1
|
Mackey CA, O'Connell MN, Hackett TA, Schroeder CE, Kajikawa Y. Laminar organization of visual responses in core and parabelt auditory cortex. Cereb Cortex 2024; 34:bhae373. [PMID: 39300609 DOI: 10.1093/cercor/bhae373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Audiovisual (AV) interaction has been shown in many studies of auditory cortex. However, the underlying processes and circuits are unclear because few studies have used methods that delineate the timing and laminar distribution of net excitatory and inhibitory processes within areas, much less across cortical levels. This study examined laminar profiles of neuronal activity in auditory core (AC) and parabelt (PB) cortices recorded from macaques during active discrimination of conspecific faces and vocalizations. We found modulation of multi-unit activity (MUA) in response to isolated visual stimulation, characterized by a brief deep MUA spike, putatively in white matter, followed by mid-layer MUA suppression in core auditory cortex; the later suppressive event had clear current source density concomitants, while the earlier MUA spike did not. We observed a similar facilitation-suppression sequence in the PB, with later onset latency. In combined AV stimulation, there was moderate reduction of responses to sound during the visual-evoked MUA suppression interval in both AC and PB. These data suggest a common sequence of afferent spikes, followed by synaptic inhibition; however, differences in timing and laminar location may reflect distinct visual projections to AC and PB.
Collapse
Affiliation(s)
- Chase A Mackey
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
| | - Monica N O'Connell
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
- Department of Psychiatry, New York University School of Medicine, 145 E 32nd St., New York, NY 10016, United States
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37212, United States
| | - Charles E Schroeder
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
- Departments of Psychiatry and Neurology, Columbia University College of Physicians, 630 W 168th St, New York, NY 10032, United States
| | - Yoshinao Kajikawa
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
- Department of Psychiatry, New York University School of Medicine, 145 E 32nd St., New York, NY 10016, United States
| |
Collapse
|
2
|
Huang Y, Brosch M. Behavior-related visual activations in the auditory cortex of nonhuman primates. Prog Neurobiol 2024; 240:102637. [PMID: 38879074 DOI: 10.1016/j.pneurobio.2024.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
While it is well established that sensory cortical regions traditionally thought to be unimodal can be activated by stimuli from modalities other than the dominant one, functions of such foreign-modal activations are still not clear. Here we show that visual activations in early auditory cortex can be related to whether or not the monkeys engaged in audio-visual tasks, to the time when the monkeys reacted to the visual component of such tasks, and to the correctness of the monkeys' response to the auditory component of such tasks. These relationships between visual activations and behavior suggest that auditory cortex can be recruited for visually-guided behavior and that visual activations can prime auditory cortex such that it is prepared for processing future sounds. Our study thus provides evidence that foreign-modal activations in sensory cortex can contribute to a subject's ability to perform tasks on stimuli from foreign and dominant modalities.
Collapse
Affiliation(s)
- Ying Huang
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, Magdeburg 39118, Germany.
| | - Michael Brosch
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Brenneckestraße 6, Magdeburg 39118, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Universitätsplatz 2, Magdeburg 39106, Germany
| |
Collapse
|
3
|
Selezneva E, Brosch M, Rathi S, Vighneshvel T, Wetzel N. Comparison of Pupil Dilation Responses to Unexpected Sounds in Monkeys and Humans. Front Psychol 2021; 12:754604. [PMID: 35002851 PMCID: PMC8732861 DOI: 10.3389/fpsyg.2021.754604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Pupil dilation in response to unexpected stimuli has been well documented in human as well as in non-human primates; however, this phenomenon has not been systematically compared between the species. This analogy is also crucial for the role of non-human primates as an animal model to investigate neural mechanisms underlying the processing of unexpected stimuli and their evoked pupil dilation response. To assess this qualitatively, we used an auditory oddball paradigm in which we presented subjects a sequence of the same sounds followed by occasional deviants while we measured their evoked pupil dilation response (PDR). We used deviants (a frequency deviant, a pink noise burst, a monkey vocalization and a whistle sound) which differed in the spectral composition and in their ability to induce arousal from the standard. Most deviants elicited a significant pupil dilation in both species with decreased peak latency and increased peak amplitude in monkeys compared to humans. A temporal Principal Component Analysis (PCA) revealed two components underlying the PDRs in both species. The early component is likely associated to the parasympathetic nervous system and the late component to the sympathetic nervous system, respectively. Taken together, the present study demonstrates a qualitative similarity between PDRs to unexpected auditory stimuli in macaque and human subjects suggesting that macaques can be a suitable model for investigating the neuronal bases of pupil dilation. However, the quantitative differences in PDRs between species need to be investigated in further comparative studies.
