1
|
Flett S, Garcia J, Cowley KC. Spinal electrical stimulation to improve sympathetic autonomic functions needed for movement and exercise after spinal cord injury: a scoping clinical review. J Neurophysiol 2022; 128:649-670. [PMID: 35894427 DOI: 10.1152/jn.00205.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) results in sensory, motor and autonomic dysfunction. Obesity, cardiovascular and metabolic diseases are highly prevalent after SCI. Although inadequate voluntary activation of skeletal muscle contributes, it is absent or inadequate activation of thoracic spinal sympathetic neural circuitry and sub-optimal activation of homeostatic (cardiovascular, temperature) and metabolic support systems that truly limits exercise capacity, particularly for those with cervical SCI. Thus, when electrical spinal cord stimulation (SCS) studies aimed at improving motor functions began mentioning effects on exercise-related autonomic functions, a potential new area of clinical application appeared. To survey this new area of potential benefit, we performed a systematic scoping review of clinical SCS studies involving these spinally mediated autonomic functions. Nineteen studies were included, 8 used transcutaneous and 11 used epidural SCS. Improvements in BP at rest or in response to orthostatic challenge were investigated most systematically, whereas reports of improved temperature regulation, whole body metabolism and peak exercise performance were mainly anecdotal. Effective stimulation locations and parameters varied between studies, suggesting multiple stimulation parameters and rostrocaudal spinal locations may influence the same sympathetic function. Brainstem and spinal neural mechanisms providing excitatory drive to sympathetic neurons that activate homeostatic and metabolic tissues that provide support for movement and exercise and their integration with locomotor neural circuitry are discussed. A unifying conceptual framework for the integrated neural control of locomotor and sympathetic function is presented which may inform future research needed to take full advantage of SCS for improving these spinally mediated autonomic functions.
Collapse
Affiliation(s)
- Sarah Flett
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Juanita Garcia
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kristine C Cowley
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Differential effects of invasive anodal trans-spinal direct current stimulation on monosynaptic EPSPs, Ia afferents excitability, and motoneuron intrinsic properties between SOD1 G93A and WT mice. Neuroscience 2022; 498:125-143. [DOI: 10.1016/j.neuroscience.2022.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 06/25/2022] [Indexed: 01/06/2023]
|
3
|
Jankowska E, Hammar I. The plasticity of nerve fibers: the prolonged effects of polarization of afferent fibers. J Neurophysiol 2021; 126:1568-1591. [PMID: 34525323 DOI: 10.1152/jn.00718.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The review surveys various aspects of the plasticity of nerve fibers, in particular the prolonged increase in their excitability evoked by polarization, focusing on a long-lasting increase in the excitability of myelinated afferent fibers traversing the dorsal columns of the spinal cord. We review the evidence that increased axonal excitability 1) follows epidurally applied direct current (DC) as well as relatively short (5 or 10 ms) current pulses and synaptically evoked intrinsic field potentials; 2) critically depends on the polarization of branching regions of afferent fibers at the sites where they bifurcate and give off axon collaterals entering the spinal gray matter in conjunction with actions of extrasynaptic GABAA membrane receptors; and 3) shares the feature of being activity-independent with the short-lasting effects of polarization of peripheral nerve fibers. A comparison between the polarization evoked sustained increase in the excitability of dorsal column fibers and spinal motoneurons (plateau potentials) indicates the possibility that they are mediated by partly similar membrane channels (including noninactivating type L Cav++ 1.3 but not Na+ channels) and partly different mechanisms. We finally consider under which conditions transspinally applied DC (tsDCS) might reproduce the effects of epidural polarization on dorsal column fibers and the possible advantages of increased excitability of afferent fibers for the rehabilitation of motor and sensory functions after spinal cord injuries.NEW & NOTEWORTHY This review supplements previous reviews of properties of nerve fibers by surveying recent experimental evidence for their long-term plasticity. It also extends recent descriptions of spinal effects of DC by reviewing effects of polarization of afferent nerve fibers within the dorsal columns, the mechanisms most likely underlying the long-lasting increase in their excitability and possible clinical implications.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingela Hammar
