1
|
Sun JC, Tan X, Ge LJ, Xu MJ, Wang WZ. The Release of Nitric Oxide Is Involved in the β-Arrestin1-Induced Antihypertensive Effect in the Rostral Ventrolateral Medulla. Front Physiol 2021; 12:694135. [PMID: 34220554 PMCID: PMC8249856 DOI: 10.3389/fphys.2021.694135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
β-Arrestin1 is a multifunctional scaffold protein with the ability to interact with diverse signaling molecules independent of G protein-coupled receptors. We previously reported that overexpression of β-arrestin1 in the rostral ventrolateral medulla (RVLM) decreased blood pressure (BP) and renal sympathetic nerve activity (RSNA) in spontaneously hypertensive rats (SHRs). Nitric oxide (NO) is widely reported to be involved in central cardiovascular regulation. The goal of this study was to investigate whether NO signaling contributes to the β-arrestin1-mediated antihypertensive effect in the RVLM. It was found that bilateral injection of adeno-associated virus containing Arrb1 gene (AAV-Arrb1) into the RVLM of SHRs significantly increased NO production and NO synthase (NOS) activity. Microinjection of the non-selective NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME; 10 nmol) into the RVLM prevented the β-arrestin1-induced cardiovascular inhibitory effect. Furthermore, β-arrestin1 overexpression in the RVLM significantly upregulated the expression of phosphorylated neuronal NOS (nNOS) by 3.8-fold and extracellular regulated kinase 1/2 (ERK1/2) by 5.6-fold in SHRs. The β-arrestin1-induced decrease in BP and RSNA was significantly abolished by treatment with ERK1/2 small interfering RNA (ERK1/2 siRNA). Moreover, ERK1/2 siRNA attenuated the β-arrestin1-induced NO production, NOS activity, and nNOS phosphorylation in the RVLM. Taken together, these data demonstrate that the antihypertensive effect of β-arrestin1 in the RVLM is mediated by nNOS-derived NO release, which is associated with ERK1/2 activation.
Collapse
Affiliation(s)
- Jia-Cen Sun
- Polar Medical Research Center and Department of Physiology, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Polar Medical Research Center and Department of Physiology, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lian-Jie Ge
- Polar Medical Research Center and Department of Physiology, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ming-Juan Xu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei-Zhong Wang
- Polar Medical Research Center and Department of Physiology, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
2
|
Chen W, Xie L, Yu F, Li Y, Chen C, Xie W, Huang T, Zhang Y, Zhang S, Li P. Zebrafish as a Model for In-Depth Mechanistic Study for Stroke. Transl Stroke Res 2021; 12:695-710. [PMID: 34050491 DOI: 10.1007/s12975-021-00907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Stroke is one of the world's leading causes of death and disability, posing enormous burden to the society. However, the pathogenesis and mechanisms that underlie brain injury and brain repair remain largely unknown. There's an unmet need of in-depth mechanistic research in this field. Zebrafish (Danio rerio) is a powerful tool in brain science research mainly due to its small size and transparent body, high genome synteny with human, and similar nervous system structures. It can be used to establish both hemorrhagic and ischemic stroke models easily and effectively through different ways. After the establishment of stroke model, research methods including behavioral test, in vivo imaging, and drug screening are available to explore mechanisms that underlie the brain injury and brain repair after stroke. This review focuses on the advantages and the feasibility of zebrafish stroke model, and will also introduce the key methods available for stroke studies in zebrafish, which may drive future mechanistic studies in the pursuit of discovering novel therapeutic targets for stroke patients.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Fang Yu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Tingting Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Song Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
3
|
Stowell RD, Sipe GO, Dawes RP, Batchelor HN, Lordy KA, Whitelaw BS, Stoessel MB, Bidlack JM, Brown E, Sur M, Majewska AK. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat Neurosci 2019; 22:1782-1792. [PMID: 31636451 PMCID: PMC6875777 DOI: 10.1038/s41593-019-0514-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Microglia are the brain's resident innate immune cells and also have a role in synaptic plasticity. Microglial processes continuously survey the brain parenchyma, interact with synaptic elements and maintain tissue homeostasis. However, the mechanisms that control surveillance and its role in synaptic plasticity are poorly understood. Microglial dynamics in vivo have been primarily studied in anesthetized animals. Here we report that microglial surveillance and injury response are reduced in awake mice as compared to anesthetized mice, suggesting that arousal state modulates microglial function. Pharmacologic stimulation of β2-adrenergic receptors recapitulated these observations and disrupted experience-dependent plasticity, and these effects required the presence of β2-adrenergic receptors in microglia. These results indicate that microglial roles in surveillance and synaptic plasticity in the mouse brain are modulated by noradrenergic tone fluctuations between arousal states and emphasize the need to understand the effect of disruptions of adrenergic signaling in neurodevelopment and neuropathology.