Collapse
Affiliation(s)
- Elena Selezneva
- Research Group Neurocognitive Development, Leibniz Institute for Neurobiology, Magdeburg, Germany
- *Correspondence: Elena Selezneva,
| | - Michael Brosch
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sanchit Rathi
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - T. Vighneshvel
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Nicole Wetzel
- Research Group Neurocognitive Development, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
- Department of Applied Human Sciences, Magdeburg-Stendal University of Applied Sciences, Magdeburg, Germany
| |
Collapse
|
4
|
Abstract
Coordination between different sensory systems is a necessary element of sensory processing. Where and how signals from different sense organs converge onto common neural circuitry have become topics of increasing interest in recent years. In this article, we focus specifically on visual-auditory interactions in areas of the mammalian brain that are commonly considered to be auditory in function. The auditory cortex and inferior colliculus are two key points of entry where visual signals reach the auditory pathway, and both contain visual- and/or eye movement-related signals in humans and other animals. The visual signals observed in these auditory structures reflect a mixture of visual modulation of auditory-evoked activity and visually driven responses that are selective for stimulus location or features. These key response attributes also appear in the classic visual pathway but may play a different role in the auditory pathway: to modify auditory rather than visual perception. Finally, while this review focuses on two particular areas of the auditory pathway where this question has been studied, robust descending as well as ascending connections within this pathway suggest that undiscovered visual signals may be present at other stages as well. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Meredith N Schmehl
- Department of Neurobiology, Duke University, Durham, North Carolina 27708, USA; , .,Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27708, USA
| | - Jennifer M Groh
- Department of Neurobiology, Duke University, Durham, North Carolina 27708, USA; , .,Department of Psychology & Neuroscience, Duke University, Durham, North Carolina 27708, USA.,Department of Computer Science, Duke University, Durham, North Carolina 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.,Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
5
|
See JZ, Homma NY, Atencio CA, Sohal VS, Schreiner CE. Information diversity in individual auditory cortical neurons is associated with functionally distinct coordinated neuronal ensembles. Sci Rep 2021; 11:4064. [PMID: 33603027 PMCID: PMC7893178 DOI: 10.1038/s41598-021-83565-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023] Open
Abstract
Neuronal activity in auditory cortex is often highly synchronous between neighboring neurons. Such coordinated activity is thought to be crucial for information processing. We determined the functional properties of coordinated neuronal ensembles (cNEs) within primary auditory cortical (AI) columns relative to the contributing neurons. Nearly half of AI cNEs showed robust spectro-temporal receptive fields whereas the remaining cNEs showed little or no acoustic feature selectivity. cNEs can therefore capture either specific, time-locked information of spectro-temporal stimulus features or reflect stimulus-unspecific, less-time specific processing aspects. By contrast, we show that individual neurons can represent both of those aspects through membership in multiple cNEs with either high or absent feature selectivity. These associations produce functionally heterogeneous spikes identifiable by instantaneous association with different cNEs. This demonstrates that single neuron spike trains can sequentially convey multiple aspects that contribute to cortical processing, including stimulus-specific and unspecific information.