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Bączyk M, Krutki P, Zytnicki D. Is there hope that transpinal direct current stimulation corrects motoneuron excitability and provides neuroprotection in amyotrophic lateral sclerosis? Physiol Rep 2021; 9:e14706. [PMID: 33463907 PMCID: PMC7814489 DOI: 10.14814/phy2.14706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of largely unknown pathophysiology, characterized by the progressive loss of motoneurons (MNs). We review data showing that in presymptomatic ALS mice, MNs display reduced intrinsic excitability and impaired level of excitatory inputs. The loss of repetitive firing specifically affects the large MNs innervating fast contracting muscle fibers, which are the most vulnerable MNs in ALS. Interventions that aimed at restoring either the intrinsic excitability or the synaptic excitation result in a decrease of disease markers in MNs and delayed neuromuscular junction denervation. We then focus on trans‐spinal direct current stimulation (tsDCS), a noninvasive tool, since it modulates the activity of spinal neurons and networks. Effects of tsDCS depend on the polarity of applied current. Recent work shows that anodal tsDCS induces long‐lasting enhancement of MN excitability and synaptic excitation of spinal MNs. Moreover, we show preliminary results indicating that anodal tsDCS enhances the excitatory synaptic inputs to MNs in ALS mice. In conclusion, we suggest that chronic application of anodal tsDCS might be useful as a complementary method in the management of ALS patients.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| | - Piotr Krutki
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| | - Daniel Zytnicki
- Université de Paris, Centre National de la Recherche Scientifique (CNRS), Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France
| |
Collapse
|
5
|
Yamaguchi T, Beck MM, Therkildsen ER, Svane C, Forman C, Lorentzen J, Conway BA, Lundbye‐Jensen J, Geertsen SS, Nielsen JB. Transcutaneous spinal direct current stimulation increases corticospinal transmission and enhances voluntary motor output in humans. Physiol Rep 2020; 8:e14531. [PMID: 32812363 PMCID: PMC7435034 DOI: 10.14814/phy2.14531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Optimization of motor performance is of importance in daily life, in relation to recovery following injury as well as for elite sports performance. The present study investigated whether transcutaneous spinal direct current stimulation (tsDCS) may enhance voluntary ballistic activation of ankle muscles and descending activation of spinal motor neurons in able-bodied adults. Forty-one adults (21 men; 24.0 ± 3.2 years) participated in the study. The effect of tsDCS on ballistic motor performance and plantar flexor muscle activation was assessed in a double-blinded sham-controlled cross-over experiment. In separate experiments, the underlying changes in excitability of corticospinal and spinal pathways were probed by evaluating soleus (SOL) motor evoked potentials (MEPs) following single-pulse transcranial magnetic stimulation (TMS) over the primary motor cortex, SOL H-reflexes elicited by tibial nerve stimulation and TMS-conditioning of SOL H-reflexes. Measures were obtained before and after cathodal tsDCS over the thoracic spine (T11-T12) for 10 min at 2.5 mA. We found that cathodal tsDCS transiently facilitated peak acceleration in the ballistic motor task compared to sham tsDCS. Following tsDCS, SOL MEPs were increased without changes in H-reflex amplitudes. The short-latency facilitation of the H-reflex by subthreshold TMS, which is assumed to be mediated by the fast conducting monosynaptic corticomotoneuronal pathway, was also enhanced by tsDCS. We argue that tsDCS briefly facilitates voluntary motor output by increasing descending drive from corticospinal neurones to spinal plantar flexor motor neurons. tsDCS can thus transiently promote within-session CNS function and voluntary motor output and holds potential as a technique in the rehabilitation of motor function following central nervous lesions.
