1
|
Tia B, Takemi M, Pozzo T. Theta oscillations in observers' temporal cortex index postural instability of point-light displays. Neuroscience 2024; 561:107-118. [PMID: 39427702 DOI: 10.1016/j.neuroscience.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
This study investigates whether postural equilibration follows the same principles of motor resonance as goal-oriented actions, namely, whether an individual activates the same neuronal substrates when experiencing postural perturbation as when observing another individual in this condition. To address this question, we examined electroencephalographic dynamics while subjects observed point-light displays featuring an unstable human display, a stable human display, and their respective scrambled counterparts lacking shape information and biological motion. We focused on theta band (4-7 Hz), which is a fundamental frequency for modulating brain activity during challenging balance tasks and reflects postural stability monitoring. Rather than mirroring activity, our findings suggest an inhibitory response to postural instability. Theta event-related synchronization in the left temporal cortex was dampened for the unstable display as compared to its scramble counterpart and to the stable display. This low theta response coincided with an increase in left temporal-prefrontal connectivity, compatible with top-down inhibitory mechanisms. By contrast, the stronger theta response to the stable display as compared to the unstable one could be due to the difficulty of recognizing low-motion biological stimuli, or alternatively, to a facilitation of stimulus processing and strengthening of the mirroring response. The response facilitation for stable posture, coupled with a diminished response to the unstable display, could contribute to a broader mechanism mitigating postural threats and ensuring stable balance. Future investigations should leverage these findings to explore how posture-related responses correlate with perceptual and motor expertise, and to more clearly define these mechanisms during dynamic social interactions.
Collapse
Affiliation(s)
- Banty Tia
- Institute of Neuroscience of la Timone (CNRS UMR 7289) and Aix-Marseille University, Marseille, France.
| | - Mitsuaki Takemi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan; Graduate School of Science and Technology, Keio University, Kanagawa, Japan; Japan Science and Technology Agency, PRESTO, Saitama, Japan
| | - Thierry Pozzo
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Université de Bourgogne, Dijon, France; IIT@Unife Center for Translational Neurophysiology, Istituto Italiano Di Tecnologia, Ferrara, Italy
| |
Collapse
|
2
|
Wang X, Talebi N, Zhou X, Hommel B, Beste C. Neurophysiological dynamics of metacontrol states: EEG insights into conflict regulation. Neuroimage 2024; 302:120915. [PMID: 39489408 DOI: 10.1016/j.neuroimage.2024.120915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Understanding the neural mechanisms underlying metacontrol and conflict regulation is crucial for insights into cognitive flexibility and persistence. This study employed electroencephalography (EEG), EEG-beamforming and directed connectivity analyses to explore how varying metacontrol states influence conflict regulation at a neurophysiological level. Metacontrol states were manipulated by altering the frequency of congruent and incongruent trials across experimental blocks in a modified flanker task, and both behavioral and electrophysiological measures were analyzed. Behavioral data confirmed the experimental manipulation's efficacy, showing an increase in persistence bias and a reduction in flexibility bias during increased conflict regulation. Electrophysiologically, theta band activity paralleled the behavioral data, suggesting that theta oscillations reflect the mismatch between expected metacontrol bias and actual task demands. Alpha and beta band dynamics differed across experimental blocks, though these changes did not directly mirror behavioral effects. Post-response alpha and beta activity were more pronounced in persistence-biased states, indicating a neural reset mechanism preparing for future cognitive demands. By using a novel artificial neural networks method, directed connectivity analyses revealed enhanced inter-regional communication during persistence states, suggesting stronger top-down control and sensorimotor integration. Overall, theta band activity was closely tied to metacontrol processes, while alpha and beta bands played a role in resetting the neural system for upcoming tasks. These findings provide a deeper understanding of the neural substrates involved in metacontrol and conflict monitoring, emphasizing the distinct roles of different frequency bands in these cognitive processes.
Collapse
Affiliation(s)
- Xi Wang
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China.
