1
|
Wang W, Min J, Luo Q, Gu X, Li M, Liu X. Lysine Acetyltransferase TIP60 Restricts Nerve Injury by Activating IKKβ/SNAP23 Axis-Mediated Autophagosome-Lysosome Fusion in Alzheimer's Disease. CNS Neurosci Ther 2024; 30:e70095. [PMID: 39500626 PMCID: PMC11537769 DOI: 10.1111/cns.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/09/2024] Open
Abstract
OBJECTIVE The hyperphosphorylation of Tau protein is considered an important cause of neuronal degeneration in Alzheimer's disease (AD). The disruption of neuronal histone acetylation homeostasis mediated by Tip60 HAT is a common early event in neurodegenerative diseases, but the deeper regulatory mechanism on β-amyloid peptide (Aβ)-induced neurotoxicity and autophagic function in AD is still unclear. METHODS AD models were established both in APP/PS1 mice and Aβ1-42-treated SH-SY5Y cells. The Morris water maze test (MWM) was performed to examine mouse cognitive function. Neurological damage in the hippocampus was observed by hematoxylin-eosin (H&E), Nissl's, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and NeuN staining. Autophagosome-lysosome fusion was detected by immunohistochemistry, immunofluorescence, and Lyso-Tracker Red staining. Cell viability and apoptosis were evaluated by CCK-8 assay and flow cytometry. The molecular interactions were verified by co-immunoprecipitation (Co-IP), dual luciferase assays, and ChIP detections. The RNA and autophagy-lysosome-related proteins were assessed by Western blot and RT-qPCR. RESULTS TIP60 overexpression improved cognitive deficits and neurological damage and restored the impairment of autophagy-lysosomes fusion in vivo. Similarly, the upregulation of TIP60 in Aβ1-42-treated SH-SY5Y cells suppressed neuronal apoptosis and tau phosphorylation through the activating autophagy-lysosome pathway. Mechanistically, TIP60 activated IKKβ transcription by promoting SOX4 acetylation, thus leading to the translocation of SNAP23 to STX17-contained autophagosomes. Moreover, the protective roles of TIP60 in neuron damage were abolished by the inhibition of SOX4/IKKβ signaling. CONCLUSION Collectively, our results highlighted the potential of the TIP60 target for AD and provided new insights into the mechanisms underlying neuroprotection in this disorder.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Jun Min
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Qinghua Luo
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Xunhu Gu
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Min Li
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| | - Xu Liu
- Department of Neurology, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Institute of NeuroscienceNanchang UniversityNanchangJiangxi ProvinceP.R. China
- Jiangxi Provincial Clinical Medical Research Center for Neurological DisordersNanchangJiangxi ProvinceP.R. China
| |
Collapse
|
2
|
Brown LN, Barth JL, Jafri S, Rumschlag JA, Jenkins TR, Atkinson C, Lang H. Complement factor B is essential for the proper function of the peripheral auditory system. Front Neurol 2023; 14:1214408. [PMID: 37560455 PMCID: PMC10408708 DOI: 10.3389/fneur.2023.1214408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity. Additionally, activation of the complement cascade can lead to the cellular opsonization of cells and pathogens, resulting in their engulfment and elimination by phagocytes. Complement factor B (fB) is an essential activator protein in the alternative complement pathway, and variations in the fB gene are associated with age-related macular degeneration. Here we show that mice of both sexes deficient in fB functional alleles (fB-/-) demonstrate progressive hearing impairment. Transcriptomic analysis of auditory nerves from adult mice detected 706 genes that were significantly differentially expressed between fB-/- and wild-type control animals, including genes related to the extracellular matrix and neural development processes. Additionally, a subset of differentially expressed genes was related to myelin function and neural crest development. Histological and immunohistochemical investigations revealed pathological alterations in auditory nerve myelin sheathes of fB-/- mice. Pathological alterations were also seen in the stria vascularis of the cochlear lateral wall in these mice. Our results implicate fB as an integral regulator of myelin maintenance and stria vascularis integrity, underscoring the importance of understanding the involvement of immune signaling pathways in sensorineural hearing loss.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Shabih Jafri
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Tyreek R. Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
3
|
Ittner E, Hartwig AC, Elsesser O, Wüst HM, Fröb F, Wedel M, Schimmel M, Tamm ER, Wegner M, Sock E. SoxD transcription factor deficiency in Schwann cells delays myelination in the developing peripheral nervous system. Sci Rep 2021; 11:14044. [PMID: 34234180 PMCID: PMC8263579 DOI: 10.1038/s41598-021-93437-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/24/2021] [Indexed: 12/03/2022] Open
