1
|
Cousineau JP, Dawe AM, Alpaugh M. Investigating the Interplay between Cardiovascular and Neurodegenerative Disease. BIOLOGY 2024; 13:764. [PMID: 39452073 PMCID: PMC11505144 DOI: 10.3390/biology13100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024]
Abstract
Neurological diseases, including neurodegenerative diseases (NDDs), are the primary cause of disability worldwide and the second leading cause of death. The chronic nature of these conditions and the lack of disease-modifying therapies highlight the urgent need for developing effective therapies. To accomplish this, effective models of NDDs are required to increase our understanding of underlying pathophysiology and for evaluating treatment efficacy. Traditionally, models of NDDs have focused on the central nervous system (CNS). However, evidence points to a relationship between systemic factors and the development of NDDs. Cardiovascular disease and related risk factors have been shown to modify the cerebral vasculature and the risk of developing Alzheimer's disease. These findings, combined with reports of changes to vascular density and blood-brain barrier integrity in other NDDs, such as Huntington's disease and Parkinson's disease, suggest that cardiovascular health may be predictive of brain function. To evaluate this, we explore evidence for disruptions to the circulatory system in murine models of NDDs, evidence of disruptions to the CNS in cardiovascular disease models and summarize models combining cardiovascular disruption with models of NDDs. In this study, we aim to increase our understanding of cardiovascular disease and neurodegeneration interactions across multiple disease states and evaluate the utility of combining model systems.
Collapse
Affiliation(s)
| | | | - Melanie Alpaugh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.C.); (A.M.D.)
| |
Collapse
|
2
|
Dai Y, Bi M, Jiao Q, Du X, Yan C, Jiang H. Astrocyte-derived apolipoprotein D is required for neuronal survival in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:143. [PMID: 39095480 PMCID: PMC11297325 DOI: 10.1038/s41531-024-00753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
Apolipoprotein D (ApoD), a lipocalin transporter of small hydrophobic molecules, plays an essential role in several neurodegenerative diseases. It was reported that increased immunostaining for ApoD of glial cells surrounding dopaminergic (DAergic) neurons was observed in the brains of Parkinson's disease (PD) patients. Although preliminary findings supported the role of ApoD in neuroprotection, its derivation and effects on the degeneration of nigral DAergic neurons are largely unknown. In the present study, we observed that ApoD levels released from astrocytes were increased in PD models both in vivo and in vitro. When co-cultured with astrocytes, due to the increased release of astrocytic ApoD, the survival rate of primary cultured ventral midbrain (VM) neurons was significantly increased with 1-methyl-4-phenylpyridillium ion (MPP+) treatment. Increased levels of TAp73 and its phosphorylation at Tyr99 in astrocytes were required for the increased ApoD levels and its release. Conditional knockdown of TAp73 in the nigral astrocytes in vivo could aggravate the neurodegeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated PD mice. Our findings reported that astrocyte-derived ApoD was essential for DAergic neuronal survival in PD models, might provide new therapeutic targets for PD.
Collapse
Affiliation(s)
- Yingying Dai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
3
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
4
|
Liu Y, Wang W, Song N, Jiao L, Jia F, Du X, Chen X, Yan C, Jiao J, Jiao Q, Jiang H. Ghrelin Bridges DMV Neuropathology and GI Dysfunction in the Early Stages of Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203020. [PMID: 36050877 PMCID: PMC9596842 DOI: 10.1002/advs.202203020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Ghrelin contributes to the communication between the brain and gastrointestinal (GI) tract. Both decreased ghrelin levels and functional GI disorders are early events in Parkinson's disease (PD) patients and animal models. However, the reason is not clear. Here it is found that choline acetyltransferase (ChAT)-positive neurons in the dorsal motor nucleus of the vagus nerve (DMV), are lost in PD transgenic mice. In response to the selective damaging of DMV neurons with mu p75-SAP, a rapid reduction both in plasma total and active ghrelin levels is observed. While by contrast, chemogenetic activation of DMV cholinergic neurons can increase the plasma ghrelin levels. Impairment of cholinergic neurons is accompanied by GI disorders, including decreased stool wet weight, stool dry weight, small intestine advancing rate, and gastric emptying rate, while exogenous ghrelin treatment can partially ameliorate GI dysfunction of A53T α-synuclein transgenic mice. Using pseudorabies virus retrograde trace method, the existence of a direct pathway from the stomach fundus to the DMV is shown. Taken together, the findings suggest that the reduction in plasma ghrelin levels in the early stages of PD may be the result of the lesion of cholinergic neurons in the DMV, thus linking neurodegeneration and GI dysfunction in PD.