Collapse
Affiliation(s)
- Tomofumi Yamaguchi
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
- Department of Physical Therapy, Faculty of Health ScienceJuntendo UniversityTokyoJapan
- JSPS Postdoctoral Fellow for Research AbroadTokyoJapan
| | - Mikkel M. Beck
- Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagen NDenmark
| | | | - Christian Svane
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
| | - Christian Forman
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
| | - Jakob Lorentzen
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
- Elsass FoundationCharlottenlundDenmark
| | - Bernard A. Conway
- Department of Biomedical EngineeringUniversity of StrathclydeGlasgowUK
| | - Jesper Lundbye‐Jensen
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
- Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagen NDenmark
| | - Svend S. Geertsen
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
- Department of Nutrition, Exercise and Sports (NEXS)University of CopenhagenCopenhagen NDenmark
| | - Jens B. Nielsen
- Department of NeuroscienceUniversity of CopenhagenCopenhagen NDenmark
- Elsass FoundationCharlottenlundDenmark
| |
Collapse
|
6
|
Li Y, Hari K, Lucas-Osma AM, Fenrich KK, Bennett DJ, Hammar I, Jankowska E. Branching points of primary afferent fibers are vital for the modulation of fiber excitability by epidural DC polarization and by GABA in the rat spinal cord. J Neurophysiol 2020; 124:49-62. [PMID: 32459560 DOI: 10.1152/jn.00161.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The aim of the study was to examine whether the sustained increases in the excitability of afferent fibers traversing the dorsal columns evoked by their polarization depend on the branching points of these fibers. To this end, the effects of epidural polarization were compared in four spinal regions in deeply anesthetized rats; two with the densest collateralization of muscle afferent fibers (above motor nuclei and Clarke's column) and two where the collateralization is more sparse (rostral and caudal to motor nuclei, respectively. The degree of collateralization in different segments was reconstructed in retrogradely labeled afferent fibers in the rat. Nerve volleys evoked in peripheral nerves by electrical stimulation of the dorsal columns within these regions were used as a measure of the excitability of the stimulated fibers. Potent increases in the excitability were evoked by polarization above motor nuclei and Clarke's column, both during constant direct current (DC) polarization (1 µA for 1 min) and for at least 30 min following DC polarization. Smaller excitability increases occurred during the polarization within other regions and were thereafter either absent or rapidly declined after its termination. The postpolarization increases in excitability were counteracted by the GABAA receptor antagonist bicuculline and the α5GABAA extrasynaptic receptor antagonist L655708 and enhanced by the GABAA receptor agonist muscimol and by ionophoretically applied GABA. As extrasynaptic α5GABAA receptors have been found close to Na channels within branching points, these results are consistent with the involvement of branching points in the induction of the sustained postpolarization increases in fiber excitability.NEW & NOTEWORTHY Polarization of sensory fibers traversing dorsal columns of the spinal cord may considerably increase the excitability of these fibers. We show that this involves the effects of current at branching points of afferent fibers and depends on extrasynaptic effects of GABA. These results contribute to our understanding of the mechanism underlying plasticity of activation of nerve fibers and may be used to increase the effectiveness of epidural stimulation in humans and recovery of spinal functions.
Collapse
Affiliation(s)
- Yaqing Li
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Krishnapriya Hari
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ana M Lucas-Osma
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - David J Bennett
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ingela Hammar
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
7
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
Affiliation(s)
- Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Rio Grande do Norte Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Kátia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Andre Fonseca
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Tommaso Bocci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milan, Italy
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Raaj Chatterjee
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Jeffrey M. Hausdorff
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Luciane Aparecida Moscaleski
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Marcelo Salvador Caetano
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Kátia Nunes Sá
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Alexandre Hideki Okano
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Graduate Program in Physical Education. State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
8
|
Bączyk M, Drzymała-Celichowska H, Mrówczyński W, Krutki P. Motoneuron firing properties are modified by trans-spinal direct current stimulation in rats. J Appl Physiol (1985) 2019; 126:1232-1241. [PMID: 30789288 DOI: 10.1152/japplphysiol.00803.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal polarization evoked by direct current stimulation [trans-spinal direct current stimulation (tsDCS)] is a novel method for altering spinal network excitability; however, it remains not well understood. The aim of this study was to determine whether tsDCS influences spinal motoneuron activity. Twenty Wistar rats under general pentobarbital anesthesia were subjected to 15 min anodal (n = 10) or cathodal (n = 10) tsDCS of 0.1 mA intensity, and the electrophysiological properties of their motoneurons were intracellularly measured before, during, and after direct current application. The major effects of anodal intervention included increased minimum firing frequency and the slope of the frequency-current (f-I) relationship, as well as decreased rheobase and currents evoking steady-state firing (SSF). The effects of cathodal polarization included decreased maximum SSF frequency, decreased f-I slope, and decreased current evoking the maximum SSF. Notably, the majority of observed effects appeared immediately after the current onset, developed during polarization, and outlasted it for at least 15 min. Moreover, the effects of anodal polarization were generally more pronounced and uniform than those evoked by cathodal polarization. Our study is the first to present polarity-dependent, long-lasting changes in spinal motoneuron firing following tsDCS, which may aid in the development of more safe and accurate application protocols in medicine and sport. NEW & NOTEWORTHY Trans-spinal direct current stimulation induces significant polarity-dependent, long-lasting changes in the threshold and firing properties of spinal motoneurons. Anodal polarization potentiates motoneuron firing whereas cathodal polarization acts mainly toward firing inhibition. The alterations in rheobase and rhythmic firing properties are not restricted to the period of current application and can be observed long after the current offset.
