1
|
Braine A, Georges F. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 2023; 155:105475. [PMID: 37996047 DOI: 10.1016/j.neubiorev.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes. Emotions can exert a substantial influence on motor performance, encompassing both everyday activities and pathological conditions. The aim of this review is to explore how emotional states can shape movements by connecting the neural circuits for emotional processing to motor neural circuits. We first provide a comprehensive overview of the impact of different emotional states on motor control in humans and rodents. In line with behavioral studies, we set out to identify emotion-related structures capable of modulating motor output, behaviorally and anatomically. Neuronal circuits involved in emotional processing are extensively connected to the motor system. These circuits can drive emotional behavior, essential for survival, but can also continuously shape ongoing movement. In summary, the investigation of the intricate relationship between emotion and movement offers valuable insights into human behavior, including opportunities to enhance performance, and holds promise for improving mental and physical health. This review integrates findings from multiple scientific approaches, including anatomical tracing, circuit-based dissection, and behavioral studies, conducted in both animal and human subjects. By incorporating these different methodologies, we aim to present a comprehensive overview of the current understanding of the emotional modulation of movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Anaelle Braine
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
2
|
Zanelatto FB, Vieira WF, Nishijima CM, Sartori CR, Parada CA, Tambeli CH. Effect of sound-induced repeated stress on the development of pain and inflammation in the temporomandibular joint of female and male rats. Eur J Oral Sci 2023:e12936. [PMID: 37243959 DOI: 10.1111/eos.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/03/2023] [Indexed: 05/29/2023]
Abstract
Temporomandibular disorder (TMD) is a common painful condition of the temporomandibular joint (TMJ) and associated structures. Stress is a significant risk factor for developing this painful condition that predominantly affects women. This study aimed to test the hypothesis that stress increases the risk of developing TMJ pain by facilitating inflammatory mechanisms in female and male rats. To test this hypothesis, we evaluated TMJ carrageenan-induced expression of pro-inflammatory cytokines and migration of inflammatory cells and TMJ formalin-induced nociception in female and male rats submitted to a repeated stress protocol induced by sound. We found that sound-induced repeated stress facilitates TMJ inflammation and contributes to TMJ nociception development equally in females and males. We conclude that stress is a risk factor for developing painful TMJ conditions in males and females, at least in part, by favoring the inflammatory process similarly in both sexes.
Collapse
Affiliation(s)
- Fernanda Barchesi Zanelatto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Willians Fernando Vieira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Catarine Massucato Nishijima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - César Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Kishikawa Y, Kawahara Y, Ohnishi YN, Sotogaku N, Koeda T, Kawahara H, Nishi A. Dysregulation of dopamine neurotransmission in the nucleus accumbens in immobilization-induced hypersensitivity. Front Pharmacol 2022; 13:988178. [PMID: 36160381 PMCID: PMC9493457 DOI: 10.3389/fphar.2022.988178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Cast immobilization causes sensory hypersensitivity, which is also a symptom of neuropathic pain and chronic pain. However, the mechanisms underlying immobilization-induced hypersensitivity remain unclear. The present study investigated the role of dopamine neurotransmission in the nucleus accumbens shell (NAcSh) of rats with cast immobilization-induced mechanical hypersensitivity using in vivo microdialysis. Cast immobilization of the hind limb decreased the paw withdrawal threshold (PWT). Mechanical stimulation of the cast-immobilized hind limb induced a decrease in dopamine in the NAcSh, and this decrease was associated with the upregulation of presynaptic D2-like receptors. A D2-like receptor antagonist infused into the NAcSh reversed the decrease in PWT in rats with cast immobilization, whereas a D2-like receptor agonist infused into the NAcSh induced a decrease in PWT in control rats. In addition, the expression of the D2 receptor (Drd2) mRNA in the NAcSh was increased by cast immobilization. Importantly, systemic administration of the D2-like receptor antagonist reversed the decrease in PWT in rats with cast immobilization. As dopamine levels regulated by presynaptic D2-like receptors did not correlate with the PWT, it is presumed that the D2-like receptor antagonist or agonist acts on postsynaptic D2-like receptors. These results suggest that immobilization-induced mechanical hypersensitivity is attributable to the upregulation of postsynaptic D2-like receptors in the NAc. Blockade of D2-like receptors in the NAcSh is a potential therapeutic strategy for immobilization-induced hypersensitivity.