Collapse
Affiliation(s)
- Yizhen Liu
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Weiwei Wang
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Ning Song
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Lingling Jiao
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Fengju Jia
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Xixun Du
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Xi Chen
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Chunling Yan
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Qian Jiao
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Hong Jiang
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| |
Collapse
|
5
|
Bi M, Du X, Xiao X, Dai Y, Jiao Q, Chen X, Zhang L, Jiang H. Deficient immunoproteasome assembly drives gain of α-synuclein pathology in Parkinson's disease. Redox Biol 2021; 47:102167. [PMID: 34662812 PMCID: PMC8577461 DOI: 10.1016/j.redox.2021.102167] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023] Open
Abstract
Aberrant α-synuclein (α-Syn) accumulation resulting from proteasome dysfunction is considered as a prominent factor to initiate and aggravate the neurodegeneration in Parkinson's disease (PD). Although the involvement of 26S proteasome in proteostasis imbalance has been widely accepted, our knowledge about the regulation of immunoproteasome function and its potential role in α-Syn pathology remains limited. Immunoproteasome abundance and proteolytic activities depend on the finely tuned assembly process, especially β-ring formation mediated by the only well-known chaperone proteasome maturation protein (POMP). Here, we identified that α-Syn overexpression was associated with a reduction in immunoproteasome function, which in turn limited the degradation of polo-like kinase 2 (PLK2), exacerbated α-Syn Ser129 phosphorylation and aggregation, ultimately leading to the neurodegeneration. These effects could be dramatically attenuated by β5i overexpression. Mechanistically, α-Syn suppressed the transcriptional regulation of POMP by nuclear factor erythroid 2-related factor 2 (NRF2), thereby preventing the assembly of immunoproteasome β subunits. Dopaminergic neurons-specific overexpression of NRF2-POMP axis effectively rescued the aggregation of α-Syn and PD-like phenotypes. These findings characterized abnormal immunoproteasome assembly as a key contributor governing α-Syn accumulation and neurodegeneration, which might open up a new perspective for the implication of immunoproteasome in PD and provide approaches of manipulating immunoproteasome assembly for therapeutic purposes. α-Syn negatively regulated immunoproteasome by inhibiting POMP-mediated assembly. Immunoproteasome deficiency prevented PLK2 degradation to aggravate neurotoxicity. Enhanced immunoproteasome assembly via NRF2-POMP axis alleviated α-Syn pathology.
Collapse
Affiliation(s)
- Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xue Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yingying Dai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Cacabelos R, Carrera I, Martínez O, Alejo R, Fernández-Novoa L, Cacabelos P, Corzo L, Rodríguez S, Alcaraz M, Nebril L, Tellado I, Cacabelos N, Pego R, Naidoo V, Carril JC. Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Med Res Rev 2021; 41:2841-2886. [PMID: 34106485 DOI: 10.1002/med.21838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- Department of Medical Epigenetics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | | | | | - Pablo Cacabelos
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Susana Rodríguez
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Margarita Alcaraz
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Laura Nebril
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Tellado
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Rocío Pego
- Department of Neuropsychology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- Department of Neuroscience, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Juan C Carril
- Department of Genomics & Pharmacogenomics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
7
|