Abstract
The three SoxD proteins, Sox5, Sox6 and Sox13, represent closely related transcription factors with important roles during development. In the developing nervous system, SoxD proteins have so far been primarily studied in oligodendroglial cells and in interneurons of brain and spinal cord. In oligodendroglial cells, Sox5 and Sox6 jointly maintain the precursor state, interfere with terminal differentiation, and thereby ensure the proper timing of myelination in the central nervous system. Here we studied the role of SoxD proteins in Schwann cells, the functional counterpart of oligodendrocytes in the peripheral nervous system. We show that Schwann cells express Sox5 and Sox13 but not Sox6. Expression was transient and ceased with the onset of terminal differentiation. In mice with early Schwann cell-specific deletion of both Sox5 and Sox13, embryonic Schwann cell development was not substantially affected and progressed normally into the promyelinating stage. However, there was a mild and transient delay in the myelination of the peripheral nervous system of these mice. We therefore conclude that SoxD proteins—in stark contrast to their action in oligodendrocytes—promote differentiation and myelination in Schwann cells.
Collapse
Affiliation(s)
- Ella Ittner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Anna C Hartwig
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Olga Elsesser
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Hannah M Wüst
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Miriam Wedel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Margit Schimmel
- Institut für Humananatomie und Embryologie, Universität Regensburg, Regensburg, Germany
| | - Ernst R Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, Regensburg, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany.
| |
Collapse
|
4
|
Schock EN, LaBonne C. Sorting Sox: Diverse Roles for Sox Transcription Factors During Neural Crest and Craniofacial Development. Front Physiol 2020; 11:606889. [PMID: 33424631 PMCID: PMC7793875 DOI: 10.3389/fphys.2020.606889] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Sox transcription factors play many diverse roles during development, including regulating stem cell states, directing differentiation, and influencing the local chromatin landscape. Of the twenty vertebrate Sox factors, several play critical roles in the development the neural crest, a key vertebrate innovation, and the subsequent formation of neural crest-derived structures, including the craniofacial complex. Herein, we review the specific roles for individual Sox factors during neural crest cell formation and discuss how some factors may have been essential for the evolution of the neural crest. Additionally, we describe how Sox factors direct neural crest cell differentiation into diverse lineages such as melanocytes, glia, and cartilage and detail their involvement in the development of specific craniofacial structures. Finally, we highlight several SOXopathies associated with craniofacial phenotypes.
Collapse
Affiliation(s)
- Elizabeth N. Schock
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
5
|
Bouçanova F, Pollmeier G, Sandor K, Morado Urbina C, Nijssen J, Médard JJ, Bartesaghi L, Pellerin L, Svensson CI, Hedlund E, Chrast R. Disrupted function of lactate transporter MCT1, but not MCT4, in Schwann cells affects the maintenance of motor end-plate innervation. Glia 2020; 69:124-136. [PMID: 32686211 DOI: 10.1002/glia.23889] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Recent studies in neuron-glial metabolic coupling have shown that, in the CNS, astrocytes and oligodendrocytes support neurons with energy-rich lactate/pyruvate via monocarboxylate transporters (MCTs). The presence of such transporters in the PNS, in both Schwann cells and neurons, has prompted us to question if a similar interaction may be present. Here we describe the generation and characterization of conditional knockout mouse models where MCT1 or MCT4 is specifically deleted in Schwann cells (named MCT1 and MCT4 cKO). We show that MCT1 cKO and MCT4 cKO mice develop normally and that myelin in the PNS is preserved. However, MCT1 expressed by Schwann cells is necessary for long-term maintenance of motor end-plate integrity as revealed by disrupted neuromuscular innervation in mutant mice, while MCT4 appears largely dispensable for the support of motor neurons. Concomitant to detected structural alterations, lumbar motor neurons from MCT1 cKO mice show transcriptional changes affecting cytoskeletal components, transcriptional regulators, and mitochondria related transcripts, among others. Together, our data indicate that MCT1 plays a role in Schwann cell-mediated maintenance of motor end-plate innervation thus providing further insight into the emerging picture of the biology of the axon-glia metabolic crosstalk.