Collapse
Affiliation(s)
- Yuki Kishikawa
- Department of Rehabilitation Sciences, Faculty of Rehabilitation Sciences, Nishikyushu University, Kanzaki, Japan
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
- *Correspondence: Yukie Kawahara, ; Akinori Nishi,
| | | | - Naoki Sotogaku
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Tomoko Koeda
- Department of Physical Therapy, Faculty of Rehabilitation Sciences, Nagoya Gakuin University, Nagoya, Japan
| | - Hiroshi Kawahara
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
- *Correspondence: Yukie Kawahara, ; Akinori Nishi,
| |
Collapse
|
4
|
Hasegawa M, Piriyaprasath K, Otake M, Kamimura R, Saito I, Fujii N, Yamamura K, Okamoto K. Effect of daily treadmill running exercise on masseter muscle nociception associated with social defeat stress in mice. Eur J Oral Sci 2022; 130:e12882. [DOI: 10.1111/eos.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Mana Hasegawa
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
- Division of General Dentistry and Dental Clinical Education Unit Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Kajita Piriyaprasath
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
- Department of Restorative Dentistry Faculty of Dentistry Naresuan University Phitsanulok Thailand
| | - Masanori Otake
- Division of Orthodontics Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Rantaro Kamimura
- Division of Orthodontics Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Isao Saito
- Division of Orthodontics Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Noritaka Fujii
- Division of General Dentistry and Dental Clinical Education Unit Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Kensuke Yamamura
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| |
Collapse
|
5
|
Bonnet U, McAnally HB. How prevalent and severe is addiction on GABAmimetic drugs in an elderly German general hospital population? Focus on gabapentinoids, benzodiazepines, and z-hypnotic drugs. Hum Psychopharmacol 2022; 37:e2822. [PMID: 34687489 DOI: 10.1002/hup.2822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Gabapentinoids (GPT) are reported to be increasingly misused by opioid- and polydrug-users, but the addictive potential of GPT outside of these populations remains understudied. Investigations comparing GPT abuse and dependence liability to that of other commonly prescribed Central Nervous System-acting medications are therefore warranted. We provide a comparison of GPT-abuse/dependence to that of other GABAmimetics within an elderly population. DESIGN DSM-IV-TR-based data (previously prospectively collected by SKID-I-interview) from a random sample of elderly patients admitted to a metropolitan German general hospital were reviewed. The prevalence and severity of GPT, benzodiazepine (BDZ), and z-hypnotic drug (ZD)-abuse and -dependence were compared, stratified also by mono-substance (no concurrent current or previous substance use) and de novo-substance (first)-abuse and -dependence states. RESULTS Among 400 patients (75 ± 6.4 years old; 63% females), neither current nor past abuse of BDZ, ZD or GPT, nor other illicit substances was observed. Dependence upon BDZ, ZD or GPT was observed among 55 (13.75%) individuals. The related lifetime/12-month prevalence-rates were: dependence condition (BDZ: 7%/2.45%; ZD: 4.25%/4.25%; GPT: 2.75/2.5%); mono-dependence condition (BDZ: 2.25%/0.75%; ZD: 1%/1%, GPT: 0%/0%); de novo-dependence condition (BDZ: 2.75%/1.75%; ZD: 1%/1%, GPT: 0.5%/0.5%). Opioid analgesic-dependence (N = 43/400) was significantly more frequently linked with BDZ than with GPT (p < 0.01) [Correction added on 29 December 2021, after first online publication: In the sentence 'Opioid analgesic-dependence…', the term 'and ZD' has been deleted]. For all three GABAmimetic classes, most mono- and de novo-dependence states were mild-to-moderate and lasted 2-6 years (median). CONCLUSION GABAmimetic-dependence was usually mixed with other substance-dependences. Every third to fourth instance of BDZ- or ZD-dependence was a mono-dependence condition, while a pure GPT-dependence was absent in this elderly (and illicit substance-naïve) population.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Castrop-Rauxel, Germany, Academic Teaching Hospital of the University of Duisburg-Essen, Essen, Germany.,Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Heath B McAnally