Zhang Z, Sun X, Wang K, Yu Y, Zhang L, Zhang K, Gu J, Yuan X, Song G. Hydrogen-saturated saline mediated neuroprotection through autophagy via PI3K/AKT/mTOR pathway in early and medium stages of rotenone-induced Parkinson's disease rats. Brain Res Bull 2021; 172:1-13. [PMID: 33838212 DOI: 10.1016/j.brainresbull.2021.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/20/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Some cardiovascular symptoms in the early stage of Parkinson's disease (PD) were related to degeneration of the rostral ventrolateral medulla (RVLM) catecholaminergic neurons. To date, little is known about the effects of hydrogen water on early stage of PD. Here, protective actions of hydrogen-saturated saline (HS) on rotenone-induced PD rats, as well as its underlying mechanisms were investigated. HS was used to treat PD rats at three general stages; early, medium and late, which were represented by rotenone induced rats for 0, 7 and 14 days. HS treatment significantly alleviated the cardiovascular and motor symptoms in rotenone-induced PD rats, improved the survival number of RVLM catecholaminergic neurons and nigral dopamine neurons only in early and medium stages of PD rats. Decreased levels of reactive oxygen species (ROS) and alpha-synuclein (α-Syn), transformation of microtubule associated protein 1 light chain 3 (LC3)-I/II and degradation of sequestosome 1 (p62) were detected, as well as increased expression level of autophagy related protein 5 (ATG5) and B-cell lymphoma-2 interacting protein 1 (Beclin-1) in the RVLM and substantia nigra (SN) after HS treatment in early and medium stages of PD rats. In addition, phosphorylation levels of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and mammalian rapamycin target protein (mTOR) decreased after HS treatment in early and medium stages of PD rats. The results suggested that HS treatment exerted beneficial effects in early and medium stages before motor impairments emerged but not in the late stage of rotenone-induced PD rats. It exerted neuroprotection with RVLM catecholaminergic neurons and nigral dopamine neurons, mediated in part by decreasing levels of ROS and α-Syn through increasing autophagy machinery which were partly via inhibiting PI3K-Akt-mTOR pathway.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Physiology, Basic Medical College of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Xiao Sun
- Department of Nephrology, Taian City Central Hospital, Taian, 271000, China
| | - Kun Wang
- Postdoctoral Workstation, Taian City Central Hospital, Taian, 271000, China
| | - Yang Yu
- Life Science Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Li Zhang
- Department of Electrocardiogram, Taian Traditional Chinese Medicine Hospital, Taian, 271000, China
| | - Keping Zhang
- Department of Physiology, Basic Medical College of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Jinglongfei Gu
- Department of Physiology, Basic Medical College of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Xiaofan Yuan
- Department of Physiology, Basic Medical College of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Guohua Song
- Life Science Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
| |
Collapse
|
8
|
Sabino-Carvalho JL, Falquetto B, Takakura AC, Vianna LC. Baroreflex dysfunction in Parkinson's disease: integration of central and peripheral mechanisms. J Neurophysiol 2021; 125:1425-1439. [PMID: 33625931 DOI: 10.1152/jn.00548.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The incidence of Parkinson's disease (PD) is increasing worldwide. Although the PD hallmark is the motor impairments, nonmotor dysfunctions are now becoming more recognized. Recently, studies have suggested that baroreflex dysfunction is one of the underlying mechanisms of cardiovascular dysregulation observed in patients with PD. However, the large body of literature on baroreflex function in PD is unclear. The baroreflex system plays a major role in the autonomic, and ultimately blood pressure and heart rate, adjustments that accompany acute cardiovascular stressors on a daily basis. Therefore, impaired baroreflex function (i.e., decreased sensitivity or gain) can lead to altered neural cardiovascular responses. Since PD affects parasympathetic and sympathetic branches of the autonomic nervous system and both are orchestrated by the baroreflex system, understanding of this crucial mechanism in PD is necessary. In the present review, we summarize the potential altered central and peripheral mechanisms affecting the feedback-controlled loops that comprise the reflex arc in patients with PD. Major factors including arterial stiffness, reduced number of C1 and activation of non-C1 neurons, presence of central α-synuclein aggregation, cardiac sympathetic denervation, attenuated muscle sympathetic nerve activity, and lower norepinephrine release could compromise baroreflex function in PD. Results from patients with PD and from animal models of PD provide the reader with a clearer picture of baroreflex function in this clinical condition. By doing so, our intent is to stimulate future studies to evaluate several unanswered questions in this research area.
