1
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
2
|
Ribarič S. The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. Int J Mol Sci 2024; 25:4358. [PMID: 38673943 PMCID: PMC11050090 DOI: 10.3390/ijms25084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are chronic disorders that have a significant health impact on a global scale. Epidemiological, preclinical, and clinical research underpins the assumption that insulin resistance and chronic inflammation contribute to the overlapping aetiologies of T2D and PD. This narrative review summarises the recent evidence on the contribution of T2D to the initiation and progression of PD brain pathology. It also briefly discusses the rationale and potential of alternative pharmacological interventions for PD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
The promise of the TGF-β superfamily as a therapeutic target for Parkinson's disease. Neurobiol Dis 2022; 171:105805. [PMID: 35764291 DOI: 10.1016/j.nbd.2022.105805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
A large body of evidence underscore the regulatory role of TGF-β superfamily in the central nervous system. Components of the TGF-β superfamily modulate key events during embryonic brain development and adult brain tissue injury repair. With respect to Parkinson's disease (PD), TGF-ß signaling pathways are implicated in the differentiation, maintenance and synaptic function of the dopaminergic neurons, as well as in processes related to the activation state of astrocytes and microglia. In vitro and in vivo studies using toxin models, have interrogated on the dopaminotrophic and protective role of the TGF-β superfamily members. The evolution of genetic and animal models of PD that more closely recapitulate the disease condition has made possible the dissection of intracellular pathways in response to TGF-ß treatment. Although the first clinical trials using GDNF did not meet their primary endpoints, substantial work has been carried out to reappraise the TGF-β superfamily's clinical benefit.
Collapse
|
4
|
Early Life Stress Alters Expression of Glucocorticoid Stress Response Genes and Trophic Factor Transcripts in the Rodent Basal Ganglia. Int J Mol Sci 2022; 23:ijms23105333. [PMID: 35628144 PMCID: PMC9141219 DOI: 10.3390/ijms23105333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 01/06/2023] Open
Abstract
Early life stress shapes the developing brain and increases risk for psychotic disorders. Yet, it is not fully understood how early life stress impacts brain regions in dopaminergic pathways whose dysfunction can contribute to psychosis. Therefore, we investigated gene expression following early life stress in adult brain regions containing dopamine neuron cell bodies (substantia nigra, ventral tegmental area (VTA)) and terminals (dorsal/ventral striatum). Sprague-Dawley rats (14F, 10M) were separated from their mothers from postnatal days (PND) 2-14 for 3 h/day to induce stress, while control rats (12F, 10M) were separated for 15 min/day over the same period. In adulthood (PND98), brain regions were dissected, RNA was isolated and five glucocorticoid signalling-related and six brain-derived neurotrophic factor (Bdnf) mRNAs were assayed by qPCR in four brain regions. In the VTA, levels of glucocorticoid signalling-related transcripts differed in maternally separated rodents compared to controls, with the Fkbp5 transcript significantly lower and Ptges3 transcript significantly higher in stressed offspring. In the VTA and substantia nigra, maternally separated rodents had significantly higher Bdnf IIA and III mRNA levels than controls. By contrast, in the ventral striatum, maternally separated rodents had significantly lower expression of Bdnf I, IIA, IIC, IV and VI transcripts. Sex differences in Nr3c1, Bag1 and Fkbp5 expression in the VTA and substantia nigra were also detected. Our results suggest that early life stress has long-lasting impacts on brain regions involved in dopamine neurotransmission, changing the trophic environment and potentially altering responsiveness to subsequent stressful events in a sex-specific pattern.
Collapse
|
5
|
Saji Parel N, Krishna PV, Gupta A, Uthayaseelan K, Uthayaseelan K, Kadari M, Subhan M, Kasire SP. Depression and Vitamin D: A Peculiar Relationship. Cureus 2022; 14:e24363. [PMID: 35637805 PMCID: PMC9132221 DOI: 10.7759/cureus.24363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Depression is a psychiatric disorder characterized by various symptoms that can impact one's quality of life. Vitamin D, a fat-soluble vitamin, is well-known for its role in bone health, and research on its effects on mental health has only recently emerged. Vitamin D deficiency is widespread worldwide, and it has been linked to an increased risk of depression. In this article, we have discussed different hypotheses that explain the role of vitamin D in gene expression and its effects on neurotransmitters and different brain functions. We have reviewed literature that shows us that Vitamin D deficiency is a risk factor for depression and explored studies that show us the effects of using or supplementing Vitamin D in preventing depression among various populations.