- Northern Anesthesia & Pain Medicine, LLC, Eagle River, Alaska, USA.,Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
6
|
Benarroch E. What Are the Interactions Between the Midbrain Dopamine System in Pain? Neurology 2022; 98:274-278. [PMID: 35165154 DOI: 10.1212/wnl.0000000000013253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/15/2022] Open
|
7
|
The Role of Mesostriatal Dopamine System and Corticostriatal Glutamatergic Transmission in Chronic Pain. Brain Sci 2021; 11:brainsci11101311. [PMID: 34679376 PMCID: PMC8533867 DOI: 10.3390/brainsci11101311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022] Open
Abstract
There is increasing recognition of the involvement of the nigrostriatal and mesolimbic dopamine systems in the modulation of chronic pain. The first part of the present article reviews the evidence indicating that dopamine exerts analgesic effects during persistent pain by stimulating the D2 receptors in the dorsal striatum and nucleus accumbens (NAc). Thereby, dopamine inhibits striatal output via the D2 receptor-expressing medium spiny neurons (D2-MSN). Dopaminergic neurotransmission in the mesostriatal pathways is hampered in chronic pain states and this alteration maintains and exacerbates pain. The second part of this article focuses on the glutamatergic inputs from the medial prefrontal cortex to the NAc, their activity changes in chronic pain, and their role in pain modulation. Finally, interactions between dopaminergic and glutamatergic inputs to the D2-MSN are considered in the context of persistent pain. Studies using novel techniques indicate that pain is regulated oppositely by two independent dopaminergic circuits linking separate parts of the ventral tegmental area and of the NAc, which also interact with distinct regions of the medial prefrontal cortex.
Collapse
|
8
|
Gölöncsér F, Baranyi M, Iring A, Hricisák L, Otrokocsi L, Benyó Z, Sperlágh B. Involvement of P2Y 12 receptors in an NTG-induced model of migraine in male mice. Br J Pharmacol 2021; 178:4626-4645. [PMID: 34363208 DOI: 10.1111/bph.15641] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2021] [Accepted: 07/11/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE P2Y12 receptors (P2Y12 Rs) are known to regulate different forms of pain and inflammation. In this study we investigated the participation of P2Y12 Rs in an animal model of migraine. EXPERIMENTAL APPROACH We tested the effect of the centrally administered selective P2Y12 R antagonist PSB-0739, and P2Y12 R gene deficiency in acute nitroglycerin (NTG)-treated mice. Additionally, platelet depletion was used to investigate the role of platelet P2Y12 Rs during migraine-like pain. KEY RESULTS NTG induced sensory hypersensitivity of C57BL/6 wild-type (P2ry12+/+ ) mice, accompanied by an increase in c-fos and CGRP expression in the upper cervical spinal cord (C1-C2) and trigeminal nucleus caudalis (TNC). Similar changes were also observed in P2Y12 R gene-deficient (P2ry12-/- ) mice. Prophylactic intrathecal application of PSB-0739 reversed thermal hyperalgesia and head grooming time in wild-type mice but had no effect in P2ry12-/- mice; furthermore, it was also effective when applied as a post-treatment. PSB-0739 administration suppressed the expression of c-fos in C1-C2 and TNC, and decrease C1-C2 levels of dopamine and serotonin in wild-type mice. NTG treatment itself did not change adenosine diphosphate (ADP)-induced platelet activation measured by CD62P upregulation in wild-type mice. Platelet depletion by anti-mouse CD41 antibody and clopidogrel attenuated NTG-induced thermal hypersensitivity and head grooming time in mice. CONCLUSION AND IMPLICATIONS Taken together, our findings show that acute inhibition of P2Y12 Rs alleviates migraine-like pain in mice, by modulating the expression of c-fos, and platelet P2Y12 Rs might contribute to this effect. Hence, it is suggested that the blockade of P2Y12 Rs may have therapeutic potential against migraine.