Collapse
Affiliation(s)
- M Bączyk
- Department of Neurobiology, Poznań University of Physical Education , Poznań , Poland
| | - H Drzymała-Celichowska
- Department of Neurobiology, Poznań University of Physical Education , Poznań , Poland.,Department of Biochemistry, Poznań University of Physical Education , Poznań , Poland
| | - W Mrówczyński
- Department of Neurobiology, Poznań University of Physical Education , Poznań , Poland
| | - P Krutki
- Department of Neurobiology, Poznań University of Physical Education , Poznań , Poland
| |
Collapse
|
9
|
Bolzoni F, Esposti R, Jankowska E, Hammar I. Interactions Between Baclofen and DC-induced Plasticity of Afferent Fibers within the Spinal Cord. Neuroscience 2019; 404:119-129. [PMID: 30710669 DOI: 10.1016/j.neuroscience.2019.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/21/2022]
Abstract
The aims of the study were to compare effects of baclofen, a GABAB receptor agonist commonly used as an antispastic drug, on direct current (DC) evoked long-lasting changes in the excitability of afferent fibers traversing the dorsal columns and their terminal branches in the spinal cord, and to examine whether baclofen interferes with the development and expression of these changes. The experiments were performed on deeply anesthetized rats by analyzing the effects of DC before, during and following baclofen administration. Muscle and skin afferent fibers within the dorsal columns were stimulated epidurally and changes in their excitability were investigated following epidural polarization by 1.0-1.1 μA subsequent to i.v. administration of baclofen. Epidural polarization increased the excitability of these fibers during post-polarization periods of at least 1 h. The facilitation was as potent as in preparations that were not pretreated with baclofen, indicating that the advantages of combining epidural polarization with epidural stimulation would not be endangered by pharmacological antispastic treatment with baclofen. In contrast, baclofen-reduced effects of intraspinal stimulation combined with intraspinal polarization (0.3 μA) of terminal axonal branches of the afferents within the dorsal horn or in motor nuclei, whether administered ionophoretically or intravenously. Effects of DC on monosynaptically evoked synaptic actions of these fibers (extracellular field potentials) were likewise reduced by baclofen. The study thus provides further evidence for differential effects of DC on afferent fibers in the dorsal columns and the preterminal branches of these fibers and their involvement in spinal plasticity.
Collapse
Affiliation(s)
- Francesco Bolzoni
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden; Human Physiology Section of the DEPT, Università degli Studi di Milano, Milano I-20133, Italy
| | - Roberto Esposti
- Human Physiology Section of the DEPT, Università degli Studi di Milano, Milano I-20133, Italy
| | - Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Ingela Hammar
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
10
|
Bączyk M, Jankowska E. Long-term effects of direct current are reproduced by intermittent depolarization of myelinated nerve fibers. J Neurophysiol 2018; 120:1173-1185. [PMID: 29924713 DOI: 10.1152/jn.00236.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Direct current (DC) potently increases the excitability of myelinated afferent fibers in the dorsal columns, both during DC polarization of these fibers and during a considerable (>1 h) postpolarization period. The aim of the present study was to investigate whether similarly long-lasting changes in the excitability of myelinated nerve fibers in the dorsal columns may be evoked by field potentials following stimulation of peripheral afferents and by subthreshold epidurally applied current pulses. The experiments were performed in deeply anesthetized rats. The effects were monitored by changes in nerve volleys evoked in epidurally stimulated hindlimb afferents and in the synaptic actions of these afferents. Both were found to be facilitated during as well as following stimulation of a skin nerve and during as well as following epidurally applied current pulses of 5- to 10-ms duration. The facilitation occurring ≤2 min after skin nerve stimulation could be linked to both primary afferent depolarization and large dorsal horn field potentials, whereas the subsequent changes (up to 1 h) were attributable to effects of the field potentials. The findings lead to the conclusion that the modulation of spinal activity evoked by DC does not require long-lasting polarization and that relatively short current pulses and intrinsic field potentials may contribute to plasticity in spinal activity. These results suggest the possibility of enhancing the effects of epidural stimulation in human subjects by combining it with polarizing current pulses and peripheral afferent stimulation and not only with continuous DC. NEW & NOTEWORTHY The aim of this study was to define conditions under which a long-term increase is evoked in the excitability of myelinated nerve fibers. The results demonstrate that a potent and long-lasting increase in the excitability of afferent fibers traversing the dorsal columns may be induced by synaptically evoked intrinsic field as well as by epidurally applied intermittent current pulses. They thus provide a new means for the facilitation of the effects of epidural stimulation.