Collapse
Affiliation(s)
- Filipa Bouçanova
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gill Pollmeier
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Morado Urbina
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jik Nijssen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Jacques Médard
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Luca Bartesaghi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex, France.,Inserm U1082, Université de Poitiers, Poitiers Cedex, France
| | - Camilla I Svensson
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roman Chrast
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Sancho P, Bartesaghi L, Miossec O, García-García F, Ramírez-Jiménez L, Siddell A, Åkesson E, Hedlund E, Laššuthová P, Pascual-Pascual SI, Sevilla T, Kennerson M, Lupo V, Chrast R, Espinós C. Characterization of molecular mechanisms underlying the axonal Charcot-Marie-Tooth neuropathy caused by MORC2 mutations. Hum Mol Genet 2020; 28:1629-1644. [PMID: 30624633 DOI: 10.1093/hmg/ddz006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in MORC2 lead to an axonal form of Charcot-Marie-Tooth (CMT) neuropathy type 2Z. To date, 31 families have been described with mutations in MORC2, indicating that this gene is frequently involved in axonal CMT cases. While the genetic data clearly establish the causative role of MORC2 in CMT2Z, the impact of its mutations on neuronal biology and their phenotypic consequences in patients remains to be clarified. We show that the full-length form of MORC2 is highly expressed in both embryonic and adult human neural tissues and that Morc2 expression is dynamically regulated in both the developing and the maturing murine nervous system. To determine the effect of the most common MORC2 mutations, p.S87L and p.R252W, we used several in vitro cell culture paradigms. Both mutations induced transcriptional changes in patient-derived fibroblasts and when expressed in rodent sensory neurons. These changes were more pronounced and accompanied by abnormal axonal morphology, in neurons expressing the MORC2 p.S87L mutation, which is associated with a more severe clinical phenotype. These data provide insight into the neuronal specificity of the mutated MORC2-mediated phenotype and highlight the importance of neuronal cell models to study the pathophysiology of CMT2Z.
Collapse
Affiliation(s)
- Paula Sancho
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Luca Bartesaghi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Olivia Miossec
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Francisco García-García
- Unit of Bioinformatics and Biostatistics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Laura Ramírez-Jiménez
- Department of Genomics and Translational Genetics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Anna Siddell
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord NSW, Australia.,Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Elisabet Åkesson
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,The R&D Unit, Stiftelsen Stockholms Sjukhemm, 14152, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Petra Laššuthová
- Department of Pediatric Neurology, DNA Laboratory, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | | | - Teresa Sevilla
- Department of Neurology, Hospital Universitari i Politècnic La Fe, and CIBER of Rare Diseases (CIBERER), Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord NSW, Australia.,Sydney Medical School, University of Sydney, Sydney NSW, Australia.,Molecular Medicine Laboratory, Concord Hospital, Concord NSW, Australia
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Department of Genomics and Translational Genetics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,INCLIVA & IIS-La Fe Rare Diseases Joint Units, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Roman Chrast
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Department of Genomics and Translational Genetics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,INCLIVA & IIS-La Fe Rare Diseases Joint Units, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
7
|