Collapse
Affiliation(s)
- Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
9
|
Vergara F, Sardi NF, Pescador AC, Guaita GO, Jark Stern CA, Chichorro JG, Fischer L. Contribution of mesolimbic dopamine and kappa opioid systems to the transition from acute to chronic pain. Neuropharmacology 2020; 178:108226. [DOI: 10.1016/j.neuropharm.2020.108226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
|
10
|
Running wheel exercise induces therapeutic and preventive effects on inflammatory stimulus-induced persistent hyperalgesia in mice. PLoS One 2020; 15:e0240115. [PMID: 33048957 PMCID: PMC7553300 DOI: 10.1371/journal.pone.0240115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic pain affects significant portion of the world's population and physical exercise has been extensively indicated as non-pharmacological clinical intervention to relieve symptoms in chronic pain conditions. In general, studies on pain chronification and physical exercise intervention have focused on neuropathic pain, although chronic pain commonly results from an original inflammatory episode. Based on this, the objective of the present study was to investigate the therapeutic and preventive effect of the running wheel exercise on the persistent hyperalgesia induced by repetitive inflammatory stimulus, a rodent model that simulates clinical conditions of chronic pain that persist even with no more inflammatory stimulus present. To evaluate the therapeutic effect of physical exercise, we first induced persistent hyperalgesia through 14 days of PGE2 hind paw injections and, after that, mice have access to the regular voluntary running wheel. To evaluate the preventive effect of physical exercise, we first left the mice with access to the regular voluntary running wheel and, after that, we performed 14 days of PGE2 hind paw injection. Our results showed that voluntary running wheel exercise reduced persistent mechanical and chemical hyperalgesia intensity induced by repetitive inflammatory stimulus. In addition, we showed that this therapeutic effect is long-lasting and is observed even if started belatedly, i.e. two weeks after the development of hyperalgesia. Also, our results showed that voluntary running wheel exercise absolutely prevented persistent mechanical and chemical hyperalgesia induction. We can conclude that physical exercise has therapeutic and preventive effect on inflammatory stimulus-induced persistent hyperalgesia. Our data from animal experiments bypass placebo effects bias of the human studies and reinforce physical exercise clinical recommendations to treat and prevent chronic pain.
Collapse
|
11
|
Taherianfard M, Aalami S. Effects of Pretreatment With Ginseng Extract on Dopamine D2 Receptor Analgesia. Basic Clin Neurosci 2020; 11:587-593. [PMID: 33643552 PMCID: PMC7878063 DOI: 10.32598/bcn.9.10.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/10/2019] [Accepted: 12/19/2019] [Indexed: 11/29/2022] Open
Abstract
Introduction: The ginseng extract is an herb that has been used for many purposes such as analgesic effect. Dopamine D2 receptors are involved in the regulation of pain in humans. Therefore, the present investigation aims to study how pretreatment with aqueous-alcoholic extract of ginseng can affect dopamine D2 receptors’ pain sensitivity. Methods: We used 45 adult male rats weighing 250±20 for this study. Animals were maintained in a standard condition at a temperature of 21°C–24°C. The experimental groups were as follows: 1. Sham 1 (intraperitoneal [IP] injection of normal saline); 2. Sham 2 (intracerebroventricular [ICV] injection of artificial cerebrospinal fluid [ACSF]); 3. Experimental 1 (IP injection of ginseng extract); 4 and 5. Experimental groups 2 and 3 (IP injection of ginseng extract + bromocriptine 10 and 30 μg/rat by ICV injection); 6 and 7) experimental groups 4 and 5 (IP injection of ginseng extract + chlorpromazine 20 and 40 μg/rat by ICV injection). Ginseng extract 100 mg/kg/d was used for 7 days. Pain sensitivity test was done in all groups with the formalin test. Lateral ventricles of the rats were cannulated unilaterally by the stereotaxic procedure. Results: Our data showed that ginseng (100 mg/kg/d) significantly (P<0.05) decreased pain sensitivity compared to the sham 1 group. Bromocriptine in two doses significantly decreased pain sensitivity compared to the sham 2 group. Chlorpromazine in high doses significantly increased pain sensitivity compared to the sham 2 group. Conclusion: The present results indicate that ginseng can modulate the D2 receptor of the dopamine system in the control of pain sensitivity in the formalin test. Because bromocriptine and ginseng have similar effects, it seems that they had synergistic effects.