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China; German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany
| |
Collapse
|
3
|
Parmar N, Sirpal P, Sikora WA, Dewald JP, Refai HH, Yang Y. Beta-Band Cortico-Muscular Phase Coherence in Hemiparetic Stroke. Biomed Signal Process Control 2024; 97:106719. [PMID: 39493553 PMCID: PMC11526780 DOI: 10.1016/j.bspc.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Following a stroke, compensation for the loss of ipsilesional corticospinal and corticobulbar projections, results in increased reliance on contralesional motor pathways during paretic arm movement. Better understanding outcomes of post-stroke contralesional cortical adaptation outcomes may benefit more targeted post-stroke motor rehabilitation interventions. This proof-of-concept study involves eight healthy controls and ten post-stroke participants. Electroencephalographic (EEG) and deltoid electromyographic (EMG) data were collected during an upper-limb task. Phase coupling between beta-band motor cortex EEG and deltoid EMG was assessed using the Multi-Phase Locking Value (M-PLV) method. Different from classic cortico-muscular coherence, M-PLV allows for the calculation of dynamic phase coherence and delays, and is not affected by the non-stationary nature of EEG/EMG signals. Nerve conduction delay from the contralateral motor cortex to the deltoid muscle of the paretic arm was estimated. Our results show the ipsilateral (contralesional) motor cortex beta-band phase coherence behavior is altered in stroke participants, with significant differences in ipsilateral EEG-EMG coherence values, ipsilateral time course percentage above the significance threshold, and ipsilateral time course area above the significance threshold. M-PLV phase coherence analysis provides evidence for post-stroke contralesional motor adaptation, highlighting its increased role in the paretic shoulder abduction task. Nerve conduction delay between the motor cortices and deltoid muscle is significantly higher in stroke participants. Beta-band M-PLV phase coherence analysis shows greater phase-coherence distribution convergence between the ipsilateral (contralesional) and contralateral (ipsilesional) motor cortices in stroke participants, which is interpretable as evidence of maladaptive neural adaptation resulting from a greater reliance on the contralesional motor cortices.
Collapse
Affiliation(s)
- Nishaal Parmar
- University of Oklahoma, School of Electrical and Computer Engineering, Gallogly College of Engineering, Norman, Oklahoma, United States
| | - Parikshat Sirpal
- University of Oklahoma, School of Electrical and Computer Engineering, Gallogly College of Engineering, Norman, Oklahoma, United States
| | - William A Sikora
- University of Oklahoma, Stephenson School of Biomedical Engineering, Norman, Oklahoma, United States
| | - Julius P.A. Dewald
- Northwestern University, Department of Physical Therapy and Human Movement Sciences, Chicago, Illinois, United States
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Hazem H. Refai
- University of Oklahoma, School of Electrical and Computer Engineering, Gallogly College of Engineering, Norman, Oklahoma, United States
| | - Yuan Yang
- Northwestern University, Department of Physical Therapy and Human Movement Sciences, Chicago, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Bioengineering, Grainger College of Engineering, Urbana, Illinois, United States
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, Illinois, USA
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| |
Collapse
|
4
|
Talebi N, Prochnow A, Frings C, Münchau A, Mückschel M, Beste C. Neural mechanisms of adaptive behavior: Dissociating local cortical modulations and interregional communication patterns. iScience 2024; 27:110995. [PMID: 39635122 PMCID: PMC11615187 DOI: 10.1016/j.isci.2024.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/20/2024] [Accepted: 09/17/2024] [Indexed: 12/07/2024] Open
Abstract
Adaptive behavior is based on flexibly managing and integrating perceptual and motor processes, and the reconfiguration thereof. Such adaptive behavior is also relevant during inhibitory control. Although research has demonstrated local activity modulations in theta and alpha frequency bands during behavioral adaptation, the communication of brain regions is insufficiently studied. Examining directed connectivity between brain regions using a machine learning approach, a generally increased activity, but decreased connectivity within a temporo-occipital theta band network was revealed during the reconfiguration of perception-action associations during inhibitory control. Additionally, a fronto-occipital alpha-theta interplay yielded a decrease in directed connectivity during reconfiguration processes, which was associated with lower error rates in behavior. Thus, adaptive behavior relies on both local increases and decreases of activity depending on the frequency band, and concomitant decreases in communication between frontal and sensory cortices. The findings reframe common conceptualizations about how adaptive behavior is supported by neural processes.