Collapse
Affiliation(s)
- Rianne D Stowell
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.,Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Grayson O Sipe
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ryan P Dawes
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.,Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Hanna N Batchelor
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Katheryn A Lordy
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Brendan S Whitelaw
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.,Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark B Stoessel
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.,Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Jean M Bidlack
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA. .,Center for Visual Science, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
4
|
Bao W, Volgin AD, Alpyshov ET, Friend AJ, Strekalova TV, de Abreu MS, Collins C, Amstislavskaya TG, Demin KA, Kalueff AV. Opioid Neurobiology, Neurogenetics and Neuropharmacology in Zebrafish. Neuroscience 2019; 404:218-232. [PMID: 30710667 DOI: 10.1016/j.neuroscience.2019.01.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
Abstract
Despite the high prevalence of medicinal use and abuse of opioids, their neurobiology and mechanisms of action are not fully understood. Experimental (animal) models are critical for improving our understanding of opioid effects in vivo. As zebrafish (Danio rerio) are increasingly utilized as a powerful model organism in neuroscience research, mounting evidence suggests these fish as a useful tool to study opioid neurobiology. Here, we discuss the zebrafish opioid system with specific focus on opioid gene expression, existing genetic models, as well as its pharmacological and developmental regulation. As many human brain diseases involve pain and aberrant reward, we also summarize zebrafish models relevant to opioid regulation of pain and addiction, including evidence of functional interplay between the opioid system and central dopaminergic and other neurotransmitter mechanisms. Additionally, we critically evaluate the limitations of zebrafish models for translational opioid research and emphasize their developing utility for improving our understanding of evolutionarily conserved mechanisms of pain-related, addictive, affective and other behaviors, as well as for fostering opioid-related drug discovery.
Collapse
Affiliation(s)
- Wandong Bao
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Andrey D Volgin
- Military Medical Academy, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Erik T Alpyshov
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tatyana V Strekalova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Christopher Collins
- ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA.
| |
Collapse
|
5
|
Sun JC, Liu B, Zhang RW, Jiao PL, Tan X, Wang YK, Wang WZ. Overexpression of ß-Arrestin1 in the Rostral Ventrolateral Medulla Downregulates Angiotensin Receptor and Lowers Blood Pressure in Hypertension. Front Physiol 2018; 9:297. [PMID: 29643817 PMCID: PMC5882868 DOI: 10.3389/fphys.2018.00297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Hypertension is characterized by sympathetic overactivity, which is associated with an enhancement in angiotensin receptor type I (AT1R) in the rostral ventrolateral medulla (RVLM). β-arrestin1, a canonical scaffold protein, has been suggested to show a negative effect on G protein-coupled receptors via its internalization and desensitization and/or the biased signaling pathway. The major objectives of the present study were to observe the effect of β-arrestin1 overexpression in the RVLM on cardiovascular regulation in spontaneously hypertensive rats (SHR), and further determine the effect of β-arrestin1 on AT1R expression in the RVLM. Methods: The animal model of β-arrestin1 overexpression was induced by bilateral injection of adeno-associated virus containing Arrb1 gene (AAV-Arrb1) into the RVLM of WKY and SHR. Results: β-arrestin1 was expressed on the pre-sympathetic neurons in the RVLM, and its expression in the RVLM was significantly (P < 0.05) downregulated by an average of 64% in SHR than WKY. Overexpression of β-arrestin1 in SHR significantly decreased baseline levels of blood pressure and renal sympathetic nerve activity, and attenuated cardiovascular effects induced by RVLM injection of angiotensin II (100 pmol). Furthermore, β-arrestin1 overexpression in the RVLM significantly reduced the expression of AT1R by 65% and NF-κB p65 phosphorylation by 66% in SHR. It was confirmed that β-arrestin1 overexpression in the RVLM led to an enhancement of interaction between β-arrestin1 and IκB-α. Conclusion: Overexpression of β-arrestin1 in the RVLM reduces BP and sympathetic outflow in hypertension, which may be associated with NFκB-mediated AT1R downregulation.