Collapse
|
6
|
Ni A, Ernst C. Evidence That Substantia Nigra Pars Compacta Dopaminergic Neurons Are Selectively Vulnerable to Oxidative Stress Because They Are Highly Metabolically Active. Front Cell Neurosci 2022; 16:826193. [PMID: 35308118 PMCID: PMC8931026 DOI: 10.3389/fncel.2022.826193] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 12/21/2022] Open
Abstract
There are 400–500 thousand dopaminergic cells within each side of the human substantia nigra pars compacta (SNpc) making them a minuscule portion of total brain mass. These tiny clusters of cells have an outsized impact on motor output and behavior as seen in disorders such as Parkinson’s disease (PD). SNpc dopaminergic neurons are more vulnerable to oxidative stress compared to other brain cell types, but the reasons for this are not precisely known. Here we provide evidence to support the hypothesis that this selective vulnerability is because SNpc neurons sustain high metabolic rates compared to other neurons. A higher baseline requirement for ATP production may lead to a selective vulnerability to impairments in oxidative phosphorylation (OXPHOS) or genetic insults that impair Complex I of the electron transport chain. We suggest that the energy demands of the unique morphological and electrophysiological properties of SNpc neurons may be one reason these cells produce more ATP than other cells. We further provide evidence to support the hypothesis that transcription factors (TFs) required to drive induction, differentiation, and maintenance of midbrain dopaminergic neural progenitor cells which give rise to terminally differentiated SNpc neurons are uniquely involved in both developmental patterning and metabolism, a dual function unlike other TFs that program neurons in other brain regions. The use of these TFs during induction and differentiation may program ventral midbrain progenitor cells metabolically to higher ATP levels, allowing for the development of those specialized cell processes seen in terminally differentiated cells. This paper provides a cellular and developmental framework for understanding the selective vulnerability of SNpc dopaminergic cells to oxidative stress.
Collapse
|
7
|
Goulding SR, Anantha J, Collins LM, Sullivan AM, O'Keeffe GW. Growth differentiation factor 5: a neurotrophic factor with neuroprotective potential in Parkinson's disease. Neural Regen Res 2022; 17:38-44. [PMID: 34100424 PMCID: PMC8451580 DOI: 10.4103/1673-5374.314290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2020] [Revised: 01/08/2021] [Accepted: 01/24/2021] [Indexed: 11/04/2022] Open
Abstract
Parkinson's disease is the most common movement disorder worldwide, affecting over 6 million people. It is an age-related disease, occurring in 1% of people over the age of 60, and 3% of the population over 80 years. The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra, and their axons, which innervate the striatum, resulting in the characteristic motor and non-motor symptoms of Parkinson's disease. This is paralleled by the intracellular accumulation of α-synuclein in several regions of the nervous system. Current therapies are solely symptomatic and do not stop or slow disease progression. One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum, to protect the remaining dopaminergic neurons of the nigrostriatal pathway. However, clinical trials of two well-established neurotrophic factors, glial cell line-derived neurotrophic factor and neurturin, have failed to meet their primary end-points. This failure is thought to be at least partly due to the downregulation by α-synuclein of Ret, the common co-receptor of glial cell line-derived neurorophic factor and neurturin. Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors, that signals through the Ret-independent canonical Smad signaling pathway. Here, we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson's disease. We discuss new work on growth/differentiation factor 5's mechanisms of action, as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in the α-synuclein rat model of Parkinson's disease. These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Susan R. Goulding
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Jayanth Anantha
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Louise M. Collins
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Aideen M. Sullivan
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Gerard W. O'Keeffe
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Zeng X, Qin H. Stem Cell Transplantation for Parkinson’s Disease: Current Challenges and Perspectives. Aging Dis 2022; 13:1652-1663. [DOI: 10.14336/ad.2022.0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2022] [Accepted: 03/12/2022] [Indexed: 11/19/2022] Open
|
9
|
Liu Y, Deng J, Liu Y, Li W, Nie X. FGF, Mechanism of Action, Role in Parkinson's Disease, and Therapeutics. Front Pharmacol 2021; 12:675725. [PMID: 34234672 PMCID: PMC8255968 DOI: 10.3389/fphar.2021.675725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with severe disability and adverse effects on life quality. In PD, motor dysfunction can occur, such as quiescence, muscle stiffness, and postural instability. PD is also associated with autonomic nervous dysfunction, sleep disorders, psychiatric symptoms, and other non-motor symptoms. Degeneration of dopaminergic neurons in the substantia nigra compact (SNPC), Lewy body, and neuroinflammation are the main pathological features of PD. The death or dysfunction of dopaminergic neurons in the dense part of the substantia nigra leads to dopamine deficiency in the basal ganglia and motor dysfunction. The formation of the Lewy body is associated with the misfolding of α-synuclein, which becomes insoluble and abnormally aggregated. Astrocytes and microglia mainly cause neuroinflammation, and the activation of a variety of pro-inflammatory transcription factors and regulatory proteins leads to the degeneration of dopaminergic neurons. At present, PD is mainly treated with drugs that increase dopamine concentration or directly stimulate dopamine receptors. Fibroblast growth factor (FGF) is a family of cellular signaling proteins strongly associated with neurodegenerative diseases such as PD. FGF and its receptor (FGFR) play an essential role in the development and maintenance of the nervous system as well as in neuroinflammation and have been shown to improve the survival rate of dopaminergic neurons. This paper summarized the mechanism of FGF and its receptors in the pathological process of PD and related signaling pathways, involving the development and protection of dopaminergic neurons in SNPC, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. It provides a reference for developing drugs to slow down or prevent the potential of PD.