Collapse
Affiliation(s)
- Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Institute of Biomedical Sciences, University de Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University de Sao Paulo, Sao Paulo, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil.,Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
9
|
Jiao L, Du X, Jia F, Li Y, Zhu D, Tang T, Jiao Q, Jiang H. Early low-dose ghrelin intervention via miniosmotic pumps could protect against the progressive dopaminergic neuron loss in Parkinson's disease mice. Neurobiol Aging 2021; 101:70-78. [PMID: 33582568 DOI: 10.1016/j.neurobiolaging.2021.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 01/08/2023]
Abstract
Ghrelin has been identified as a multifunctional peptide that has a potential application for treating Parkinson's disease (PD). The objective of this study was to assess the effects of subcutaneous administration of low-dose ghrelin via miniosmotic pumps on PD progression. The decreased levels of total and active ghrelin in plasma were rescued by ghrelin administration in PD mice. Interestingly, ghrelin did not affect weight gain in wild-type mice but improved weight loss in PD mice. We observed the attenuation of dopaminergic neuron loss in substantia nigra and a low level of dopamine content in the striatum in PD mice with ghrelin treatment. Ghrelin administration could improve the microenvironment of dopaminergic neurons by inhibiting microglial proliferation and proinflammatory cytokine expression and could enhance cell survival by upregulating Bcl-2/Bax ratio and superoxide dismutase1 protein level in the substantia nigra of PD mice. Subcutaneous administration of low-dose ghrelin could prevent the onset of the progression of PD and also provide a possible method for ghrelin application to cure PD.
Collapse
Affiliation(s)
- Lingling Jiao
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Fengju Jia
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Yong Li
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Dexiao Zhu
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Tinging Tang
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Li Y, Jiao Q, Du X, Jiang H. Sirt1/FoxO1-Associated MAO-A Upregulation Promotes Depressive-Like Behavior in Transgenic Mice Expressing Human A53T α-Synuclein. ACS Chem Neurosci 2020; 11:3838-3848. [PMID: 33155799 DOI: 10.1021/acschemneuro.0c00628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonmotor symptoms are of pivotal importance in Parkinson's disease (PD), among which depressive disorder occurs in more than 45% of PD cases. Decreased levels of noradrenaline (NA) and serotonin (5-HT) in the central nervous system are relevant to it; however, the underlying mechanism is largely unknown. To this end, we conducted behavioral assays to analyze the depressive phenotype in transgenic mice with overexpressed A53T human α-synuclein (A53T mice) and examined alterations of NAergic and 5-HTergic systems in the neuron degeneration, neurotransmitter production, and degradation aspects of the mouse. As compared to controls, A53T mice displayed elevated depressive-like behavior at 6 months, which presents earlier than motor deficits do at 12 months. We detected reduced levels of NA and 5-HT in the hippocampus and NA in the locus coeruleus of 6-month A53T mice. There was no loss of NAergic and 5-HTergic neurons or decreased neurotransmitter synthesis in the brain. However, the expression of MAO-A, an enzyme responsible for NA and 5-HT degradation, was upregulated in A53T mice. Mechanistically, Sirt1 was downregulated which lead to an increase in FoxO1 acetylation, which subsequently increased the transcription of MAO-A. Activation of Sirt1 by resveratrol or inhibition of MAO-A by moclobemide administration could restore brain NA and 5-HT levels and attenuate the depressive-like behavior of A53T mice. Taken together, our results provided a novel correlation between Sirt1 and MAO-A, and compounds targeting on these molecules are beneficial for improving depression in the A53T mouse model of PD.
Collapse
Affiliation(s)
- Yong Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, 266071 Qingdao, China
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, 266071 Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, 266071 Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, 266071 Qingdao, China
| |
Collapse
|
11
|
Abstract
Parkinson’s disease (PD) is a complex, multi-system, neurodegenerative disorder; PD patients exhibit motor symptoms (such as akinesia/bradykinesia, tremor, rigidity, and postural instability) due to a loss of nigrostriatal dopaminergic neurons, and non-motor symptoms such as hyposmia, autonomic disturbance, depression, and REM sleep behavior disorder (RBD), which precedes motor symptoms. Pathologically, α-synuclein deposition is observed in the central and peripheral nervous system of sporadic PD patients. To clarify the mechanism of neurodegeneration in PD and to develop treatment to slow or stop PD progression, there is a great need for experimental models which reproduce neurological features of PD. Animal models exposed to rotenone, a commonly used pesticide, have received most attention since Greenamyre and his colleagues reported that chronic exposure to rotenone could reproduce the anatomical, neurochemical, behavioral, and neuropathological features of PD. In addition, recent studies demonstrated that rotenone induced neuropathological change not only in the central nervous system but also in the peripheral nervous system in animals. In this article, we review rotenone models especially focused on reproducibility of central and peripheral multiple features of PD. This review also highlights utility of rotenone models for investigation of PD pathogenesis and development of disease-modifying drugs for PD in future.