Collapse
Affiliation(s)
- Jia-Cen Sun
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Bing Liu
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Ru-Wen Zhang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Pei-Lei Jiao
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Xing Tan
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Yang-Kai Wang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Wei-Zhong Wang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| |
Collapse
|
6
|
Paris I, Savage JC, Escobar L, Abiega O, Gagnon S, Hui CW, Tremblay MÈ, Sierra A, Valero J. ProMoIJ: A new tool for automatic three-dimensional analysis of microglial process motility. Glia 2017; 66:828-845. [PMID: 29288586 DOI: 10.1002/glia.23287] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 12/31/2022]
Abstract
Microglia, the immune cells of the central nervous system, continuously survey the brain to detect alterations and maintain tissue homeostasis. The motility of microglial processes is indicative of their surveying capacity in normal and pathological conditions. The gold standard technique to study motility involves the use of two-photon microscopy to obtain time-lapse images from brain slices or the cortex of living animals. This technique generates four dimensionally-coded images which are analyzed manually using time-consuming, non-standardized protocols. Microglial process motility analysis is frequently performed using Z-stack projections with the consequent loss of three-dimensional (3D) information. To overcome these limitations, we developed ProMoIJ, a pack of ImageJ macros that perform automatic motility analysis of cellular processes in 3D. The main core of ProMoIJ is formed by two macros that assist the selection of processes, automatically reconstruct their 3D skeleton, and analyze their motility (process and tip velocity). Our results show that ProMoIJ presents several key advantages compared with conventional manual analysis: (1) reduces the time required for analysis, (2) is less sensitive to experimenter bias, and (3) is more robust to varying numbers of processes analyzed. In addition, we used ProMoIJ to demonstrate that commonly performed 2D analysis underestimates microglial process motility, to reveal that only cells adjacent to a laser injured area extend their processes toward the lesion site, and to demonstrate that systemic inflammation reduces microglial process motility. ProMoIJ is a novel, open-source, freely-available tool which standardizes and accelerates the time-consuming labor of 3D analysis of microglial process motility.
Collapse
Affiliation(s)
- Iñaki Paris
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Bizkaia, Spain
| | - Julie C Savage
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada.,Département de médecine moléculaire, Université Laval, Québec, Canada
| | - Laura Escobar
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Bizkaia, Spain
| | - Oihane Abiega
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Bizkaia, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Steven Gagnon
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada.,Département de médecine moléculaire, Université Laval, Québec, Canada
| | - Chin-Wai Hui
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada.,Département de médecine moléculaire, Université Laval, Québec, Canada
| | - Marie-Ève Tremblay
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada.,Département de médecine moléculaire, Université Laval, Québec, Canada
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Bizkaia, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Bizkaia, Spain.,University of the Basque Country, Leioa, Bizkaia, Spain
| | - Jorge Valero
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Bizkaia, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Bizkaia, Spain
| |
Collapse
|
7
|
Janušonis S. Some Galeomorph Sharks Express a Mammalian Microglia-Specific Protein in Radial Ependymoglia of the Telencephalon. BRAIN, BEHAVIOR AND EVOLUTION 2017; 91:17-30. [PMID: 29232670 DOI: 10.1159/000484196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/12/2017] [Indexed: 01/26/2023]
Abstract
Ionized calcium-binding adapter molecule 1 (Iba1), also known as allograft inflammatory factor 1 (AIF-1), is a highly conserved cytoplasmic scaffold protein. Studies strongly suggest that Iba1 is associated with immune-like reactions in all Metazoa. In the mammalian brain, it is abundantly expressed in microglial cells and is used as a reliable marker for this cell type. The present study used multiple-label microscopy and Western blotting to examine Iba1 expression in the telencephalon of 2 galeomorph shark species, the swellshark (Cephaloscyllium ventriosum) and the horn shark (Heterodontus francisci), a member of an ancient extant order. In the swellshark, high Iba1 expression was found in radial ependymoglial cells, many of which also expressed glial fibrillary acidic protein. Iba1 expression was absent from most cells in the horn shark (with the possible exception of perivascular cells). The difference in Iba1 expression between the species was supported by protein analysis. These results suggest that radial ependymoglia of the elasmobranchs may be functionally related to mammalian microglia and that Iba1 expression has undergone evolutionary changes in this cartilaginous group.
