of escape response. Treatment with neurotransmitters showed that serotonin or acetylcholine, but not dopamine, reduced the adverse effects of acid exposure on the escape response of larvae. Co-exposure to serotonin and acetylcholine did not further improve the escape response of acid-exposed larvae, suggesting no additive effect by these neurotransmitters. Interestingly, the negative effects of acid exposure on the escape response could be completely rescued by elevating the water levels of Ca2+, but not NaCl. Collectively, these results suggested that acid-induced disruption in Ca2+ balance suppressed the serotonin- and acetylcholine-mediated neuronal signaling, thereby affecting the sensory-motor function and escape response of larval zebrafish. Findings from the present study may have important implication for the survival (e.g., escape from adverse conditions) of larval fish in acid-impacted environments, particularly during early development when they are still incapable of spontaneous swimming.
Collapse
|
6
|
Clemente Z, Silva GH, de Souza Nunes MC, Martinez DST, Maurer-Morelli CV, Thomaz AA, Castro VLSS. Exploring the mechanisms of graphene oxide behavioral and morphological changes in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30508-30523. [PMID: 31463743 DOI: 10.1007/s11356-019-05870-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
The presence of natural organic matter such as humic acid (HA) can influence the behavior of graphene oxide (GO) in the aquatic environment. In this study, zebrafish embryos were analyzed after 5 and 7 days of exposure to GO (100 mg L-1) and HA (20 mg L-1) alone or together. The results indicated that, regardless of the presence of HA, larvae exposed to GO for 5 days showed an increase in locomotor activity, reduction in the yolk sac size, and total length and inhibition of AChE activity, but there was no difference in enzyme expression. The statistical analysis indicated that the reductions in total larval length, yolk sac size, and AChE activity in larvae exposed to GO persisted in relation to the control group, but there was a recovery of these parameters in groups also exposed to HA. Larvae exposed to GO for 7 days did not show significant differences in locomotor activity, but the RT-PCR gene expression analysis evidenced an increase in the AChE expression. Since the embryos exposed to GO showed a reduction in overall length, they were submitted to confocal microscopy and their muscle tissue configuration investigated. No changes were observed in the muscle tissue. The results indicated that HA is associated with the toxicity risk modulation by GO and that some compensatory homeostasis mechanisms may be involved in the developmental effects observed in zebrafish.
Collapse
Affiliation(s)
- Zaira Clemente
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, São Paulo, 13820-000, Brazil.
- Brazilian National Nanotechnology Laboratory (LNNano), Brazilian Center for Research on Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
| | - Gabriela Helena Silva
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, São Paulo, 13820-000, Brazil
- Brazilian National Nanotechnology Laboratory (LNNano), Brazilian Center for Research on Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, 13416-000, Brazil
| | - Miriam Celi de Souza Nunes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, 13087-883, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian National Nanotechnology Laboratory (LNNano), Brazilian Center for Research on Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, 13416-000, Brazil
| | - Claudia Vianna Maurer-Morelli
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, 13087-883, Brazil
| | - Andre Alexandre Thomaz
- Department of Quantum Electronics, Institute of Physics "Gleb Wataghin", University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil
- National Institute of Photonics Applied to Cell Biology (INFABIC), University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil
| | | |
Collapse
|
7
|
Noyes PD, Garcia GR, Tanguay RL. ZEBRAFISH AS AN IN VIVO MODEL FOR SUSTAINABLE CHEMICAL DESIGN. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:6410-6430. [PMID: 28461781 PMCID: PMC5408959 DOI: 10.1039/c6gc02061e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Heightened public awareness about the many thousands of chemicals in use and present as persistent contaminants in the environment has increased the demand for safer chemicals and more rigorous toxicity testing. There is a growing recognition that the use of traditional test models and empirical approaches is impractical for screening for toxicity the many thousands of chemicals in the environment and the hundreds of new chemistries introduced each year. These realities coupled with the green chemistry movement have prompted efforts to implement more predictive-based approaches to evaluate chemical toxicity early in product development. While used for many years in environmental toxicology and biomedicine, zebrafish use has accelerated more recently in genetic toxicology, high throughput screening (HTS), and behavioral testing. This review describes major advances in these testing methods that have positioned the zebrafish as a highly applicable model in chemical safety evaluations and sustainable chemistry efforts. Many toxic responses have been shown to be shared among fish and mammals owing to their generally well-conserved development, cellular networks, and organ systems. These shared responses have been observed for chemicals that impair endocrine functioning, development, and reproduction, as well as those that elicit cardiotoxicity and carcinogenicity, among other diseases. HTS technologies with zebrafish enable screening large chemical libraries for bioactivity that provide opportunities for testing early in product development. A compelling attribute of the zebrafish centers on being able to characterize toxicity mechanisms across multiple levels of biological organization from the genome to receptor interactions and cellular processes leading to phenotypic changes such as developmental malformations. Finally, there is a growing recognition of the links between human and wildlife health and the need for approaches that allow for assessment of real world multi-chemical exposures. The zebrafish is poised to be an important model in bridging these two conventionally separate areas of toxicology and characterizing the biological effects of chemical mixtures that could augment its role in sustainable chemistry.
Collapse
Affiliation(s)
- Pamela D. Noyes
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Gloria R. Garcia
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
8
|
Analysis of Nicotinic Acetylcholine Receptor (nAChR) Gene Expression in Zebrafish (Danio rerio) by In Situ Hybridization and PCR. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-3768-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
The Nicotine-Evoked Locomotor Response: A Behavioral Paradigm for Toxicity Screening in Zebrafish (Danio rerio) Embryos and Eleutheroembryos Exposed to Methylmercury. PLoS One 2016; 11:e0154570. [PMID: 27123921 PMCID: PMC4849578 DOI: 10.1371/journal.pone.0154570] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/15/2016] [Indexed: 12/03/2022] Open
Abstract
This study is an adaptation of the nicotine-evoked locomotor response (NLR) assay, which was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos. Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertilization (dpf), however, a robust swimming response can be induced as early as 36 hours post-fertilization (hpf) by means of acute nicotine exposure (30–240μM). Here, the NLR was tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zebrafish embryos of the non-touch-responsive maco strain; this assay successfully discriminated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg) was used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM). Afterwards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in locomotion in both scenarios. These findings suggest that similar locomotor phenotypes observed in free swimming fish can be detected as early as 48 hpf, when locomotion is induced with nicotine.
Collapse
|
10
|
Stewart AM, Grossman L, Collier AD, Echevarria DJ, Kalueff AV. Anxiogenic-like effects of chronic nicotine exposure in zebrafish. Pharmacol Biochem Behav 2015; 139 Pt B:112-20. [DOI: 10.1016/j.pbb.2015.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 01/28/2023]
|
11
|
Menelaou E, Paul LT, Perera SN, Svoboda KR. Motoneuron axon pathfinding errors in zebrafish: differential effects related to concentration and timing of nicotine exposure. Toxicol Appl Pharmacol 2015; 284:65-78. [PMID: 25668718 PMCID: PMC4567840 DOI: 10.1016/j.taap.2015.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
Abstract
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15-30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Latoya T Paul
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Surangi N Perera
- Joseph J. Zilber School of Public Health, University of Wisconsin - Milwaukee, Milwaukee, WI 53205, USA
| | - Kurt R Svoboda
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Joseph J. Zilber School of Public Health, University of Wisconsin - Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|