Collapse
|
12
|
Turossi Amorim ED, de Jager L, Martins AB, Rodrigues AT, Cruz Lucchetti BF, Ariza D, Pinge‐Filho P, Crestani CC, Uchoa ET, Martins‐Pinge MC. Glutamate and GABA neurotransmission are increased in paraventricular nucleus of hypothalamus in rats induced to 6-OHDA parkinsonism: Involvement of nNOS. Acta Physiol (Oxf) 2019; 226:e13264. [PMID: 30716212 DOI: 10.1111/apha.13264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 02/02/2023]
Abstract
AIM Parkinson's disease (PD) is a progressive neurodegenerative disease that manifests itself clinically after reaching an advanced pathological stage. Besides motor signals, PD patients present cardiovascular and autonomic alterations. Recent data showed that rats induced to Parkinsonism by 6-hydroxydopamine (6-OHDA) administration in the substantia nigra pars compacta (SNpc) showed lower mean arterial pressure (MAP) and heart rate (HR), as reduction in sympathetic modulation. The paraventricular nucleus of the hypothalamus (PVN) is an important site for autonomic and cardiovascular control, and amino acid neurotransmission has a central role. We evaluate PVN amino acid neurotransmission in cardiovascular and autonomic effects of 6-OHDA Parkinsonism. METHODS Male Wistar rats were submitted to guide cannulas implantation into the PVN. 6-OHDA or sterile saline (sham) was administered bilaterally in the SNpc. After 7 days, cardiovascular recordings in conscious state was performed. RESULTS Bicuculline promoted an increase in MAP and HR in sham group and exacerbated those effects in 6-OHDA group. NBQX (non-NMDA inhibitor) did not promote changes in sham as in 6-OHDA group. On the other hand, PVN microinjection of LY235959 (NMDA inhibitor) in sham group did not induced cardiovascular alterations, but decreased MAP and HR in 6-OHDA group. Compared to Sham group, 6-OHDA lesion increased the number of neuronal nitric oxide synthase (nNOS)-immunoreactive neurons in the PVN and, nNOS inhibition promoted higher increases in MAP and HR. CONCLUSION Our data suggest that the decreased baseline blood pressure and heart rate in animals with Parkinsonism may be due to an increased GABAergic tone via nNOS in the PVN.
Collapse
Affiliation(s)
- Eric Diego Turossi Amorim
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | - Lorena de Jager
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | - Andressa Busetti Martins
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | - Ananda Totti Rodrigues
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | | | - Deborah Ariza
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | - Phileno Pinge‐Filho
- Departament of Pathological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | - Carlos Cesar Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences UNESP ‐ Univ Estadual Paulista Araraquara Brazil
| | - Ernane Torres Uchoa
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | - Marli Cardoso Martins‐Pinge
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| |
Collapse
|
13
|
Wang R, Wang Y, Qu L, Chen B, Jiang H, Song N, Xie J. Iron-induced oxidative stress contributes to α-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2. Neurochem Int 2019; 125:127-135. [DOI: 10.1016/j.neuint.2019.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 12/30/2022]
|
14
|
Autonomic dysfunction in Parkinson disease and animal models. Clin Auton Res 2019; 29:397-414. [PMID: 30604165 DOI: 10.1007/s10286-018-00584-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022]
Abstract
Parkinson disease has traditionally been classified as a movement disorder, despite patients' accounts of diverse symptoms stemming from impairments in numerous body systems. Today, Parkinson disease is increasingly recognized by clinicians and scientists as a complex neurodegenerative disorder featuring both motor and nonmotor manifestations concomitant with pathology throughout all major branches of the nervous system. Dysfunction of the autonomic nervous system, or dysautonomia, is a common feature of Parkinson disease. It produces signs and symptoms that severely affect patients' quality of life, such as blood pressure dysregulation, hyperhidrosis, and constipation. Treatment options for dysautonomia are limited to symptom alleviation because the cause of these symptoms and Parkinson disease overall are still unknown. Animal models provide a platform to interrogate mechanisms of Parkinson disease-related autonomic nervous system dysfunction and test novel treatment strategies. Several animal models of Parkinson disease are available, each with different effects on the autonomic nervous system. This review critically analyses key dysautonomia signs and symptoms and associated pathology in Parkinson disease patients and relevant findings in animal models. We focus on the cardiovascular system, adrenal medulla, skin/thermoregulation, bladder, pupils, and gastrointestinal tract, to assess the contribution of animal models to the understanding of Parkinson disease autonomic dysfunction.