Collapse
Affiliation(s)
- Mahnaz Taherianfard
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Somaye Aalami
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
12
|
Social stress as a trigger for depressive-like behavior and persistent hyperalgesia in mice: study of the comorbidity between depression and chronic pain. J Affect Disord 2020; 274:759-767. [PMID: 32664012 DOI: 10.1016/j.jad.2020.05.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND There is great comorbidity and similarity between chronic pain and major depressive disorders. We have recently shown that 10 days of social defeat stress (SDS) induces hyperalgesia regardless depressive-like behavior in mice. Here we aimed to investigate whether social stress predisposes to chronic pain and, inversely, whether chronic pain predisposes to stress-induced depression. METHODS Firstly, we used the 10 days SDS paradigm in mice followed by a mild protocol of repetitive inflammatory stimulus to evaluate if SDS would predispose to persistent hyperalgesia development. Secondly, we used the intense protocol of repetitive inflammatory stimulus followed by a subthreshold SDS to evaluate if persistent hyperalgesia would predispose to depressive-like behavior of social avoidance. RESULTS Our results showed that SDS predispose to chronic pain, since stressed mice injected with PGE2 for 7 days (mild protocol), stimuli normally not sufficient to trigger chronic pain, showed persistent hyperalgesia. Also, we showed that persistent hyperalgesia induced by repetitive inflammatory stimuli predispose to long-lasting depressive-like behavior of social avoidance induced by subthreshold SDS. LIMITATIONS We did not analyze molecular mechanism associated with chronic pain and depressive-like behavior induced by SDS. However, we hypothesized that SDS and 14 days of PGE2 would generate neuroplasticity on brain areas shared by chronic pain and depression, predisposing to pain chronification and depressive-like behavior, respectively. CONCLUSIONS We can conclude social stress as a key and a common factor for chronic pain and depression. We can also conclude that SDS predisposes to chronic pain and, inversely, chronic pain predisposes to depressive-like behavior.
Collapse
|
13
|
Brandão AF, Bonet IJM, Pagliusi M, Zanetti GG, Pho N, Tambeli CH, Parada CA, Vieira AS, Sartori CR. Physical Activity Induces Nucleus Accumbens Genes Expression Changes Preventing Chronic Pain Susceptibility Promoted by High-Fat Diet and Sedentary Behavior in Mice. Front Neurosci 2020; 13:1453. [PMID: 32038148 PMCID: PMC6987254 DOI: 10.3389/fnins.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Recent findings from rodent studies suggest that high-fat diet (HFD) increases hyperalgesia independent of obesity status. Furthermore, weight loss interventions such as voluntary physical activity (PA) for adults with obesity or overweight was reported to promote pain reduction in humans with chronic pain. However, regardless of obesity status, it is not known whether HFD intake and sedentary (SED) behavior is underlies chronic pain susceptibility. Moreover, differential gene expression in the nucleus accumbens (NAc) plays a crucial role in chronic pain susceptibility. Thus, the present study used an adapted model of the inflammatory prostaglandin E2 (PGE2)-induced persistent hyperalgesia short-term (PH-ST) protocol for mice, an HFD, and a voluntary PA paradigm to test these hypotheses. Therefore, we performed an analysis of differential gene expression using a transcriptome approach of the NAc. We also applied a gene ontology enrichment tools to identify biological processes associated with chronic pain susceptibility and to investigate the interaction between the factors studied: diet (standard diet vs. HFD), physical activity behavior (SED vs. PA) and PH-ST (PGE vs. saline). Our results demonstrated that HFD intake and sedentary behavior promoted chronic pain susceptibility, which in turn was prevented by voluntary physical activity, even when the animals were fed an HFD. The transcriptome of the NAc found 2,204 differential expression genes and gene ontology enrichment analysis revealed 41 biologic processes implicated in chronic pain susceptibility. Taking these biological processes together, our results suggest that genes related to metabolic and mitochondria stress were up-regulated in the chronic pain susceptibility group (SED-HFD-PGE), whereas genes related to neuroplasticity were up-regulated in the non-chronic pain susceptibility group (PA-HFD-PGE). These findings provide pieces of evidence that HFD intake and sedentary behavior provoked gene expression changes in the NAc related to promotion of chronic pain susceptibility, whereas voluntary physical activity provoked gene expression changes in the NAc related to prevention of chronic pain susceptibility. Finally, our findings confirmed previous literature supporting the crucial role of voluntary physical activity to prevent chronic pain and suggest that low levels of voluntary physical activity would be helpful and highly recommended as a complementary treatment for those with chronic pain.