Collapse
Affiliation(s)
- M Bączyk
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden.,Department of Neurobiology, Poznań University of Physical Education , Poznań , Poland
| | - E Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
11
|
Kaczmarek D, Jankowska E. DC-Evoked Modulation of Excitability of Myelinated Nerve Fibers and Their Terminal Branches; Differences in Sustained Effects of DC. Neuroscience 2018; 374:236-249. [DOI: 10.1016/j.neuroscience.2018.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/20/2022]
|
12
|
Transspinal Direct Current Stimulation Produces Persistent Plasticity in Human Motor Pathways. Sci Rep 2018; 8:717. [PMID: 29335430 PMCID: PMC5768745 DOI: 10.1038/s41598-017-18872-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022] Open
Abstract
The spinal cord is an integration center for descending, ascending, and segmental neural signals. Noninvasive transspinal stimulation may thus constitute an effective method for concomitant modulation of local and distal neural circuits. In this study, we established changes in cortical excitability and input/output function of corticospinal and spinal neural circuits before, at 0–15 and at 30–45 minutes after cathodal, anodal, and sham transspinal direct current stimulation (tsDCS) to the thoracic region in healthy individuals. We found that intracortical inhibition was different among stimulation polarities, however remained unchanged over time. Intracortical facilitation increased after cathodal and anodal tsDCS delivered with subjects seated, and decreased after cathodal tsDCS delivered with subjects lying supine. Both cathodal and anodal tsDCS increased corticospinal excitability, yet facilitation was larger and persisted for 30 minutes post stimulation only when cathodal tsDCS was delivered with subjects lying supine. Spinal input/output reflex function was decreased by cathodal and not anodal tsDCS. These changes may be attributed to altered spontaneous neural activity and membrane potentials of corticomotoneuronal cells by tsDCS involving similar mechanisms to those mediating motor learning. Our findings indicate that thoracic tsDCS has the ability to concomitantly alter cortical, corticospinal, and spinal motor output in humans.
Collapse
|
13
|
Bolzoni F, Esposti R, Bruttini C, Zenoni G, Jankowska E, Cavallari P. Direct current stimulation modulates the excitability of the sensory and motor fibres in the human posterior tibial nerve, with a long-lasting effect on the H-reflex. Eur J Neurosci 2017; 46:2499-2506. [PMID: 28892581 DOI: 10.1111/ejn.13696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
Abstract
Several studies demonstrated that transcutaneous direct current stimulation (DCS) may modulate central nervous system excitability. However, much less is known about how DC affects peripheral nerve fibres. We investigated the action of DCS on motor and sensory fibres of the human posterior tibial nerve, with supplementary analysis in acute experiments on rats. In forty human subjects, electric pulses at the popliteal fossa were used to elicit either M-waves or H-reflexes in the Soleus, before (15 min), during (10 min) and after (30 min) DCS. Cathodal or anodal current (2 mA) was applied to the same nerve. Cathodal DCS significantly increased the H-reflex amplitude; the post-polarization effect lasted up to ~ 25 min after the termination of DCS. Anodal DCS instead significantly decreased the reflex amplitude for up to ~ 5 min after DCS end. DCS effects on M-wave showed the same polarity dependence but with considerably shorter after-effects, which never exceeded 5 min. DCS changed the excitability of both motor and sensory fibres. These effects and especially the long-lasting modulation of the H-reflex suggest a possible rehabilitative application of DCS that could be applied either to compensate an altered peripheral excitability or to modulate the afferent transmission to spinal and supraspinal structures. In animal experiments, DCS was applied, under anaesthesia, to either the exposed peroneus nerve or its Dorsal Root, and its effects closely resembled those found in human subjects. They validate therefore the use of the animal models for future investigations on the DCS mechanisms.