Łuczkowska K, Rogińska D, Ulańczyk Z, Paczkowska E, Schmidt CA, Machaliński B. Molecular Mechanisms of Bortezomib Action: Novel Evidence for the miRNA-mRNA Interaction Involvement. Int J Mol Sci 2020; 21:E350. [PMID: 31948068 PMCID: PMC6981510 DOI: 10.3390/ijms21010350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Bortezomib is an anti-tumor agent, which inhibits 26S proteasome degrading ubiquitinated proteins. While apoptotic transcription-associated activation in response to bortezomib has been suggested, mechanisms related to its influence on post-transcriptional gene silencing mediated regulation by non-coding RNAs remain not fully elucidated. In the present study, we examined changes in global gene and miRNA expression and analyzed the identified miRNA-mRNA interactions after bortezomib exposure in human neuroblastoma cells to define pathways affected by this agent in this type of cells. Cell viability assays were performed to assess cytotoxicity of bortezomib. Global gene and miRNA expression profiles of neuroblastoma cells after 24-h incubation with bortezomib were determined using genome-wide RNA and miRNA microarray technology. Obtained results were then confirmed by qRT-PCR and Western blot. Further bioinformatical analysis was performed to identify affected biological processes and pathways. In total, 719 genes and 28 miRNAs were downregulated, and 319 genes and 61 miRNAs were upregulated in neuroblastoma cells treated with bortezomib. Possible interactions between dysregulated miRNA/mRNA, which could be linked to bortezomib-induced neurotoxicity, affect neurogenesis, cellular calcium transport, and neuron death. Bortezomib might exert toxic effects on neuroblastoma cells and regulate miRNA-mRNA interactions influencing vital cellular functions. Further studies on the role of specific miRNA-mRNA interactions are needed to elucidate mechanisms of bortezomib action.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Zofia Ulańczyk
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Christian Andreas Schmidt
- Department of Internal Medicine C-Haematology, and Oncology, Stem Cell Transplantation, Palliative Care, University Hospital Greifswald, Ernst-Moritz-Arndt University, 17489 Greifswald, Germany;
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| |
Collapse
|
8
|
Braccioli L, Vervoort SJ, Puma G, Nijboer CH, Coffer PJ. SOX4 inhibits oligodendrocyte differentiation of embryonic neural stem cells in vitro by inducing Hes5 expression. Stem Cell Res 2018; 33:110-119. [PMID: 30343100 DOI: 10.1016/j.scr.2018.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022] Open
Abstract
SOX4 has been shown to promote neuronal differentiation both in the adult and embryonic neural progenitors. Ectopic SOX4 expression has also been shown to inhibit oligodendrocyte differentiation in mice, however the underlying molecular mechanisms remain poorly understood. Here we demonstrate that SOX4 regulates transcriptional targets associated with neural development in neural stem cells (NSCs), reducing the expression of genes promoting oligodendrocyte differentiation. Interestingly, we observe that SOX4 levels decreased during oligodendrocyte differentiation in vitro. Moreover, we show that SOX4 knockdown induces increased oligodendrocyte differentiation, as the percentage of Olig2-positive/2',3'-Cyclic-nucleotide 3'-phosphodiesterase (CNPase)-positive maturing oligodendrocytes increases, while the number of Olig2-positive oligodendrocyte precursors is unaffected. Conversely, conditional SOX4 overexpression utilizing a doxycycline inducible system decreases the percentage of maturing oligodendrocytes, suggesting that SOX4 inhibits maturation from precursor to mature oligodendrocyte. We identify the transcription factor Hes5 as a direct SOX4 target gene and we show that conditional overexpression of Hes5 rescues the increased oligodendrocyte differentiation mediated by SOX4 depletion in NSCs. Taken together, these observations support a novel role for SOX4 in NSC by controlling oligodendrocyte differentiation through induction of Hes5 expression.
Collapse
Affiliation(s)
- Luca Braccioli
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, 3508, AB, the Netherlands; Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3584, CT, the Netherlands
| | - Stephin J Vervoort
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3584, CT, the Netherlands
| | - Gianmarco Puma
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3584, CT, the Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, 3508, AB, the Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3584, CT, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508, AB, the Netherlands.