Collapse
Affiliation(s)
- Jermyn Z. See
- grid.266102.10000 0001 2297 6811Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158-0444 USA ,Department of Otolaryngology-Head and Neck Surgery, Coleman Memorial Laboratory, University of Caliornia, San Francisco, USA
| | - Natsumi Y. Homma
- grid.266102.10000 0001 2297 6811Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158-0444 USA ,Department of Otolaryngology-Head and Neck Surgery, Coleman Memorial Laboratory, University of Caliornia, San Francisco, USA
| | - Craig A. Atencio
- grid.266102.10000 0001 2297 6811Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158-0444 USA ,Department of Otolaryngology-Head and Neck Surgery, Coleman Memorial Laboratory, University of Caliornia, San Francisco, USA
| | - Vikaas S. Sohal
- grid.266102.10000 0001 2297 6811Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158-0444 USA ,grid.266102.10000 0001 2297 6811Department of Psychiatry, University of California, San Francisco, USA
| | - Christoph E. Schreiner
- grid.266102.10000 0001 2297 6811Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158-0444 USA ,Department of Otolaryngology-Head and Neck Surgery, Coleman Memorial Laboratory, University of Caliornia, San Francisco, USA
| |
Collapse
|
6
|
Fletcher MD, Song H, Perry SW. Electro-haptic stimulation enhances speech recognition in spatially separated noise for cochlear implant users. Sci Rep 2020; 10:12723. [PMID: 32728109 PMCID: PMC7391652 DOI: 10.1038/s41598-020-69697-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 11/10/2022] Open
Abstract
Hundreds of thousands of profoundly hearing-impaired people perceive sounds through electrical stimulation of the auditory nerve using a cochlear implant (CI). However, CI users are often poor at understanding speech in noisy environments and separating sounds that come from different locations. We provided missing speech and spatial hearing cues through haptic stimulation to augment the electrical CI signal. After just 30 min of training, we found this “electro-haptic” stimulation substantially improved speech recognition in multi-talker noise when the speech and noise came from different locations. Our haptic stimulus was delivered to the wrists at an intensity that can be produced by a compact, low-cost, wearable device. These findings represent a significant step towards the production of a non-invasive neuroprosthetic that can improve CI users’ ability to understand speech in realistic noisy environments.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Haoheng Song
- Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Samuel W Perry
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|
7
|
Zempeltzi MM, Kisse M, Brunk MGK, Glemser C, Aksit S, Deane KE, Maurya S, Schneider L, Ohl FW, Deliano M, Happel MFK. Task rule and choice are reflected by layer-specific processing in rodent auditory cortical microcircuits. Commun Biol 2020; 3:345. [PMID: 32620808 PMCID: PMC7335110 DOI: 10.1038/s42003-020-1073-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/11/2020] [Indexed: 01/16/2023] Open
Abstract
The primary auditory cortex (A1) is an essential, integrative node that encodes the behavioral relevance of acoustic stimuli, predictions, and auditory-guided decision-making. However, the realization of this integration with respect to the cortical microcircuitry is not well understood. Here, we characterize layer-specific, spatiotemporal synaptic population activity with chronic, laminar current source density analysis in Mongolian gerbils (Meriones unguiculatus) trained in an auditory decision-making Go/NoGo shuttle-box task. We demonstrate that not only sensory but also task- and choice-related information is represented in the mesoscopic neuronal population code of A1. Based on generalized linear-mixed effect models we found a layer-specific and multiplexed representation of the task rule, action selection, and the animal's behavioral options as accumulating evidence in preparation of correct choices. The findings expand our understanding of how individual layers contribute to the integrative circuit in the sensory cortex in order to code task-relevant information and guide sensory-based decision-making.
Collapse
Affiliation(s)
| | - Martin Kisse
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | | | - Claudia Glemser
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Sümeyra Aksit
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Katrina E Deane
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Shivam Maurya
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Lina Schneider
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Frank W Ohl
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
- Institute of Biology, Otto von Guericke University, D-39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
| | | | - Max F K Happel
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany.
| |
Collapse
|
8
|
Knyazeva S, Selezneva E, Gorkin A, Ohl FW, Brosch M. Representation of Auditory Task Components and of Their Relationships in Primate Auditory Cortex. Front Neurosci 2020; 14:306. [PMID: 32372903 PMCID: PMC7186436 DOI: 10.3389/fnins.2020.00306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
The current study aimed to resolve some of the inconsistencies in the literature on which mental processes affect auditory cortical activity. To this end, we studied auditory cortical firing in four monkeys with different experience while they were involved in six conditions with different arrangements of the task components sound, motor action, and water reward. Firing rates changed most strongly when a sound-only condition was compared to a condition in which sound was paired with water. Additional smaller changes occurred in more complex conditions in which the monkeys received water for motor actions before or after sounds. Our findings suggest that auditory cortex is most strongly modulated by the subjects’ level of arousal, thus by a psychological concept related to motor activity triggered by reinforcers and to readiness for operant behavior. Our findings also suggest that auditory cortex is involved in associative and emotional functions, but not in agency and cognitive effort.