Collapse
Affiliation(s)
- Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01309 Dresden, Germany
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01309 Dresden, Germany
| | | | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01309 Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01309 Dresden, Germany
| |
Collapse
|
5
|
Xiao B, Liu L, Chen L, Wang X, Zhang X, Liu X, Hou W, Wu X. Neuro-Muscular Responses Adaptation to Dynamic Changes in Grip Strength. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3189-3198. [PMID: 39167521 DOI: 10.1109/tnsre.2024.3447062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Precise control of strength is of significant importance in upper limb functional rehabilitation. Understanding the neuro-muscular response in strength regulation can help optimize the rehabilitation prescriptions and facilitate the relative training process for recovery control. This study aimed to investigate the inherent characteristics of neural-muscular activity during dynamic hand strength adjustment. Four dynamic grip force tracking modes were set by manipulating different magnitude and speed of force variations, and thirteen healthy young individuals took participation in the experiment. Electroencephalography were recorded in the contralateral sensorimotor cortex area, as well as the electromyography from the first dorsal interosseous muscle were collected synchronously. The metrics of the Event-related desynchronization, the electromyography stability index, and the force variation, were used to represent the corresponding cortical neural responses, muscle contraction activities, and the level of strength regulation, respectively; and further neuro-muscular coupling between the sensorimotor cortex and the first dorsal interosseous muscle was investigated by transfer entropy analysis. The results indicated a strong relationship that the increase of force regulation demand would result in a force variation increase as well as a stability reduction in muscle motor unit output. Meanwhile, the intensity of neural response increased in both the α and β frequency bands. As the force regulation demand increased, the strength of bidirectional transfer entropy showed a clear shift from β to the γ frequency band, which facilitate rapid integration of dynamic strength compensation to adapt to motor task changes.
Collapse
|
6
|
Peng J, Zikereya T, Shao Z, Shi K. The neuromechanical of Beta-band corticomuscular coupling within the human motor system. Front Neurosci 2024; 18:1441002. [PMID: 39211436 PMCID: PMC11358111 DOI: 10.3389/fnins.2024.1441002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Beta-band activity in the sensorimotor cortex is considered a potential biomarker for evaluating motor functions. The intricate connection between the brain and muscle (corticomuscular coherence), especially in beta band, was found to be modulated by multiple motor demands. This coherence also showed abnormality in motion-related disorders. However, although there has been a substantial accumulation of experimental evidence, the neural mechanisms underlie corticomuscular coupling in beta band are not yet fully clear, and some are still a matter of controversy. In this review, we summarized the findings on the impact of Beta-band corticomuscular coherence to multiple conditions (sports, exercise training, injury recovery, human functional restoration, neurodegenerative diseases, age-related changes, cognitive functions, pain and fatigue, and clinical applications), and pointed out several future directions for the scientific questions currently unsolved. In conclusion, an in-depth study of Beta-band corticomuscular coupling not only elucidates the neural mechanisms of motor control but also offers new insights and methodologies for the diagnosis and treatment of motor rehabilitation and related disorders. Understanding these mechanisms can lead to personalized neuromodulation strategies and real-time neurofeedback systems, optimizing interventions based on individual neurophysiological profiles. This personalized approach has the potential to significantly improve therapeutic outcomes and athletic performance by addressing the unique needs of each individual.
Collapse
Affiliation(s)
| | | | | | - Kaixuan Shi
- Physical Education Department, China University of Geosciences Beijing, Beijing, China
| |
Collapse
|
7
|
Elmers J, Yu S, Talebi N, Prochnow A, Beste C. Neurophysiological effective network connectivity supports a threshold-dependent management of dynamic working memory gating. iScience 2024; 27:109521. [PMID: 38591012 PMCID: PMC11000016 DOI: 10.1016/j.isci.2024.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
To facilitate goal-directed actions, effective management of working memory (WM) is crucial, involving a hypothesized WM "gating mechanism." We investigate the underlying neural basis through behavioral modeling and connectivity assessments between neuroanatomical regions linked to theta, alpha, and beta frequency bands. We found opposing, threshold-dependent mechanisms governing WM gate opening and closing. Directed beta band connectivity in the parieto-frontal and parahippocampal-occipital networks was crucial for threshold-dependent WM gating dynamics. Fronto-parahippocampal connectivity in the theta band was also notable for both gating processes, although weaker than that in the beta band. Distinct roles for theta, beta, and alpha bands emerge in maintaining information in WM and shielding against interference, whereby alpha band activity likely acts as a "gatekeeper" supporting processes reflected by beta and theta band activity. The study shows that the decision criterion for WM gate opening/closing relies on concerted interplay within neuroanatomical networks defined by beta and theta band activities.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