Collapse
Affiliation(s)
- Francesco Bolzoni
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy.,Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roberto Esposti
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy
| | - Carlo Bruttini
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy
| | - Giuseppe Zenoni
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy
| | - Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Paolo Cavallari
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy
| |
Collapse
|
14
|
Jankowska E. Spinal control of motor outputs by intrinsic and externally induced electric field potentials. J Neurophysiol 2017; 118:1221-1234. [PMID: 28539396 DOI: 10.1152/jn.00169.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
Despite numerous studies on spinal neuronal systems, several issues regarding their role in motor behavior remain unresolved. One of these issues is how electric fields associated with the activity of spinal neurons influence the operation of spinal neuronal networks and how effects of these field potentials are combined with other means of modulating neuronal activity. Another closely related issue is how external electric field potentials affect spinal neurons and how they can be used for therapeutic purposes such as pain relief or recovery of motor functions by transspinal direct current stimulation. Nevertheless, progress in our understanding of the spinal effects of electric fields and their mechanisms has been made over the last years, and the aim of the present review is to summarize the recent findings in this field.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
15
|
Jankowska E, Kaczmarek D, Bolzoni F, Hammar I. Long-lasting increase in axonal excitability after epidurally applied DC. J Neurophysiol 2017; 118:1210-1220. [PMID: 28515284 DOI: 10.1152/jn.00148.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/25/2022] Open
Abstract
Effects of direct current (DC) on nerve fibers have primarily been investigated during or just after DC application. However, locally applied cathodal DC was recently demonstrated to increase the excitability of intraspinal preterminal axonal branches for >1 h. The aim of this study was therefore to investigate whether DC evokes a similarly long-lasting increase in the excitability of myelinated axons within the dorsal columns. The excitability of dorsal column fibers stimulated epidurally was monitored by recording compound action potentials in peripheral nerves in acute experiments in deeply anesthetized rats. The results show that 1) cathodal polarization (0.8-1.0 µA) results in a severalfold increase in the number of epidurally activated fibers and 2) the increase in the excitability appears within seconds, 3) lasts for >1 h, and 4) is activity independent, as it does not require fiber stimulation during the polarization. These features demonstrate an unexplored form of plasticity of myelinated fibers and indicate the conditions under which it develops. They also suggest that therapeutic effects of epidural stimulation may be significantly enhanced if it is combined with DC polarization. In particular, by using DC to increase the number of fibers activated by low-intensity epidural stimuli, the low clinical tolerance to higher stimulus intensities might be overcome. The activity independence of long-lasting DC effects would also allow the use of only brief periods of DC polarization preceding epidural stimulation to increase the effect.NEW & NOTEWORTHY The study indicates a new form of plasticity of myelinated fibers. The differences in time course of DC-evoked increases in the excitability of myelinated nerve fibers in the dorsal columns and in preterminal axonal branches suggest that distinct mechanisms are involved in them. The results show that combining epidural stimulation and transspinal DC polarization may dramatically improve their outcome and result in more effective pain control and the return of impaired motor functions.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden;
| | - Dominik Kaczmarek
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurobiology and Department of Biochemistry, Poznań University of Physical Education, Poznań, Poland; and
| | - Francesco Bolzoni
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Human Physiology Section, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Ingela Hammar
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Rahman A, Lafon B, Parra LC, Bikson M. Direct current stimulation boosts synaptic gain and cooperativity in vitro. J Physiol 2017; 595:3535-3547. [PMID: 28436038 DOI: 10.1113/jp273005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Direct current stimulation (DCS) polarity specifically modulates synaptic efficacy during a continuous train of presynaptic inputs, despite synaptic depression. DCS polarizes afferent axons and postsynaptic neurons, boosting cooperativity between synaptic inputs. Polarization of afferent neurons in upstream brain regions may modulate activity in the target brain region during transcranial DCS (tDCS). A statistical theory of coincident activity predicts that the diffuse and weak profile of current flow can be advantageous in enhancing connectivity between co-active brain regions. ABSTRACT Transcranial direct current stimulation (tDCS) produces sustained and diffuse current flow in the brain with effects that are state dependent and outlast stimulation. A mechanistic explanation for tDCS should capture these spatiotemporal features. It remains unclear how sustained DCS affects ongoing synaptic dynamics and how modulation of afferent inputs by diffuse stimulation changes synaptic activity at the target brain region. We tested the effect of acute DCS (10-20 V m-1 for 3-5 s) on synaptic dynamics with constant rate (5-40 Hz) and Poisson-distributed (4 Hz mean) trains of presynaptic inputs. Across tested frequencies, sustained synaptic activity was modulated by DCS with polarity-specific effects. Synaptic depression attenuates the sensitivity to DCS from 1.1% per V m-1 to 0.55%. DCS applied during synaptic activity facilitates cumulative neuromodulation, potentially reversing endogenous synaptic depression. We establish these effects are mediated by both postsynaptic membrane polarization and afferent axon fibre polarization, which boosts cooperativity between synaptic inputs. This potentially extends the locus of neuromodulation from the nominal target to afferent brain regions. Based on these results we hypothesized the polarization of afferent neurons in upstream brain regions may modulate activity in the target brain region during tDCS. A multiscale model of transcranial electrical stimulation including a finite element model of brain current flow, numerical simulations of neuronal activity, and a statistical theory of coincident activity predicts that the diffuse and weak profile of current flow can be advantageous. Thus, we propose that specifically because tDCS is diffuse, weak and sustained it can boost connectivity between co-active brain regions.