Collapse
Affiliation(s)
| | | | - Alexander Gorkin
- Institute of Psychology, Russian Academy of Sciences, Moscow, Russia
| | - Frank W Ohl
- Leibniz Institut für Neurobiologie, Magdeburg, Germany.,Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael Brosch
- Leibniz Institut für Neurobiologie, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
9
|
Huang Y, Heil P, Brosch M. Associations between sounds and actions in early auditory cortex of nonhuman primates. eLife 2019; 8:43281. [PMID: 30946010 PMCID: PMC6467566 DOI: 10.7554/elife.43281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/03/2019] [Indexed: 11/17/2022] Open
Abstract
An individual may need to take different actions to the same stimulus in different situations to achieve a given goal. The selection of the appropriate action hinges on the previously learned associations between stimuli, actions, and outcomes in the situations. Here, using a go/no-go paradigm and a symmetrical reward, we show that early auditory cortex of nonhuman primates represents such associations, in both the spiking activity and the local field potentials. Sound-evoked neuronal responses changed with sensorimotor associations shortly after sound onset, and the neuronal responses were largest when the sound signaled that a no-go response was required in a trial to obtain a reward. Our findings suggest that association processes take place in the auditory system and do not necessarily rely on association cortex. Thus, auditory cortex may contribute to a rapid selection of the appropriate motor responses to sounds during goal-directed behavior.
Collapse
Affiliation(s)
- Ying Huang
- Special Lab Primate Neurobiology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany
| | - Peter Heil
- Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany.,Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Brosch
- Special Lab Primate Neurobiology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
10
|
Wikman P, Rinne T, Petkov CI. Reward cues readily direct monkeys' auditory performance resulting in broad auditory cortex modulation and interaction with sites along cholinergic and dopaminergic pathways. Sci Rep 2019; 9:3055. [PMID: 30816142 PMCID: PMC6395775 DOI: 10.1038/s41598-019-38833-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/28/2018] [Indexed: 11/18/2022] Open
Abstract
In natural settings, the prospect of reward often influences the focus of our attention, but how cognitive and motivational systems influence sensory cortex is not well understood. Also, challenges in training nonhuman animals on cognitive tasks complicate cross-species comparisons and interpreting results on the neurobiological bases of cognition. Incentivized attention tasks could expedite training and evaluate the impact of attention on sensory cortex. Here we develop an Incentivized Attention Paradigm (IAP) and use it to show that macaque monkeys readily learn to use auditory or visual reward cues, drastically influencing their performance within a simple auditory task. Next, this paradigm was used with functional neuroimaging to measure activation modulation in the monkey auditory cortex. The results show modulation of extensive auditory cortical regions throughout primary and non-primary regions, which although a hallmark of attentional modulation in human auditory cortex, has not been studied or observed as broadly in prior data from nonhuman animals. Psycho-physiological interactions were identified between the observed auditory cortex effects and regions including basal forebrain sites along acetylcholinergic and dopaminergic pathways. The findings reveal the impact and regional interactions in the primate brain during an incentivized attention engaging auditory task.
Collapse
Affiliation(s)
- Patrik Wikman
- Department of Psychology and Logopedics, University of Helsinki, 00014, Helsinki, Finland.
| | - Teemu Rinne
- Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, 20014, Turku, Finland.
| | - Christopher I Petkov
- Institute of Neuroscience, Newcastle University, NE1 7RU, Newcastle upon Tyne, United Kingdom.
- Centre for Behaviour and Evolution, Newcastle University, NE1 7RU, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
11
|
Selezneva E, Gorkin A, Budinger E, Brosch M. Neuronal correlates of auditory streaming in the auditory cortex of behaving monkeys. Eur J Neurosci 2018; 48:3234-3245. [PMID: 30070745 DOI: 10.1111/ejn.14098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/27/2018] [Accepted: 07/20/2018] [Indexed: 11/29/2022]
Abstract
This study tested the hypothesis that spiking activity in the primary auditory cortex of monkeys is related to auditory stream formation. Evidence for this hypothesis was previously obtained in animals that were passively exposed to stimuli and in which differences in the streaming percept were confounded with differences between the stimuli. In this study, monkeys performed an operant task on sequences that were composed of light flashes and tones. The tones alternated between a high and a low frequency and could be perceived either as one auditory stream or two auditory streams. The flashes promoted either a one-stream percept or a two-stream percept. Comparison of different types of sequences revealed that the neuronal responses to the alternating tones were more similar when the flashes promoted auditory stream integration, and were more dissimilar when the flashes promoted auditory stream segregation. Thus our findings show that the spiking activity in the monkey primary auditory cortex is related to auditory stream formation.
Collapse
Affiliation(s)
| | | | - Eike Budinger
- Leibniz Institut für Neurobiologie, Magdeburg, Germany
| | | |
Collapse
|
12
|
Rinne T, Muers RS, Salo E, Slater H, Petkov CI. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences? Cereb Cortex 2018; 27:3471-3484. [PMID: 28419201 PMCID: PMC5654311 DOI: 10.1093/cercor/bhx092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 11/22/2022] Open
Abstract
The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals.