Collapse
Affiliation(s)
- Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Lab of the Basic Pharmacology of the Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Jaumotte JD, Saarma M, Zigmond MJ. Protection of dopamine neurons by CDNF and neurturin variant N4 against MPP+ in dissociated cultures from rat mesencephalon. PLoS One 2021; 16:e0245663. [PMID: 33534843 PMCID: PMC7857574 DOI: 10.1371/journal.pone.0245663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2020] [Accepted: 01/05/2021] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease is associated with the loss of dopamine (DA) neurons in ventral mesencephalon. We have previously reported that no single neurotrophic factor we tested protected DA neurons from the dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP+) in dissociated cultures isolated from the P0 rat substantia nigra, but that a combination of five neurotrophic factors was protective. We now report that cerebral DA neurotrophic factor (CDNF) and a variant of neurturin (NRTN), N4, were also not protective when provided alone but were protective when added together. In cultures isolated from the substantia nigra, MPP+ (10 μM) decreased tyrosine hydroxylase-positive cells to 41.7 ± 5.4% of vehicle control. Although treatment of cultures with 100 ng/ml of either CDNF or N4 individually before and after toxin exposure did not significantly increase survival in MPP+-treated cultures, when the two trophic factors were added together at 100 ng/ml each, survival of cells was increased 28.2 ± 6.1% above the effect of MPP+ alone. In cultures isolated from the ventral tegmental area, another DA rich area, a higher dose of MPP+ (1 mM) was required to produce an EC50 in TH-positive cells but, as in the substantia nigra, only the combination of CDNF and N4 (100 ng/ml each) was successful at increasing the survival of these cells compared to MPP+ alone (by 22.5 ± 3.5%). These data support previous findings that CDNF and N4 may be of therapeutic value for treatment of PD, but suggest that they may need to be administered together.
Collapse
Affiliation(s)
- Juliann D. Jaumotte
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Michael J. Zigmond
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
11
|
Balance alterations and reduction of pedunculopontine cholinergic neurons in early stages of parkinsonism in middle-aged rats. Exp Gerontol 2020; 145:111198. [PMID: 33310153 DOI: 10.1016/j.exger.2020.111198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
The purpose of the present study was to investigate balance alterations and the possible role of the cholinergic neurons in the pedunculopontine nucleus (PPN) in the early stages of a progressive animal model of Parkinson's disease (PD). Twenty-eight middle-aged (8-9 months) male Wistar rats received 4 or 10 subcutaneous vehicle (control, CTL) or reserpine (RES) injections (0.1 mg/kg). The animals were submitted to different behavioral tests. Forty-eight hours after the 4th injection, half of the animals of each group (n = 7) were perfused and submitted to immunohistochemical analysis for tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT). The remaining animals (n = 7 per group) were killed 48 h after the 10th injection. RES group presented motor deficits in the catalepsy and open field tests starting at days 12 and 20 of treatment, respectively (only for the animals that received 10 injections). On the other hand, dynamic and static balance changes were observed at earlier stages of RES treatment, starting at days 6 and 4, respectively. At this point of the treatment, there was no decrease in the number of TH immunoreactivity neurons in the substantia nigra pars compacta (SNpc), ventral tegmental area (VTA) and dorsal striatum (DS). However, a decrease was observed in SNpc and dorsal striatum of animals that received 10 injections. In contrast, there was a decrease in the number of ChAT immunoreactive cells in PPN concomitantly to the balance alterations at the early stages of treatment (after 4 RES injections). Thus, by mimicking the progressiveness of PD, the reserpine model made it possible to identify static and dynamic balance impairments prior to the motor alterations in the catalepsy and open field tests. In addition, changes in balance were accompanied by a reduction in the number of ChAT immunoreactive cells in NPP in the early stages of treatment.