8
|
Guo Z, Lin JP, Simeone O, Mills KR, Cvetkovic Z, McClelland VM. Cross-frequency cortex-muscle interactions are abnormal in young people with dystonia. Brain Commun 2024; 6:fcae061. [PMID: 38487552 PMCID: PMC10939448 DOI: 10.1093/braincomms/fcae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Sensory processing and sensorimotor integration are abnormal in dystonia, including impaired modulation of beta-corticomuscular coherence. However, cortex-muscle interactions in either direction are rarely described, with reports limited predominantly to investigation of linear coupling, using corticomuscular coherence or Granger causality. Information-theoretic tools such as transfer entropy detect both linear and non-linear interactions between processes. This observational case-control study applies transfer entropy to determine intra- and cross-frequency cortex-muscle coupling in young people with dystonia/dystonic cerebral palsy. Fifteen children with dystonia/dystonic cerebral palsy and 13 controls, aged 12-18 years, performed a grasp task with their dominant hand. Mechanical perturbations were provided by an electromechanical tapper. Bipolar scalp EEG over contralateral sensorimotor cortex and surface EMG over first dorsal interosseous were recorded. Multi-scale wavelet transfer entropy was applied to decompose signals into functional frequency bands of oscillatory activity and to quantify intra- and cross-frequency coupling between brain and muscle. Statistical significance against the null hypothesis of zero transfer entropy was established, setting individual 95% confidence thresholds. The proportion of individuals in each group showing significant transfer entropy for each frequency combination/direction was compared using Fisher's exact test, correcting for multiple comparisons. Intra-frequency transfer entropy was detected in all participants bidirectionally in the beta (16-32 Hz) range and in most participants from EEG to EMG in the alpha (8-16 Hz) range. Cross-frequency transfer entropy across multiple frequency bands was largely similar between groups, but a specific coupling from low-frequency EMG to beta EEG was significantly reduced in dystonia [P = 0.0061 (corrected)]. The demonstration of bidirectional cortex-muscle communication in dystonia emphasizes the value of transfer entropy for exploring neural communications in neurological disorders. The novel finding of diminished coupling from low-frequency EMG to beta EEG in dystonia suggests impaired cortical feedback of proprioceptive information with a specific frequency signature that could be relevant to the origin of the excessive low-frequency drive to muscle.
Collapse
Affiliation(s)
- Zhenghao Guo
- Department of Engineering, King's College London, London WC2R 2LS, UK
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jean-Pierre Lin
- Children's Neuroscience, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust (GSTT), London SE1 7EH, UK
| | - Osvaldo Simeone
- Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Kerry R Mills
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RX, UK
| | - Zoran Cvetkovic
- Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Verity M McClelland
- Children's Neuroscience, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RX, UK
| |
Collapse
|
9
|
Emanuele M, D'Ausilio A, Koch G, Fadiga L, Tomassini A. Scale-invariant changes in corticospinal excitability reflect multiplexed oscillations in the motor output. J Physiol 2024; 602:205-222. [PMID: 38059677 DOI: 10.1113/jp284273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
In the absence of disease, humans produce smooth and accurate movement trajectories. Despite such 'macroscopic' aspect, the 'microscopic' structure of movements reveals recurrent (quasi-rhythmic) discontinuities. To date, it is unclear how the sensorimotor system contributes to the macroscopic and microscopic architecture of movement. Here, we investigated how corticospinal excitability changes in relation to microscopic fluctuations that are naturally embedded within larger macroscopic variations in motor output. Participants performed a visuomotor tracking task. In addition to the 0.25 Hz modulation that is required for task fulfilment (macroscopic scale), the motor output shows tiny but systematic fluctuations at ∼2 and 8 Hz (microscopic scales). We show that motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) during task performance are consistently modulated at all (time) scales. Surprisingly, MEP modulation covers a similar range at both micro- and macroscopic scales, even though the motor output differs by several orders of magnitude. Thus, corticospinal excitability finely maps the multiscale temporal patterning of the motor output, but it does so according to a principle of scale invariance. These results suggest that corticospinal excitability indexes a relatively abstract level of movement encoding that may reflect the hierarchical organisation of sensorimotor processes. KEY POINTS: Motor behaviour is organised on multiple (time)scales. Small but systematic ('microscopic') fluctuations are engrained in larger and slower ('macroscopic') variations in motor output, which are instrumental in deploying the desired motor plan. Corticospinal excitability is modulated in relation to motor fluctuations on both macroscopic and microscopic (time)scales. Corticospinal excitability obeys a principle of scale invariance, that is, it is modulated similarly at all (time)scales, possibly reflecting hierarchical mechanisms that optimise motor encoding.