Collapse
Affiliation(s)
- Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| |
Collapse
|
8
|
Abscopal Activation of Microglia in Embryonic Fish Brain Following Targeted Irradiation with Heavy-Ion Microbeam. Int J Mol Sci 2017; 18:ijms18071428. [PMID: 28677658 PMCID: PMC5535919 DOI: 10.3390/ijms18071428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022] Open
Abstract
Microglia remove apoptotic cells by phagocytosis when the central nervous system is injured in vertebrates. Ionizing irradiation (IR) induces apoptosis and microglial activation in embryonic midbrain of medaka (Oryzias latipes), where apolipoprotein E (ApoE) is upregulated in the later phase of activation of microglia In this study, we found that another microglial marker, l-plastin (lymphocyte cytosolic protein 1), was upregulated at the initial phase of the IR-induced phagocytosis when activated microglia changed their morphology and increased motility to migrate. We further conducted targeted irradiation to the embryonic midbrain using a collimated microbeam of carbon ions (250 μm diameter) and found that the l-plastin upregulation was induced only in the microglia located in the irradiated area. Then, the activated microglia might migrate outside of the irradiated area and spread through over the embryonic brain, expressing ApoE and with activated morphology, for longer than 3 days after the irradiation. These findings suggest that l-plastin and ApoE can be the biomarkers of the activated microglia in the initial and later phase, respectively, in the medaka embryonic brain and that the abscopal and persisted activation of microglia by IR irradiation could be a cause of the abscopal and/or adverse effects following irradiation.
Collapse
|
9
|
Cai Q, Li Y, Pei G. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response. J Neuroinflammation 2017; 14:63. [PMID: 28340576 PMCID: PMC5364682 DOI: 10.1186/s12974-017-0839-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/13/2017] [Indexed: 11/16/2022] Open
Abstract
Background Ganoderma lucidum (GL) has been widely used in Asian countries for hundreds of years to promote health and longevity. The pharmacological functions of which had been classified, including the activation of innate immune responses, suppression of tumour and modulation of cell proliferations. Effective fractions of Ganoderma lucidum polysaccharides (GLP) had already been reported to regulate the immune system. Nevertheless, the role of GLP in the microglia-mediated neuroinflammation has not been sufficiently elucidated. Further, GLP effect on microglial behavioural modulations in correlation with the inflammatory responses remains to be unravelled. The aim of this work was to quantitatively analyse the contributions of GLP on microglia. Methods The BV2 microglia and primary mouse microglia were stimulated by lipopolysaccharides (LPS) and amyloid beta42 (Aβ42) oligomer, respectively. Investigation on the effect of GLP was carried by quantitative determination of the microglial pro- and anti-inflammatory cytokine expressions and behavioural modulations including migration, morphology and phagocytosis. Analysis of microglial morphology and phagocytosis modulations was confirmed in the zebrafish brain. Results Quantitative results revealed that GLP down-regulates LPS- or Aβ-induced pro-inflammatory cytokines and promotes anti-inflammatory cytokine expressions in BV-2 and primary microglia. In addition, GLP attenuates inflammation-related microglial migration, morphological alterations and phagocytosis probabilities. We also showed that modulations of microglial behavioural responses were associated with MCP-1 and C1q expressions. Conclusions Overall, our study provides an insight into the GLP regulation of LPS- and Aβ-induced neuroinflammation and serves an implication that the neuroprotective function of GLP might be achieved through modulation of microglial inflammatory and behavioural responses. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0839-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Cai
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.,Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yuanyuan Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.,Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China. .,School of Life Science and Technology, and the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
10
|
Cai Q, Li Y, Mao J, Pei G. Neurogenesis-Promoting Natural Product α-Asarone Modulates Morphological Dynamics of Activated Microglia. Front Cell Neurosci 2016; 10:280. [PMID: 28018174 PMCID: PMC5145874 DOI: 10.3389/fncel.2016.00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
α-Asarone is an active constituent of Acori Tatarinowii, one of the widely used traditional Chinese Medicine to treat cognitive defect, and recently is shown to promote neurogenesis. Here, we demonstrated that low level (3 μM) of α-asarone attenuated LPS-induced BV2 cell bipolar elongated morphological change, with no significant effect on the LPS-induced pro-inflammatory cytokine expressions. In addition, time-lapse analysis also revealed that α-asarone modulated LPS-induced BV2 morphological dynamics. Consistently a significant reduction in the LPS-induced Monocyte Chemoattractant Protein (MCP-1) mRNA and protein levels was also detected along with the morphological change. Mechanistic study showed that the attenuation effect to the LPS-resulted morphological modulation was also detected in the presence of MCP-1 antibodies or a CCR2 antagonist. This result has also been confirmed in primary cultured microglia. The in vivo investigation provided further evidence that α-asarone reduced the proportion of activated microglia, and reduced microglial tip number and maintained the velocity. Our study thus reveals α-asarone effectively modulates microglial morphological dynamics, and implies this effect of α-asarone may functionally relate to its influence on neurogenesis.
Collapse
Affiliation(s)
- Qing Cai
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Yuanyuan Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Jianxin Mao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; Graduate School, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; School of Life Science and Technology, and the Collaborative Innovation Center for Brain Science, Tongji UniversityShanghai, China
| |
Collapse
|