Collapse
|
12
|
Virachit S, Mathews KJ, Cottam V, Werry E, Galli E, Rappou E, Lindholm P, Saarma M, Halliday GM, Shannon Weickert C, Double KL. Levels of glial cell line-derived neurotrophic factor are decreased, but fibroblast growth factor 2 and cerebral dopamine neurotrophic factor are increased in the hippocampus in Parkinson's disease. Brain Pathol 2019; 29:813-825. [PMID: 31033033 DOI: 10.1111/bpa.12730] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2018] [Accepted: 04/23/2019] [Indexed: 01/21/2023] Open
Abstract
Growth factors can facilitate hippocampus-based learning and memory and are potential targets for treatment of cognitive dysfunction via their neuroprotective and neurorestorative effects. Dementia is common in Parkinson's disease (PD), but treatment options are limited. We aimed to determine if levels of growth factors are altered in the hippocampus of patients with PD, and if such alterations are associated with PD pathology. Enzyme-linked immunosorbent assays were used to quantify seven growth factors in fresh frozen hippocampus from 10 PD and nine age-matched control brains. Western blotting and immunohistochemistry were used to explore cellular and inflammatory changes that may be associated with growth factor alterations. In the PD hippocampus, protein levels of glial cell line-derived neurotrophic factor were significantly decreased, despite no evidence of neuronal loss. In contrast, protein levels of fibroblast growth factor 2 and cerebral dopamine neurotrophic factor were significantly increased in PD compared to controls. Levels of the growth factors epidermal growth factor, heparin-binding epidermal growth factor, brain-derived neurotrophic factor and mesencephalic astrocyte-derived neurotrophic factor did not differ between groups. Our data demonstrate changes in specific growth factors in the hippocampus of the PD brain, which potentially represent targets for modification to help attenuate cognitive decline in PD. These data also suggest that multiple growth factors and direction of change needs to be considered when approaching growth factors as a potential treatment for cognitive decline.
Collapse
Affiliation(s)
- Sophie Virachit
- Neuroscience Research Australia, Randwick, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Kathryn J Mathews
- Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Veronica Cottam
- Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Eryn Werry
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Emilia Galli
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Elisabeth Rappou
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pӓivi Lindholm
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Glenda M Halliday
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Brain and Mind Centre, University of Sydney, Sydney, Australia.,Central Clinical School, University of Sydney, Sydney, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY
| | - Kay L Double
- Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Brain and Mind Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Dal Ben M, Bongiovanni R, Tuniz S, Fioriti E, Tiribelli C, Moretti R, Gazzin S. Earliest Mechanisms of Dopaminergic Neurons Sufferance in a Novel Slow Progressing Ex Vivo Model of Parkinson Disease in Rat Organotypic Cultures of Substantia Nigra. Int J Mol Sci 2019; 20:E2224. [PMID: 31064126 PMCID: PMC6539377 DOI: 10.3390/ijms20092224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
The current treatments of Parkinson disease (PD) are ineffective mainly due to the poor understanding of the early events causing the decline of dopaminergic neurons (DOPAn). To overcome this problem, slow progressively degenerating models of PD allowing the study of the pre-clinical phase are crucial. We recreated in a short ex vivo time scale (96 h) all the features of human PD (needing dozens of years) by challenging organotypic culture of rat substantia nigra with low doses of rotenone. Thus, taking advantage of the existent knowledge, the model was used to perform a time-dependent comparative study of the principal possible causative molecular mechanisms undergoing DOPAn demise. Alteration in the redox state and inflammation started at 3 h, preceding the reduction in DOPAn number (pre-diagnosis phase). The number of DOPAn declined to levels compatible with diagnosis only at 12 h. The decline was accompanied by a persistent inflammation and redox imbalance. Significant microglia activation, apoptosis, a reduction in dopamine vesicle transporters, and the ubiquitination of misfolded protein clearance pathways were late (96 h, consequential) events. The work suggests inflammation and redox imbalance as simultaneous early mechanisms undergoing DOPAn sufferance, to be targeted for a causative treatment aimed to stop/delay PD.