Collapse
Affiliation(s)
- Marco Emanuele
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Computer Science, Western University, London, Ontario, Canada
| | - Alessandro D'Ausilio
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- IRCSS Santa Lucia, Roma, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| |
Collapse
|
10
|
Wang G, Yang Y, Dong K, Hua A, Wang J, Liu J. Multisensory Conflict Impairs Cortico-Muscular Network Connectivity and Postural Stability: Insights from Partial Directed Coherence Analysis. Neurosci Bull 2024; 40:79-89. [PMID: 37989834 PMCID: PMC10774487 DOI: 10.1007/s12264-023-01143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/16/2023] [Indexed: 11/23/2023] Open
Abstract
Sensory conflict impacts postural control, yet its effect on cortico-muscular interaction remains underexplored. We aimed to investigate sensory conflict's influence on the cortico-muscular network and postural stability. We used a rotating platform and virtual reality to present subjects with congruent and incongruent sensory input, recorded EEG (electroencephalogram) and EMG (electromyogram) data, and constructed a directed connectivity network. The results suggest that, compared to sensory congruence, during sensory conflict: (1) connectivity among the sensorimotor, visual, and posterior parietal cortex generally decreases, (2) cortical control over the muscles is weakened, (3) feedback from muscles to the cortex is strengthened, and (4) the range of body sway increases and its complexity decreases. These results underline the intricate effects of sensory conflict on cortico-muscular networks. During the sensory conflict, the brain adaptively decreases the integration of conflicting information. Without this integrated information, cortical control over muscles may be lessened, whereas the muscle feedback may be enhanced in compensation.
Collapse
Affiliation(s)
- Guozheng Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, 310058, China
| | - Yi Yang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, 310058, China
| | - Kangli Dong
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Anke Hua
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, 310058, China.
- Center for Psychological Science, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China.
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China.
| |
Collapse
|
11
|
Ortega-Auriol P, Byblow WD, Besier T, McMorland AJC. Muscle synergies are associated with intermuscular coherence and cortico-synergy coherence in an isometric upper limb task. Exp Brain Res 2023; 241:2627-2643. [PMID: 37737925 PMCID: PMC10635925 DOI: 10.1007/s00221-023-06706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
To elucidate the underlying physiological mechanisms of muscle synergies, we investigated long-range functional connectivity by cortico-muscular (CMC), intermuscular (IMC) and cortico-synergy (CSC) coherence. Fourteen healthy participants executed an isometric upper limb task in synergy-tuned directions. Cortical activity was recorded using 32-channel electroencephalography (EEG) and muscle activity using 16-channel electromyography (EMG). Using non-negative matrix factorisation (NMF), we calculated muscle synergies from two different tasks. A preliminary multidirectional task was used to identify synergy-preferred directions (PDs). A subsequent coherence task, consisting of generating forces isometrically in the synergy PDs, was used to assess the functional connectivity properties of synergies. Overall, we were able to identify four different synergies from the multidirectional task. A significant alpha band IMC was consistently present in all extracted synergies. Moreover, IMC alpha band was higher between muscles with higher weights within a synergy. Interestingly, CSC alpha band was also significantly higher across muscles with higher weights within a synergy. In contrast, no significant CMC was found between the motor cortex area and synergy muscles. The presence of a shared input onto synergistic muscles within a synergy supports the idea of neurally derived muscle synergies that build human movement. Our findings suggest cortical modulation of some of the synergies and the consequential existence of shared input between muscles within cortically modulated synergies.