Collapse
|
15
|
Li Y, Jiao Q, Du X, Bi M, Han S, Jiao L, Jiang H. Investigation of Behavioral Dysfunctions Induced by Monoamine Depletions in a Mouse Model of Parkinson's Disease. Front Cell Neurosci 2018; 12:241. [PMID: 30135645 PMCID: PMC6092512 DOI: 10.3389/fncel.2018.00241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/17/2018] [Indexed: 01/10/2023] Open
Abstract
Parkinson's disease (PD) is characterized not only by typical motor symptoms, but also by nonmotor symptoms in the early stages. In addition to the loss of dopaminergic (DAergic) neurons, progressive degenerations of noradrenergic (NA) and serotonergic (5-HT) neurons were also observed. However, the respective effects and interactions of these monoamine depletions on certain nonmotor symptoms are still largely unknown. In the present study, we performed selective depletions of NA, 5-HT and DA in mice by intraperitioneal injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), 4-chloro-L-phenylalanine (pCPA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), respectively. DSP-4 led to a 34% decrease in the number of NAergic neurons in the locus coeruleus, and MPTP led to a 30% decrease in the number of DAergic neurons in the substantia nigra. Although there was no obvious change in the number of 5-HTergic neurons in the dorsal raphe nucleus after pCPA treatment, the levels of 5-HT and its metabolite in the frontal cortex and hippocampus were reduced, respectively. Locomotor activity deficit was induced by DA depletion and a decrease in traveled distance was potentiated by additional NA depletion. Despair-associated depressive-like behavior could be observed in every group. Anxiety states emerged only from the combined depletion of two or three monoamines. However, combined depletion of the three monoamines dramatically induced anhedonia, and it could also aggravate the depressive-like and anxiety behavior. Furthermore, NA depletion significantly reduced spatial learning and memory ability, which was not enhanced by additional 5-HT or DA depletion. Our data highlighted the interactive role of NA, 5-HT and DA in the motor, emotional and cognitive deficits, providing new insight into the complex orchestration of impaired monoaminergic systems that related to the pathology of PD.
Collapse
Affiliation(s)
- Yong Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Shuaishuai Han
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Lingling Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, Qingdao University Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Johnson M, Salvatore M, Maiolo S, Bobrovskaya L. Tyrosine hydroxylase as a sentinel for central and peripheral tissue responses in Parkinson’s progression: Evidence from clinical studies and neurotoxin models. Prog Neurobiol 2018; 165-167:1-25. [DOI: 10.1016/j.pneurobio.2018.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/07/2017] [Accepted: 01/10/2018] [Indexed: 12/25/2022]
|
17
|
Bi M, Jiao Q, Du X, Jiang H. Glut9-mediated Urate Uptake Is Responsible for Its Protective Effects on Dopaminergic Neurons in Parkinson's Disease Models. Front Mol Neurosci 2018; 11:21. [PMID: 29434538 PMCID: PMC5790811 DOI: 10.3389/fnmol.2018.00021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Considerable evidence has shown that elevated plasma or cerebrospinal fluid (CSF) urate levels correlated with a reduced risk of Parkinson’s disease (PD). Based on its anti-oxidative properties, urate might serve as one of promising neuroprotective candidates for PD. However, how urate is transported through cell membranes to exert its effects inside the cells in PD is largely unknown. To elucidate this, we showed that increased intracellular urate exerted its neuroprotective effects against 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in MES23.5 cells and elevated urate could antagonize 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neuronal death in urate oxidase (UOx) knockout (KO) mice. Its transporter, glucose transporter type 9 (Glut9), was observed up-regulated, which was caused by the activation of p53. These protective effects could be abolished by Glut9 blocker and p53 inhibitor. These results suggested that Glut9 was a functional urate transporter, whose up-regulation by activation of p53 resulted in the increased intracellular urate levels in PD models. Our findings suggest that Glut9 could be modified to modulate urate levels in dopaminergic neurons and urate-elevating strategies without increasing systemic levels to avoid side effects might serve as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