Collapse
Affiliation(s)
- Asif Rahman
- Department of Biomedical Engineering, The City College of The City University of New York, Steinman Hall, 160 Convent Ave, New York, NY, 10031, USA
| | - Belen Lafon
- Department of Biomedical Engineering, The City College of The City University of New York, Steinman Hall, 160 Convent Ave, New York, NY, 10031, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of The City University of New York, Steinman Hall, 160 Convent Ave, New York, NY, 10031, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of The City University of New York, Steinman Hall, 160 Convent Ave, New York, NY, 10031, USA
| |
Collapse
|
17
|
da Silva FTG, Browne RAV, Pinto CB, Saleh Velez FG, do Egito EST, do Rêgo JTP, da Silva MR, Dantas PMS, Fregni F. Transcranial direct current stimulation in individuals with spinal cord injury: Assessment of autonomic nervous system activity. Restor Neurol Neurosci 2017; 35:159-169. [PMID: 28282844 DOI: 10.3233/rnn-160685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND We hypothesized in this study that transcranial direct current stimulation (tDCS) of primary motor cortex could exert top-down modulation over subcortical systems associated with autonomic control and thus be useful to revert some of the dysfunctional changes found in the autonomic nervous system (ANS) of subjects with spinal cord injuries (SCI). OBJECTIVE To explore the acute effect of tDCS on ANS indexed by Heart Rate Variability (HRV) in individuals with SCI and analyze whether this effect depends on the gender, degree, level and time of injury. METHODS In this randomized, placebo-controlled, crossover, double-blinded study, 18 adults with SCI (32.9±7.9 years old) were included; the intervention consisted of a single 12-minute session of active tDCS (anodal, 2 mA) and a control session of sham tDCS applied over Cz (bihemispheric motor cortex). HRV was calculated using spectral analysis. Low-frequency (LF), high-frequency (HF), and LF/HF ratio variables were evaluated before, during, and post tDCS. RESULTS A two-way repeated measures ANOVA showed that after active (anodal) stimulation, LF/HF ratio was significantly increased (P = 0.013). There was a trend for an interaction between time and stimulation for both LF and HF (P = 0.052). Paired exploratory t-tests reported effects on the difference of time [post-pre] between stimulation conditions for LF (P = 0.052), HF (P = 0.052) and LF/HF (P = 0.003). CONCLUSION Anodal tDCS of the motor cortex modulated ANS activity in individuals with SCI independent of gender, type and time of lesion. These changes were in the direction of normalization of ANS parameters, thus confirming our initial hypothesis that an enhancement of cortical excitability by tDCS could at least partially restore some of the dysfunctional activity in the ANS system of subjects with SCI.
Collapse
Affiliation(s)
- Fabiana Tenório Gomes da Silva
- Laboratory of Neuromodulation, Center of Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Psychology institute, Department of Neurosciences and behavior, University of São Paulo (USP), São Paulo, Brazil.,Department of Physical Education, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Rodrigo Alberto Vieira Browne
- Department of Physical Education, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Camila Bonin Pinto
- Laboratory of Neuromodulation, Center of Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Faddi Ghassan Saleh Velez
- Laboratory of Neuromodulation, Center of Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Eryvaldo Sócrates Tabosa do Egito
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Jeferson Tafarel Pereira do Rêgo
- Department of Physical Education, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Marília Rodrigues da Silva
- Department of Physical Education, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Paulo Moreira Silva Dantas
- Department of Physical Education, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Center of Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Kaczmarek D, Ristikankare J, Jankowska E. Does trans-spinal and local DC polarization affect presynaptic inhibition and post-activation depression? J Physiol 2017; 595:1743-1761. [PMID: 27891626 DOI: 10.1113/jp272902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/15/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Trans-spinal polarization was recently introduced as a means to improve deficient spinal functions. However, only a few attempts have been made to examine the mechanisms underlying DC actions. We have now examined the effects of DC on two spinal modulatory systems, presynaptic inhibition and post-activation depression, considering whether they might weaken exaggerated spinal reflexes and enhance excessively weakened ones. Direct current effects were evoked by using local intraspinal DC application (0.3-0.4 μA) in deeply anaesthetized rats and were compared with the effects of trans-spinal polarization (0.8-1.0 mA). Effects of local intraspinal DC were found to be polarity dependent, as locally applied cathodal polarization enhanced presynaptic inhibition and post-activation depression, whereas anodal polarization weakened them. In contrast, both cathodal and anodal trans-spinal polarization facilitated