Collapse
Affiliation(s)
- Teemu Rinne
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland
| | - Ross S Muers
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| | - Emma Salo
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Heather Slater
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher I Petkov
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Knyazeva S, Selezneva E, Gorkin A, Aggelopoulos NC, Brosch M. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences. Front Integr Neurosci 2018; 12:4. [PMID: 29440999 PMCID: PMC5797536 DOI: 10.3389/fnint.2018.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman’s population separation model of auditory streaming.
Collapse
Affiliation(s)
- Stanislava Knyazeva
- Speziallabor Primatenneurobiologie, Leibniz-Institute für Neurobiologie, Magdeburg, Germany
| | - Elena Selezneva
- Speziallabor Primatenneurobiologie, Leibniz-Institute für Neurobiologie, Magdeburg, Germany
| | - Alexander Gorkin
- Speziallabor Primatenneurobiologie, Leibniz-Institute für Neurobiologie, Magdeburg, Germany.,Laboratory of Psychophysiology, Institute of Psychology, Moscow, Russia
| | | | - Michael Brosch
- Speziallabor Primatenneurobiologie, Leibniz-Institute für Neurobiologie, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
14
|
Atilgan H, Town SM, Wood KC, Jones GP, Maddox RK, Lee AKC, Bizley JK. Integration of Visual Information in Auditory Cortex Promotes Auditory Scene Analysis through Multisensory Binding. Neuron 2018; 97:640-655.e4. [PMID: 29395914 PMCID: PMC5814679 DOI: 10.1016/j.neuron.2017.12.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/28/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022]
Abstract
How and where in the brain audio-visual signals are bound to create multimodal objects remains unknown. One hypothesis is that temporal coherence between dynamic multisensory signals provides a mechanism for binding stimulus features across sensory modalities. Here, we report that when the luminance of a visual stimulus is temporally coherent with the amplitude fluctuations of one sound in a mixture, the representation of that sound is enhanced in auditory cortex. Critically, this enhancement extends to include both binding and non-binding features of the sound. We demonstrate that visual information conveyed from visual cortex via the phase of the local field potential is combined with auditory information within auditory cortex. These data provide evidence that early cross-sensory binding provides a bottom-up mechanism for the formation of cross-sensory objects and that one role for multisensory binding in auditory cortex is to support auditory scene analysis. Visual stimuli can shape how auditory cortical neurons respond to sound mixtures Temporal coherence between senses enhances sound features of a bound multisensory object Visual stimuli elicit changes in the phase of the local field potential in auditory cortex Vision-induced phase effects are lost when visual cortex is reversibly silenced
Collapse
Affiliation(s)
- Huriye Atilgan
- The Ear Institute, University College London, London, UK
| | - Stephen M Town
- The Ear Institute, University College London, London, UK
| | | | - Gareth P Jones
- The Ear Institute, University College London, London, UK
| | - Ross K Maddox
- Department of Biomedical Engineering and Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA; Institute for Learning and Brain Sciences and Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Adrian K C Lee
- Institute for Learning and Brain Sciences and Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
15
|
Abstract
Most behaviors in mammals are directly or indirectly guided by prior experience and therefore depend on the ability of our brains to form memories. The ability to form an association between an initially possibly neutral sensory stimulus and its behavioral relevance is essential for our ability to navigate in a changing environment. The formation of a memory is a complex process involving many areas of the brain. In this chapter we review classic and recent work that has shed light on the specific contribution of sensory cortical areas to the formation of associative memories. We discuss synaptic and circuit mechanisms that mediate plastic adaptations of functional properties in individual neurons as well as larger neuronal populations forming topographically organized representations. Furthermore, we describe commonly used behavioral paradigms that are used to study the mechanisms of memory formation. We focus on the auditory modality that is receiving increasing attention for the study of associative memory in rodent model systems. We argue that sensory cortical areas may play an important role for the memory-dependent categorical recognition of previously encountered sensory stimuli.