Collapse
Affiliation(s)
- Pablo Ortega-Auriol
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Angus J C McMorland
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Tang J, Xi X, Wang T, Wang J, Li L, Lü Z. Analysis of corticomuscular-cortical functional network based on time-delayed maximal information spectral coefficient. J Neural Eng 2023; 20:056017. [PMID: 37683652 DOI: 10.1088/1741-2552/acf7f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Objective. The study of brain networks has become an influential tool for investigating post-stroke brain function. However, studies on the dynamics of cortical networks associated with muscle activity are limited. This is crucial for elucidating the altered coordination patterns in the post-stroke motor control system.Approach. In this study, we introduced the time-delayed maximal information spectral coefficient (TDMISC) method to assess the local frequency band characteristics (alpha, beta, and gamma bands) of functional corticomuscular coupling (FCMC) and cortico-cortical network parameters. We validated the effectiveness of TDMISC using a unidirectionally coupled Hénon maps model and a neural mass model.Main result. A grip task with 25% of maximum voluntary contraction was designed, and simulation results demonstrated that TDMISC accurately characterizes signals' local frequency band and directional properties. In the gamma band, the affected side showed significantly strong FCMC in the ascending direction. However, in the beta band, the affected side exhibited significantly weak FCMC in all directions. For the cortico-cortical network parameters, the affected side showed a lower clustering coefficient than the unaffected side in all frequency bands. Additionally, the affected side exhibited a longer shortest path length than the unaffected side in all frequency bands. In all frequency bands, the unaffected motor cortex in the stroke group exerted inhibitory effects on the affected motor cortex, the parietal associative areas, and the somatosensory cortices.Significance. These results provide meaningful insights into neural mechanisms underlying motor dysfunction.
Collapse
Affiliation(s)
- Jianpeng Tang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| | - Xugang Xi
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| | - Ting Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| | - Junhong Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| | - Lihua Li
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| | - Zhong Lü
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang 322100, People's Republic of China
| |
Collapse
|
13
|
Chang H, Sheng Y, Liu J, Yang H, Pan X, Liu H. Noninvasive Brain Imaging and Stimulation in Post-Stroke Motor Rehabilitation: A Review. IEEE Trans Cogn Dev Syst 2023; 15:1085-1101. [DOI: 10.1109/tcds.2022.3232581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Hui Chang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yixuan Sheng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Jinbiao Liu
- Research Centre for Augmented Intelligence, Zhejiang Laboratory, Artificial Intelligence Research Institute, Hangzhou, China
| | - Hongyu Yang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Xiangyu Pan
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Honghai Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
14
|
Garcia-Retortillo S, Romero-Gómez C, Ivanov PC. Network of muscle fibers activation facilitates inter-muscular coordination, adapts to fatigue and reflects muscle function. Commun Biol 2023; 6:891. [PMID: 37648791 PMCID: PMC10468525 DOI: 10.1038/s42003-023-05204-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
Fundamental movement patterns require continuous skeletal muscle coordination, where muscle fibers with different timing of activation synchronize their dynamics across muscles with distinct functions. It is unknown how muscle fibers integrate as a network to generate and fine tune movements. We investigate how distinct muscle fiber types synchronize across arm and chest muscles, and respond to fatigue during maximal push-up exercise. We uncover that a complex inter-muscular network of muscle fiber cross-frequency interactions underlies push-up movements. The network exhibits hierarchical organization (sub-networks/modules) with specific links strength stratification profile, reflecting distinct functions of muscles involved in push-up movements. We find network reorganization with fatigue where network modules follow distinct phase-space trajectories reflecting their functional role and adaptation to fatigue. Consistent with earlier observations for squat movements under same protocol, our findings point to general principles of inter-muscular coordination for fundamental movements, and open a new area of research, Network Physiology of Exercise.
Collapse
Affiliation(s)
- Sergi Garcia-Retortillo
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, 02215, USA
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, 27190, USA
- Complex Systems in Sport, INEFC University of Barcelona, 08038, Barcelona, Spain
| | - Carlos Romero-Gómez
- Complex Systems in Sport, INEFC University of Barcelona, 08038, Barcelona, Spain
| | - Plamen Ch Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, 02215, USA.
- Harvard Medical School and Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. Block 21, Sofia, 1113, Bulgaria.