Collapse
Affiliation(s)
- Arthur Freitas Brandão
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ivan José Magayewski Bonet
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriel Gerardini Zanetti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Nam Pho
- eScience Institute, University of Washington, Seattle, WA, United States
| | - Cláudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
14
|
Brewer R, Blum K, Bowirrat A, Modestino EJ, Baron D, Badgaiyan RD, Moran M, Boyett B, Gold MS. Transmodulation of Dopaminergic Signaling to Mitigate Hypodopminergia and Pharmaceutical Opioid-Induced Hyperalgesia. CURRENT PSYCHOPHARMACOLOGY 2020; 9:164-184. [PMID: 37361136 PMCID: PMC10288629 DOI: 10.2174/2211556009999200628093231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 06/28/2023]
Abstract
Neuroscientists and psychiatrists working in the areas of "pain and addiction" are asked in this perspective article to reconsider the current use of dopaminergic blockade (like chronic opioid agonist therapy), and instead to consider induction of dopamine homeostasis by putative pro-dopamine regulation. Pro-dopamine regulation could help pharmaceutical opioid analgesic agents to mitigate hypodopaminergia-induced hyperalgesia by inducing transmodulation of dopaminergic signaling. An optimistic view is that early predisposition to diagnosis based on genetic testing, (pharmacogenetic/pharmacogenomic monitoring), combined with appropriate urine drug screening, and treatment with pro-dopamine regulators, could conceivably reduce stress, craving, and relapse, enhance well-being and attenuate unwanted hyperalgesia. These concepts require intensive investigation. However, based on the rationale provided herein, there is a good chance that combining opioid analgesics with genetically directed pro-dopamine-regulation using KB220 (supported by 43 clinical studies). This may become a front-line technology with the potential to overcome, in part, the current heightened rates of chronic opioid-induced hyperalgesia and concomitant Reward Deficiency Syndrome (RDS) behaviors. Current research does support the hypothesis that low or hypodopaminergic function in the brain may predispose individuals to low pain tolerance or hyperalgesia.
Collapse
Affiliation(s)
- Raymond Brewer
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
| | - Kenneth Blum
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
- Western University Health Sciences, Pomona, CA., USA
- Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA
- Eotvos Loránd University, Institute of Psychology, Budapest, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, USA
- Department of Psychiatry, University of Vermont, Burlington, VT., USA
| | - Abdalla Bowirrat
- Department of Neuroscience and Genetics, Interdisciplinary Center Herzliya, Israel
| | | | - David Baron
- Western University Health Sciences, Pomona, CA., USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, ICHAN School of Medicine, Mount Sinai, New York, NYC. & Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Mark Moran
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
| | - Brent Boyett
- Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA
- Bradford Health Services, Madison, AL., USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo., USA
| |
Collapse
|
15
|
Harris HN, Peng YB. Evidence and explanation for the involvement of the nucleus accumbens in pain processing. Neural Regen Res 2020; 15:597-605. [PMID: 31638081 PMCID: PMC6975138 DOI: 10.4103/1673-5374.266909] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nucleus accumbens (NAc) is a subcortical brain structure known primarily for its roles in pleasure, reward, and addiction. Despite less focus on the NAc in pain research, it also plays a large role in the mediation of pain and is effective as a source of analgesia. Evidence for this involvement lies in the NAc’s cortical connections, functions, pharmacology, and therapeutic targeting. The NAc projects to and receives information from notable pain structures, such as the prefrontal cortex, anterior cingulate cortex, periaqueductal gray, habenula, thalamus, etc. Additionally, the NAc and other pain-modulating structures share functions involving opioid regulation and motivational and emotional processing, which each work beyond simply the rewarding experience of pain offset. Pharmacologically speaking, the NAc responds heavily to painful stimuli, due to its high density of μ opioid receptors and the activation of several different neurotransmitter systems in the NAc, such as opioids, dopamine, calcitonin gene-related peptide, γ-aminobutyric acid, glutamate, and substance P, each of which have been shown to elicit analgesic effects. In both preclinical and clinical models, deep brain stimulation of the NAc has elicited successful analgesia. The multi-functional NAc is important in motivational behavior, and the motivation for avoiding pain is just as important to survival as the motivation for seeking pleasure. It is possible, then, that the NAc must be involved in both pleasure and pain in order to help determine the motivational salience of positive and negative events.