Collapse
Affiliation(s)
- Dominik Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
16
|
Bremen P, Massoudi R, Van Wanrooij MM, Van Opstal AJ. Audio-Visual Integration in a Redundant Target Paradigm: A Comparison between Rhesus Macaque and Man. Front Syst Neurosci 2017; 11:89. [PMID: 29238295 PMCID: PMC5712580 DOI: 10.3389/fnsys.2017.00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/16/2017] [Indexed: 11/13/2022] Open
Abstract
The mechanisms underlying multi-sensory interactions are still poorly understood despite considerable progress made since the first neurophysiological recordings of multi-sensory neurons. While the majority of single-cell neurophysiology has been performed in anesthetized or passive-awake laboratory animals, the vast majority of behavioral data stems from studies with human subjects. Interpretation of neurophysiological data implicitly assumes that laboratory animals exhibit perceptual phenomena comparable or identical to those observed in human subjects. To explicitly test this underlying assumption, we here characterized how two rhesus macaques and four humans detect changes in intensity of auditory, visual, and audio-visual stimuli. These intensity changes consisted of a gradual envelope modulation for the sound, and a luminance step for the LED. Subjects had to detect any perceived intensity change as fast as possible. By comparing the monkeys' results with those obtained from the human subjects we found that (1) unimodal reaction times differed across modality, acoustic modulation frequency, and species, (2) the largest facilitation of reaction times with the audio-visual stimuli was observed when stimulus onset asynchronies were such that the unimodal reactions would occur at the same time (response, rather than physical synchrony), and (3) the largest audio-visual reaction-time facilitation was observed when unimodal auditory stimuli were difficult to detect, i.e., at slow unimodal reaction times. We conclude that despite marked unimodal heterogeneity, similar multisensory rules applied to both species. Single-cell neurophysiology in the rhesus macaque may therefore yield valuable insights into the mechanisms governing audio-visual integration that may be informative of the processes taking place in the human brain.
Collapse
Affiliation(s)
- Peter Bremen
- Department of Biophysics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands.,Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Rooholla Massoudi
- Department of Biophysics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Marc M Van Wanrooij
- Department of Biophysics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - A J Van Opstal
- Department of Biophysics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
17
|
Visual cortex and auditory cortex activation in early binocularly blind macaques: A BOLD-fMRI study using auditory stimuli. Biochem Biophys Res Commun 2017; 485:796-801. [PMID: 28257839 DOI: 10.1016/j.bbrc.2017.02.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 11/21/2022]
Abstract
Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p < 0.05). In conclusion, the bilateral visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices.
Collapse
|
18
|
Lovell JM, Mylius J, Scheich H, Brosch M. Stimulation of the Dopaminergic Midbrain as a Behavioral Reward in Instrumentally Conditioned Monkeys. Brain Stimul 2015; 8:868-74. [PMID: 26070295 DOI: 10.1016/j.brs.2015.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Since the mesocortical dopaminergic system of rodents has several differences to that found in primate species, including humans, there is the need for more exhaustively studying causative relationships between activation/stimulation of the ventral tegmental area (VTA) and substantia nigra (SN) and behavior in monkeys. OBJECTIVE To gain causative relationships between VTA/SN stimulation and behavior, we investigated whether monkeys perform audiovisual (AV) tasks using brain stimulation reward (BSR) as the reinforcer, and how reward intensity affects performance during self-stimulation. METHODS Monkeys were required to touch a bar freely when self-stimulating or when instructed by an AV stimulus, to receive BSR. RESULTS We were able to train monkeys to successfully perform the AV task for BSR within three days. Self-stimulation revealed an increase in the bar touch rate when using higher electrical currents, with no ceiling effects observed. During a training session the touch rate decreased, often before the monkeys had received 1000 deliveries of BSR, suggesting satiation. CONCLUSIONS When BSR is applied directly to the VTA/SN, it can motivate monkeys to perform detection tasks, exhibit operant actions, and may be used as a substitute for fluid or food rewards. Monkeys ceased self-stimulation during a training session by their own volition, in contrast to work on rodents. This may be an important safety aspect for consideration in the development of electrical stimulation procedures for patients with dysfunctions of the dopaminergic system; thus, satiation may avert additional compulsions to already existing compulsive behaviors in patients.
Collapse
Affiliation(s)
- Jonathan Murray Lovell
- Leibniz Institute for Neurobiology, Brenneckestraße 6, Magdeburg, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.
| | - Judith Mylius
- Leibniz Institute for Neurobiology, Brenneckestraße 6, Magdeburg, Germany
| | - Henning Scheich
- Leibniz Institute for Neurobiology, Brenneckestraße 6, Magdeburg, Germany
| | - Michael Brosch
- Leibniz Institute for Neurobiology, Brenneckestraße 6, Magdeburg, Germany
| |
Collapse
|