Collapse
Affiliation(s)
- Matteo Dal Ben
- Department of Medical, Surgical, and Health Sciences, University of Trieste, 34100 Trieste, Italy.
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | | | - Simone Tuniz
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Emanuela Fioriti
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34100 Trieste, Italy.
| | - Silvia Gazzin
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| |
Collapse
|
14
|
Kostuk EW, Cai J, Iacovitti L. Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson's disease models in culture. Glia 2019; 67:1542-1557. [PMID: 31025779 DOI: 10.1002/glia.23627] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2018] [Revised: 03/20/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is characterized by the selective degeneration of dopamine (DA) neurons of the substantia nigra pars compacta (SN), while the neighboring ventral tegmental area (VTA) is relatively spared. The mechanisms underlying this selectivity are not fully understood. Here, we demonstrate a vital role for subregional astrocytes in the protection of VTA DA neurons. We found that elimination of astrocytes in vitro exposes a novel vulnerability of presumably protected VTA DA neurons to the PD mimetic toxin MPP+ , as well as exacerbation of SN DA neuron vulnerability. Conversely, VTA astrocytes protected both VTA and SN DA neurons from MPP+ toxicity in a dose dependent manner, and this protection was mediated via a secreted molecule. RNAseq analysis of isolated VTA and SN astrocytes demonstrated a vast array of transcriptional differences between these two closely related populations demonstrating regional heterogeneity of midbrain astrocytes. We found that GDF15, a member of the TGFβ superfamily which is expressed 230-fold higher in VTA astrocytes than SN, recapitulates neuroprotection of both rat midbrain and iPSC-derived DA neurons, whereas its knockdown conversely diminished this effect. Neuroprotection was likely mediated through the GRFAL receptor expressed on DA neurons. Together; these results suggest that subregional differences in astrocytes underlie the selective degeneration or protection of DA neurons in PD.
Collapse
Affiliation(s)
- Eric Wildon Kostuk
- Department of Neuroscience, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania
| | - Jingli Cai
- Department of Neuroscience, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania
| | - Lorraine Iacovitti
- Department of Neuroscience, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania.,Department of Neurology, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania.,Department of Neurosurgery, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Combination of CDNF and Deep Brain Stimulation Decreases Neurological Deficits in Late-stage Model Parkinson's Disease. Neuroscience 2018; 374:250-263. [PMID: 29408408 DOI: 10.1016/j.neuroscience.2018.01.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2017] [Revised: 12/22/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Abstract
Several neurotrophic factors (NTF) are shown to be neuroprotective and neurorestorative in pre-clinical animal models for Parkinson's disease (PD), particularly in models where striatal dopamine neuron innervation partially exists. The results of clinical trials on late-stage patients have been modest. Subthalamic deep brain stimulation (STN DBS) is a proven treatment for a selected group of advanced PD patients. The cerebral dopamine neurotrophic factor (CDNF) is a promising therapeutic protein, but its effects in animal models of late-stage PD have remained under-researched. The interactions of NTF and STN DBS treatments have not been studied before. We found that a nigral CDNF protein alone had only a marginal effect on the behavioral deficits in a late-stage hemiparkinsonian rat model (6-OHDA MFB). However, CDNF improved the effect of acute STN DBS on front limb use asymmetry at 2 and 3 weeks after CDNF injection. STN lesion-modeling chronic stimulation-had an additive effect in reducing front limb use in the cylinder test and apomorphine-induced rotation. The combination of CDNF and acute STN DBS had a favorable effect on striatal tyrosine hydroxylase. This study presents a novel additive beneficial effect of NTF and STN DBS, which might be explained by the interaction of DBS-induced endogenous NTFs and exogenously injected CDNF. SNpc can be reached via similar trajectories used in clinical STN DBS, and this interaction is an important area for future studies.