Collapse
Affiliation(s)
- Haley N Harris
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA
| | - Yuan B Peng
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
16
|
Dopamine receptor D2, but not D1, mediates descending dopaminergic pathway-produced analgesic effect in a trigeminal neuropathic pain mouse model. Pain 2019; 160:334-344. [PMID: 30325872 DOI: 10.1097/j.pain.0000000000001414] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuropathic pain represents a challenge to clinicians because it is resistant to commonly prescribed analgesics due to its largely unknown mechanisms. Here, we investigated a descending dopaminergic pathway-mediated modulation of trigeminal neuropathic pain. We performed chronic constriction injury of the infraorbital nerve from the maxillary branch of trigeminal nerve to induce trigeminal neuropathic pain in mice. Our retrograde tracing showed that the descending dopaminergic projection from hypothalamic A11 nucleus to spinal trigeminal nucleus caudalis is bilateral. Optogenetic/chemogenetic manipulation of dopamine receptors D1 and D2 in the spinal trigeminal nucleus caudalis produced opposite effects on the nerve injury-induced trigeminal neuropathic pain. Specific excitation of dopaminergic neurons in the A11 nucleus attenuated the trigeminal neuropathic pain through the activation of D2 receptors in the spinal trigeminal nucleus caudalis. Conversely, specific ablation of the A11 dopaminergic neurons exacerbated such pain. Our results suggest that the descending A11-spinal trigeminal nucleus caudalis dopaminergic projection is critical for the modulation of trigeminal neuropathic pain and could be manipulated to treat such pain.
Collapse
|
17
|
Sardi NF, Lazzarim MK, Guilhen VA, Marcílio RS, Natume PS, Watanabe TC, Lima MMS, Tobaldini G, Fischer L. Chronic sleep restriction increases pain sensitivity over time in a periaqueductal gray and nucleus accumbens dependent manner. Neuropharmacology 2018; 139:52-60. [PMID: 29928886 DOI: 10.1016/j.neuropharm.2018.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 11/29/2022]
Abstract
Painful conditions and sleep disturbances are major public health problems worldwide and one directly affects the other. Sleep loss increases pain prevalence and severity; while pain disturbs sleep. However, the underlying mechanisms are largely unknown. Here we asked whether chronic sleep restriction for 6 h daily progressively increases pain sensitivity and if this increase is reversed after two days of free sleep. Also, whether the pronociceptive effect of chronic sleep restriction depends on the periaqueductal grey and on the nucleus accumbens, two key regions involved in the modulation of pain and sleep-wake cycle. We showed that sleep restriction induces a pronociceptive effect characterized by a significant decrease in the mechanical paw withdrawal threshold in rats. Such effect increases progressively from day 3 to day 12 remaining stable thereafter until day 26. Two consecutive days of free sleep were not enough to reverse the effect, not even to attenuate it. This pronociceptive effect depends on the periaqueductal grey and on the nucleus accumbens, since it was prevented by their excitotoxic lesion. Complementarily, chronic sleep restriction significantly increased c-Fos protein expression within the periaqueductal grey and the nucleus accumbens and this correlates with the intensity of the pronociceptive effect, suggesting that the greater the neural activity in this regions, the greater the effect. These findings may contribute not only to understand why painful conditions are more prevalent and severe among people who sleep poorly, but also to develop therapeutic strategies to prevent this, increasing the effectiveness of pain management in this population.
Collapse
Affiliation(s)
- Natalia F Sardi
- Neurophysiology Laboratory, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Mayla K Lazzarim
- Neurophysiology Laboratory, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Vinicius A Guilhen
- Neurophysiology Laboratory, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Renata S Marcílio
- Neurophysiology Laboratory, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Priscila S Natume
- Neurophysiology Laboratory, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Thainá C Watanabe
- Neurophysiology Laboratory, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Marcelo M S Lima
- Neurophysiology Laboratory, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Glaucia Tobaldini
- Neurophysiology Laboratory, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Luana Fischer
- Neurophysiology Laboratory, Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil.