them. The results suggest some common DC-sensitive mechanisms of presynaptic inhibition and post-activation depression, because both were facilitated or depressed by DC in parallel. ABSTRACT Direct current (DC) polarization has been demonstrated to alleviate the effects of various deficits in the operation of the central nervous system. However, the effects of trans-spinal DC stimulation (tsDCS) have been investigated less extensively than the effects of transcranial DC stimulation, and their cellular mechanisms have not been elucidated. The main objectives of this study were, therefore, to extend our previous analysis of DC effects on the excitability of primary afferents and synaptic transmission by examining the effects of DC on two spinal modulatory feedback systems, presynaptic inhibition and post-activation depression, in an anaesthetized rat preparation. Other objectives were to compare the effects of locally and trans-spinally applied DC (locDC and tsDCS). Local polarization at the sites of terminal branching of afferent fibres was found to induce polarity-dependent actions on presynaptic inhibition and post-activation depression, as cathodal locDC enhanced them and anodal locDC depressed them. In contrast, tsDCS modulated presynaptic inhibition and post-activation depression in a polarity-independent fashion because both cathodal and anodal tsDCS facilitated them. The results show that the local presynaptic actions of DC might counteract both excessively strong and excessively weak monosynaptic actions of group Ia and cutaneous afferents. However, they indicate that trans-spinally applied DC might counteract the exaggerated spinal reflexes but have an adverse effect on pathologically weakened spinal activity by additional presynaptic weakening. The results are also relevant for the analysis of the basic properties of presynaptic inhibition and post-activation depression because they indicate that some common DC-sensitive mechanisms contribute to them.
Collapse
Affiliation(s)
- D Kaczmarek
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.,Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland.,Department of Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | - J Ristikankare
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - E Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
19
|
Song W, Martin JH. Spinal cord direct current stimulation differentially modulates neuronal activity in the dorsal and ventral spinal cord. J Neurophysiol 2016; 117:1143-1155. [PMID: 28031400 DOI: 10.1152/jn.00584.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/09/2016] [Accepted: 12/24/2016] [Indexed: 11/22/2022] Open
Abstract
Spinal cord direct current stimulation (sDCS) has the potential for promoting motor function after injury through its modulatory actions on sensory processing, reflex functions, the motor cortex (M1) motor map, and motor output. Here we addressed systems-level mechanisms underlying sDCS neuromodulation of spinal circuits activated by M1 and peripheral forelimb electrical stimulation in anesthetized healthy rats. We determined the effects of cathodal and anodal sDCS (c- and a-sDCS) on local field potentials (LFP) and single-unit activity recorded at 32 sites simultaneously within the sixth cervical segment using a silicon multielectrode array. M1 stimulation produced distinctive dorsomedial and ventral LFP responses that showed polarity-dependent sDCS modulation. c-sDCS enhanced and a-sDCS depressed significantly ventral M1 responses; neither modulated dorsal responses significantly. Using evoked changes in β- and γ-oscillations to assay network function, c-sDCS enhanced and a-sDCS reduced oscillation power ventrally. c-sDCS increased and a-sDCS decreased background firing and firing synchrony of recorded pairs of single units. Peripheral stimulation produced a region-dependent response that showed polarity-dependent sDCS modulation. The dorsomedial LFP was unaffected by c-sDCS and weakly suppressed with a-sDCS. Peripheral-evoked unit responses showed limited polarity dependence. Our findings stress that ventral motor network behavior is enhanced by the neuromodulatory actions of c-sDCS. The combined actions of c-sDCS on M1-evoked neural responses and network behavior in the cervical spinal cord help explain the reported enhanced motor effects of this neuromodulation approach and inform the mechanisms of sDCS for promoting motor rehabilitation after spinal cord or brain injury.NEW & NOTEWORTHY Spinal cord direct current stimulation (sDCS) modulates spinal functions and shows potential for neural rehabilitation after motor systems injury. Using a multichannel electrode array, we found that cathodal DCS enhanced, and anodal depressed, M1-evoked local field potentials, network oscillations, neuronal activity, and neuronal synchrony, especially in the ventral horn. With this new understanding, it is hoped that sDCS can be developed into a tunable spinal neuromodulatory tool for promoting function after brain or spinal injury.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine, New York, New York; and
| | - John H Martin
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine, New York, New York; and .,City University of New York Graduate Center, New York, New York
| |
Collapse
|