Collapse
|
16
|
Rosich K, Hanna BF, Ibrahim RK, Hellenbrand DJ, Hanna A. The Effects of Glial Cell Line-Derived Neurotrophic Factor after Spinal Cord Injury. J Neurotrauma 2017; 34:3311-3325. [DOI: 10.1089/neu.2017.5175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Konstantin Rosich
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Bishoy F. Hanna
- Department of Neurological Surgery, Ross University School of Medicine, Dominica, West Indies
| | - Rami K. Ibrahim
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Daniel J. Hellenbrand
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Amgad Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
17
|
Effects of intracerebral neurotrophic factor application on motor symptoms in Parkinson's disease: A systematic review and meta-analysis. Parkinsonism Relat Disord 2017; 38:19-25. [DOI: 10.1016/j.parkreldis.2017.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/24/2016] [Revised: 01/23/2017] [Accepted: 02/08/2017] [Indexed: 11/18/2022]
|
18
|
Insights into the Mechanisms Involved in Protective Effects of VEGF-B in Dopaminergic Neurons. PARKINSONS DISEASE 2017; 2017:4263795. [PMID: 28473940 PMCID: PMC5394414 DOI: 10.1155/2017/4263795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/06/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor-B (VEGF-B), when initially discovered, was thought to be an angiogenic factor, due to its intimate sequence homology and receptor binding similarity to the prototype angiogenic factor, vascular endothelial growth factor-A (VEGF-A). Studies demonstrated that VEGF-B, unlike VEGF-A, did not play a significant role in angiogenesis or vascular permeability and has become an active area of interest because of its role as a survival factor in pathological processes in a multitude of systems, including the brain. By characterization of important downstream targets of VEGF-B that regulate different cellular processes in the nervous system and cardiovascular system, it may be possible to develop more effective clinical interventions in diseases such as Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and ischemic heart disease, which all share mitochondrial dysfunction as part of the disease. Here we summarize what is currently known about the mechanism of action of VEGF-B in pathological processes. We explore its potential as a homeostatic protective factor that improves mitochondrial function in the setting of cardiovascular and neurological disease, with a specific focus on dopaminergic neurons in Parkinson's disease.
Collapse
|
19
|
Valproic Acid Protects Primary Dopamine Neurons from MPP +-Induced Neurotoxicity: Involvement of GSK3 β Phosphorylation by Akt and ERK through the Mitochondrial Intrinsic Apoptotic Pathway. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8124501. [PMID: 28421199 PMCID: PMC5380829 DOI: 10.1155/2017/8124501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/24/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
Valproic acid (VPA), a drug widely used to treat manic disorder and epilepsy, has recently shown neuroprotective effects in several neurological diseases, particularly in Parkinson's disease (PD). The goal of the present study was to confirm VPA's dose-dependent neuroprotective propensities in the MPP+ model of PD in primary dopamine (DA) neurons and to investigate the underlying molecular mechanisms using specific mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase- (PI3K-) Akt signaling inhibitors. VPA reversed MPP+-induced mitochondrial apoptosis and counteracted MPP+-induced extracellular signal-regulated kinase (ERK) and Akt repression and inhibited glycogen synthase kinase 3β (GSK3β) activation through induction of GSK3β phosphorylation. Moreover, inhibitors of the PI3K and MAPK pathways abolished GSK3β phosphorylation and diminished the VPA-induced neuroprotective effect. These findings indicated that VPA's neuroprotective effect in the MPP+-model of PD is associated with GSK3β phosphorylation via Akt and ERK activation in the mitochondrial intrinsic apoptotic pathway. Thus, VPA may be a promising therapeutic candidate for clinical treatment of PD.
Collapse
|
20
|
Rapamycin upregulates glutamate transporter and IL-6 expression in astrocytes in a mouse model of Parkinson's disease. Cell Death Dis 2017; 8:e2611. [PMID: 28182002 PMCID: PMC5386462 DOI: 10.1038/cddis.2016.491] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2016] [Revised: 11/22/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
Rapamycin protects mice against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons, which is an established model for Parkinson's disease. We demonstrated that rapamycin preserves astrocytic expression of glutamate transporters and glutamate reuptake. The protective effect was also observed in astrocyte cultures, indicating that rapamycin acts directly on astrocytes. In the MPTP model, rapamycin caused reduced expression of the E3 ubiquitin ligase Nedd4-2 (neuronal precursor cell expressed developmentally downregulated 4-2) and reduced colocalization of glutamate transporters with ubiquitin. Rapamycin increased interleukin-6 (IL-6) expression, which was associated with reduced expression of inflammatory cytokines, indicating anti-inflammatory properties of IL-6 in the MPTP model. NF-κB was shown to be a key mediator for rapamycin, whereas Janus kinase 2, signal transducer and activator of transcription 3, phosphoinositide 3-kinase, and Akt partially mediated rapamycin effects in astrocytes. These results demonstrate for the first time in a Parkinson's disease animal model that the neuroprotective effects of rapamycin are associated with glial and anti-inflammatory effects.
Collapse
|