| |
Collapse
|
9
|
Sustained Expression of Negative Regulators of Myelination Protects Schwann Cells from Dysmyelination in a Charcot-Marie-Tooth 1B Mouse Model. J Neurosci 2018; 38:4275-4287. [PMID: 29610440 DOI: 10.1523/jneurosci.0201-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/02/2018] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
Abstract
Schwann cell differentiation and myelination in the PNS are the result of fine-tuning of positive and negative transcriptional regulators. As myelination starts, negative regulators are downregulated, whereas positive ones are upregulated. Fully differentiated Schwann cells maintain an extraordinary plasticity and can transdifferentiate into "repair" Schwann cells after nerve injury. Reactivation of negative regulators of myelination is essential to generate repair Schwann cells. Negative regulators have also been implicated in demyelinating neuropathies, although their role in disease remains elusive. Here, we used a mouse model of Charcot-Marie-Tooth neuropathy type 1B (CMT1B), the P0S63del mouse characterized by ER stress and the activation of the unfolded protein response, to show that adult Schwann cells are in a partial differentiation state because they overexpress transcription factors that are normally expressed only before myelination. We provide evidence that two of these factors, Sox2 and Id2, act as negative regulators of myelination in vivo However, their sustained expression in neuropathy is protective because ablation of Sox2 or/and Id2 from S63del mice of both sexes results in worsening of the dysmyelinating phenotype. This is accompanied by increased levels of mutant P0 expression and exacerbation of ER stress, suggesting that limited differentiation may represent a novel adaptive mechanism through which Schwann cells counter the toxic effect of a mutant terminal differentiation protein.SIGNIFICANCE STATEMENT In many neuropathies, Schwann cells express high levels of early differentiation genes, but the significance of these altered expression remained unclear. Because many of these factors may act as negative regulators of myelination, it was suggested that their misexpression could contribute to dysmyelination. Here, we show that the transcription factors Sox2 and Id2 act as negative regulators of myelination in vivo, but that their sustained expression in Charcot-Marie-Tooth type 1B (CMT1B) represents an adaptive response activated by the Schwann cells to reduce mutant protein toxicity and prevent demyelination.
Collapse
|
10
|
Du Q, Liu J, Zhang X, Zhang X, Zhu H, Wei M, Wang S. Propofol inhibits proliferation, migration, and invasion but promotes apoptosis by regulation of Sox4 in endometrial cancer cells. ACTA ACUST UNITED AC 2018; 51:e6803. [PMID: 29490000 PMCID: PMC5856446 DOI: 10.1590/1414-431x20176803] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/14/2017] [Indexed: 01/27/2023]
Abstract
Propofol is an intravenous sedative hypnotic agent of which the growth-inhibitory effect has been reported on various cancers. However, the roles of propofol in endometrial cancer (EC) remain unclear. This study aimed to explore the effects of propofol on EC in vitro and in vivo. Different concentrations of propofol were used to treat Ishikawa cells. Colony number, cell viability, cell cycle, apoptosis, migration, and invasion were analyzed by colony formation, MTT, flow cytometry, and Transwell assays. In addition, the pcDNA3.1-Sox4 and Sox4 siRNA plasmids were transfected into Ishikawa cells to explore the relationship between propofol and Sox4 in EC cell proliferation. Tumor weight in vivo was measured by xenograft tumor model assay. Protein levels of cell cycle-related factors, apoptosis-related factors, matrix metalloproteinases 9 (MMP9), matrix metalloproteinases 2 (MMP2) and Wnt/β-catenin pathway were examined by western blot. Results showed that propofol significantly decreased colony numbers, inhibited cell viability, migration, and invasion but promoted apoptosis in a dose-dependent manner in Ishikawa cells. Moreover, propofol reduced the expression of Sox4 in a dose-dependent manner. Additionally, propofol significantly suppressed the proportions of Ki67+ cells, but Sox4 overexpression reversed the results. Furthermore, in vivo assay results showed that propofol inhibited tumor growth; however, the inhibitory effect was abolished by Sox4 overexpression. Moreover, propofol inhibited Sox4 expression via inactivation of Wnt/β-catenin signal pathway. Our study demonstrated that propofol inhibited cell proliferation, migration, and invasion but promoted apoptosis by regulation of Sox4 in EC cells. These findings might indicate a novel treatment strategy for EC.
Collapse
Affiliation(s)
- Qing Du
- Department of Anesthesiology, Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Anesthesiology, Qingdao University, Qingdao, China
| | - Xuezhi Zhang
- Department of Emergency, Qingdao University, Qingdao, China
| | - Xin Zhang
- Department of Anesthesiology, Qingdao University, Qingdao, China
| | - He Zhu
- Department of Anesthesiology, Qingdao University, Qingdao, China
| | - Ming Wei
- Department of Anesthesiology, Qingdao University, Qingdao, China
| | - Shilei Wang
- Department of Anesthesiology, Qingdao University, Qingdao, China
| |
Collapse
|