| |
Collapse
|
15
|
López-Preza FI, Huerta de la Cruz S, Santiago-Castañeda C, Silva-Velasco DL, Beltran-Ornelas JH, Tapia-Martínez J, Sánchez-López A, Rocha L, Centurión D. Hydrogen sulfide prevents the vascular dysfunction induced by severe traumatic brain injury in rats by reducing reactive oxygen species and modulating eNOS and H 2S-synthesizing enzyme expression. Life Sci 2022; 312:121218. [PMID: 36427545 DOI: 10.1016/j.lfs.2022.121218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
AIM To assess the effects of subchronic administration with NaHS, an exogenous H2S donor, on TBI-induced hypertension and vascular impairments. MAIN METHODS Animals underweministration does not prevent the body weight loss but slightly imnt a lateral fluid percussion injury, and the hemodynamic variables were measured in vivo by plethysmograph method. The vascular function in vitro, the ROS levels by the DCFH-DA method and the expression of H2S-synthesizing enzymes and eNOS by Western blot were measured in isolated thoracic aortas at day 7 post-TBI. The effect of L-NAME on NaHS-induced effects in vascular function was evaluated. Brain water content was determined 7 days after trauma induction. Body weight was recorded throughout the experimental protocol, whereas the sensorimotor function was evaluated using the neuroscore test at days -1 (basal), 2, and 7 after the TBI induction. KEY FINDINGS TBI animals showed: 1) an increase in hemodynamic variables and ROS levels in aortas; 2) vascular dysfunction; 3) sensorimotor dysfunction; and 4) a decrease in body weight, the expression of H2S-synthesizing enzymes, and eNOS phosphorylation. Interestingly, NaHS subchronic administration (3.1 mg/kg; i.p.; every 24 h for six days) prevented the development of hypertension, vascular dysfunction, and oxidative stress. L-NAME abolished NaHS-induced effects. Furthermore, NaHS treatment restored H2S-synthesizing enzymes and eNOS phosphorylation with no effect on body weight, sensorimotor impairments, or brain water content. SIGNIFICANCE Taken together, these results demonstrate that H2S prevents TBI-induced hypertension by restoring vascular function and modulating ROS levels, H2S-synthesizing enzymes expression, and eNOS phosphorylation.
Collapse
Affiliation(s)
- Félix I López-Preza
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Cindy Santiago-Castañeda
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Diana L Silva-Velasco
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Jesus H Beltran-Ornelas
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Jorge Tapia-Martínez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico.
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico.
| |
Collapse
|
16
|
Garcia-Retortillo S, Ivanov PC. Inter-muscular networks of synchronous muscle fiber activation. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:1059793. [PMID: 36926057 PMCID: PMC10012969 DOI: 10.3389/fnetp.2022.1059793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Skeletal muscles continuously coordinate to facilitate a wide range of movements. Muscle fiber composition and timing of activation account for distinct muscle functions and dynamics necessary to fine tune muscle coordination and generate movements. Here we address the fundamental question of how distinct muscle fiber types dynamically synchronize and integrate as a network across muscles with different functions. We uncover that physiological states are characterized by unique inter-muscular network of muscle fiber cross-frequency interactions with hierarchical organization of distinct sub-networks and modules, and a stratification profile of links strength specific for each state. We establish how this network reorganizes with transition from rest to exercise and fatigue-a complex process where network modules follow distinct phase-space trajectories reflecting their functional role in movements and adaptation to fatigue. This opens a new area of research, Network Physiology of Exercise, leading to novel network-based biomarkers of health, fitness and clinical conditions.
Collapse
Affiliation(s)
- Sergi Garcia-Retortillo
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, United States
- Complex Systems in Sport INEFC University of Barcelona, Barcelona, Spain
| | - Plamen Ch. Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
- Harvard Medical School and Division of Sleep Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
17
|
Pascarella A, Gianni E, Abbondanza M, Armonaite K, Pitolli F, Bertoli M, L’Abbate T, Grifoni J, Vitulano D, Bruni V, Conti L, Paulon L, Tecchio F. Normalized compression distance to measure cortico-muscular synchronization. Front Neurosci 2022; 16:933391. [PMID: 36440261 PMCID: PMC9687393 DOI: 10.3389/fnins.2022.933391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/19/2022] [Indexed: 06/29/2024] Open
Abstract
The neuronal functional connectivity is a complex and non-stationary phenomenon creating dynamic networks synchronization determining the brain states and needed to produce tasks. Here, as a measure that quantifies the synchronization between the neuronal electrical activity of two brain regions, we used the normalized compression distance (NCD), which is the length of the compressed file constituted by the concatenated two signals, normalized by the length of the two compressed files including each single signal. To test the NCD sensitivity to physiological properties, we used NCD to measure the cortico-muscular synchronization, a well-known mechanism to control movements, in 15 healthy volunteers during a weak handgrip. Independently of NCD compressor (Huffman or Lempel Ziv), we found out that the resulting measure is sensitive to the dominant-non dominant asymmetry when novelty management is required (p = 0.011; p = 0.007, respectively) and depends on the level of novelty when moving the non-dominant hand (p = 0.012; p = 0.024). Showing lower synchronization levels for less dexterous networks, NCD seems to be a measure able to enrich the estimate of functional two-node connectivity within the neuronal networks that control the body.