The Kv7/KCNQ channel blocker XE991 protects nigral dopaminergic neurons in the 6-hydroxydopamine rat model of Parkinson's disease. Brain Res Bull 2017; 137:132-139. [PMID: 29174294 DOI: 10.1016/j.brainresbull.2017.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/11/2017] [Accepted: 11/18/2017] [Indexed: 12/21/2022]
Abstract
The excitability of dopaminergic neurons in the substantia nigra pars compacta (SNc) that supply the striatum with dopamine (DA) determines the function of the nigrostriatal system for motor coordination. We previously showed that 4-pyridinylmethyl-9(10H)-anthracenone (XE991), a specific blocker of Kv7/KCNQ channels, enhanced the excitability of nigral DA neurons and resulted in attenuation of haloperidol-induced catalepsy in a Parkinson's disease (PD) rat model. However, whether XE991 exhibits neuroprotective effects towards DA neuron degeneration remains unknown. The aim of this study was to investigate the effects of Kv7/KCNQ channel blocker, XE991, on 6-hydroxydopamine (6-OHDA)-induced nigral DA neuron degeneration and motor dysfunction. Using immunofluorescence staining and western blotting, we showed that intracerebroventricular administration of XE991 prevented the 6-OHDA-induced decrease in tyrosine hydroxylase (TH)-positive neurons and TH protein expression in the SNc. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) also revealed that XE991 partly restored the levels of DA and its metabolites in the striatum. Moreover, XE991 decreased apomorphine (APO)-induced contralateral rotations, enhanced balance and coordination, and attenuated muscle rigidity in 6-OHDA-treated rats. Importantly, all neuroprotective effects by XE991 were abolished by co-application of Kv7/KCNQ channel opener retigabine and XE991. Thus, Kv7/KCNQ channel inhibition by XE991 can exert neuroprotective effects against 6-OHDA-induced degeneration of the nigrostriatal DA system and motor dysfunction.
Collapse
|
19
|
Acute action of rotenone on excitability of catecholaminergic neurons in rostral ventrolateral medulla. Brain Res Bull 2017; 134:151-161. [DOI: 10.1016/j.brainresbull.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/09/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
|
20
|
Cacabelos R. Parkinson's Disease: From Pathogenesis to Pharmacogenomics. Int J Mol Sci 2017; 18:E551. [PMID: 28273839 PMCID: PMC5372567 DOI: 10.3390/ijms18030551] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most important age-related neurodegenerative disorder in developed societies, after Alzheimer's disease, with a prevalence ranging from 41 per 100,000 in the fourth decade of life to over 1900 per 100,000 in people over 80 years of age. As a movement disorder, the PD phenotype is characterized by rigidity, resting tremor, and bradykinesia. Parkinson's disease -related neurodegeneration is likely to occur several decades before the onset of the motor symptoms. Potential risk factors include environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular damage, and genomic defects. Parkinson's disease neuropathology is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta, with widespread involvement of other central nervous system (CNS) structures and peripheral tissues. Pathogenic mechanisms associated with genomic, epigenetic and environmental factors lead to conformational changes and deposits of key proteins due to abnormalities in the ubiquitin-proteasome system together with dysregulation of mitochondrial function and oxidative stress. Conventional pharmacological treatments for PD are dopamine precursors (levodopa, l-DOPA, l-3,4 dihidroxifenilalanina), and other symptomatic treatments including dopamine agonists (amantadine, apomorphine, bromocriptine, cabergoline, lisuride, pergolide, pramipexole, ropinirole, rotigotine), monoamine oxidase (MAO) inhibitors (selegiline, rasagiline), and catechol-O-methyltransferase (COMT) inhibitors (entacapone, tolcapone). The chronic administration of antiparkinsonian drugs currently induces the "wearing-off phenomenon", with additional psychomotor and autonomic complications. In order to minimize these clinical complications, novel compounds have been developed. Novel drugs and bioproducts for the treatment of PD should address dopaminergic neuroprotection to reduce premature neurodegeneration in addition to enhancing dopaminergic neurotransmission. Since biochemical changes and therapeutic outcomes are highly dependent upon the genomic profiles of PD patients, personalized treatments should rely on pharmacogenetic procedures to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
| |
Collapse
|