| |
Collapse
|
18
|
Pagliusi MOF, Bonet IJM, Dias EV, Vieira AS, Tambeli CH, Parada CA, Sartori CR. Social defeat stress induces hyperalgesia and increases truncated BDNF isoforms in the nucleus accumbens regardless of the depressive-like behavior induction in mice. Eur J Neurosci 2018; 48:1635-1646. [PMID: 29885271 DOI: 10.1111/ejn.13994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/20/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022]
Abstract
Epidemiological studies have shown a close association between pain and depression. There is evidence showing this association as patients with depression show a high chronic pain prevalence and vice versa. Considering that social stress is critical for the development of depression in humans, we used a social defeat stress (SDS) model which induces depressive-like behavior in mice. In this model, mice are exposed to an aggressor mouse for ten days, suffering brief periods of agonistic contact and long periods of sensory contact. Some mice display social avoidance, a depressive-like behavior, and are considered susceptible, while some mice do not, and are considered resilient. Thus, we investigated the nociceptive behavior of mice submitted to SDS and the neuroplastic changes in dopaminergic mesolimbic system. Our results showed that the stressed mice (resilient and susceptible) presented a higher sensitivity to pain than the control mice in chemical and mechanical tests. We also verified that susceptible mice have higher Bdnf mRNA in the VTA compared to the resilient and control mice. The stressed mice had less mature BDNF and more truncated BDNF protein in the NAc compared with control mice. Although social stress may trigger the development of depression and hyperalgesia, these two conditions may manifest independently as social stress induced hyperalgesia even in mice that did not display depressive-like behavior. Also, increased Bdnf in the VTA seems to be associated with depressive-like behavior, whereas high levels of truncated BDNF and low mature BDNF appear to be associated with hyperalgesia induced by social defeat stress.
Collapse
Affiliation(s)
| | | | - Elayne Vieira Dias
- Department of Structural and Functional Biology, State University of Campinas, Campinas, SP, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, State University of Campinas, Campinas, SP, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, State University of Campinas, Campinas, SP, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, State University of Campinas, Campinas, SP, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
19
|
Husøy AK, Pintzka C, Eikenes L, Håberg AK, Hagen K, Linde M, Stovner LJ. Volume and shape of subcortical grey matter structures related to headache: A cross-sectional population-based imaging study in the Nord-Trøndelag Health Study. Cephalalgia 2018; 39:173-184. [PMID: 29848110 DOI: 10.1177/0333102418780632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The relationship between subcortical nuclei and headache is unclear. Most previous studies were conducted in small clinical migraine samples. In the present population-based MRI study, we hypothesized that headache sufferers exhibit reduced volume and deformation of the nucleus accumbens compared to non-sufferers. In addition, volume and deformation of the amygdala, caudate, hippocampus, pallidum, putamen and thalamus were examined. METHODS In all, 1006 participants (50-66 years) from the third Nord-Trøndelag Health Survey, were randomly selected to undergo a brain MRI at 1.5 T. Volume and shape of the subcortical nuclei from T1 weighted 3D scans were obtained in FreeSurfer and FSL. The association with questionnaire-based headache categories (migraine and tension-type headache included) was evaluated using analysis of covariance. Individuals not suffering from headache were used as controls. Age, sex, intracranial volume and Hospital Anxiety and Depression Scale were used as covariates. RESULTS No effect of headache status on accumbens volume and shape was present. Exploratory analyses showed significant but small differences in volume of caudate and putamen and in putamen shape between those with non-migrainous headache and the controls. A post hoc analysis showed that caudate volume was strongly associated with white matter hyperintensities. CONCLUSION We did not confirm our hypothesis that headache sufferers have smaller volume and different shape of the accumbens compared to non-sufferers. No or only small differences in volume and shape of subcortical nuclei between headache sufferers and non-sufferers appear to exist in the general population.
Collapse
Affiliation(s)
- Andreas Kattem Husøy
- 1 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Carl Pintzka
- 1 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,2 Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- 2 Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asta K Håberg
- 1 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,3 Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Knut Hagen
- 1 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,4 Norwegian Advisory Unit on Headache, St. Olav's University Hospital, Trondheim, Norway
| | - Mattias Linde
- 1 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,4 Norwegian Advisory Unit on Headache, St. Olav's University Hospital, Trondheim, Norway
| | - Lars Jacob Stovner
- 1 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,4 Norwegian Advisory Unit on Headache, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|