Collapse
Affiliation(s)
- Annalisa Pascarella
- Institute for the Applications of Calculus “M. Picone”, National Research Council, Rome, Italy
| | - Eugenia Gianni
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Matteo Abbondanza
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome “La Sapienza”, Rome, Italy
| | - Karolina Armonaite
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Faculty of Psychology, Uninettuno University, Rome, Italy
| | - Francesca Pitolli
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome “La Sapienza”, Rome, Italy
| | - Massimo Bertoli
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Teresa L’Abbate
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Faculty of Psychology, Uninettuno University, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Joy Grifoni
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Faculty of Psychology, Uninettuno University, Rome, Italy
| | - Domenico Vitulano
- Institute for the Applications of Calculus “M. Picone”, National Research Council, Rome, Italy
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome “La Sapienza”, Rome, Italy
| | - Vittoria Bruni
- Institute for the Applications of Calculus “M. Picone”, National Research Council, Rome, Italy
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome “La Sapienza”, Rome, Italy
| | - Livio Conti
- Faculty of Engineering, Uninettuno University, Rome, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione Roma Tor Vergata, Rome, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
- Independent Researcher, Rome, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience, Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
18
|
Keihani A, Mohammadi AM, Marzbani H, Nafissi S, Haidari MR, Jafari AH. Sparse representation of brain signals offers effective computation of cortico-muscular coupling value to predict the task-related and non-task sEMG channels: A joint hdEEG-sEMG study. PLoS One 2022; 17:e0270757. [PMID: 35776772 PMCID: PMC9249190 DOI: 10.1371/journal.pone.0270757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Cortico-muscular interactions play important role in sensorimotor control during motor task and are commonly studied by cortico-muscular coherence (CMC) method using joint electroencephalogram-surface electromyogram (EEG-sEMG) signals. As noise and time delay between the two signals weaken the CMC value, coupling difference between non-task sEMG channels is often undetectable. We used sparse representation of EEG channels to compute CMC and detect coupling for task-related and non-task sEMG signals. High-density joint EEG-sEMG (53 EEG channels, 4 sEMG bipolar channels) signals were acquired from 15 subjects (30.26 ± 4.96 years) during four specific hand and foot contraction tasks (2 dynamic and 2 static contraction). Sparse representations method was applied to detect projection of EEG signals on each sEMG channel. Bayesian optimization was employed to select best-fitted method with tuned hyperparameters on the input feeding data while using 80% data as the train set and 20% as test set. K-fold (K = 5) cross-validation method was used for evaluation of trained model. Two models were trained separately, one for CMC data and the other from sparse representation of EEG channels on each sEMG channel. Sensitivity, specificity, and accuracy criteria were obtained for test dataset to evaluate the performance of task-related and non-task sEMG channels detection. Coupling values were significantly different between grand average of task-related compared to the non-task sEMG channels (Z = -6.33, p< 0.001, task-related median = 2.011, non-task median = 0.112). Strong coupling index was found even in single trial analysis. Sparse representation approach (best fitted model: SVM, Accuracy = 88.12%, Sensitivity = 83.85%, Specificity = 92.45%) outperformed CMC method (best fitted model: KNN, Accuracy = 50.83%, Sensitivity = 52.17%, Specificity = 49.47%). Sparse representation approach offers high performance to detect CMC for discerning the EMG channels involved in the contraction tasks and non-tasks.
Collapse
Affiliation(s)
- Ahmadreza Keihani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Amin Mohammad Mohammadi
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, I.R. Iran
- Department of Electrical and Computer Engineering, University of Tehran, Tehran, I.R. Iran
| | - Hengameh Marzbani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, I.R. Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Mohsen Reza Haidari
- Section of Neuroscience, Department of Neurology, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran
- * E-mail: (AHJ); (MRH)
| | - Amir Homayoun Jafari
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, I.R. Iran
- * E-mail: (AHJ); (MRH)
| |
Collapse
|
19
|
Liu J, Tan G, Wang J, Wei Y, Sheng Y, Chang H, Xie Q, Liu H. Closed-Loop Construction and Analysis of Cortico-Muscular-Cortical Functional Network After Stroke. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1575-1586. [PMID: 35030075 DOI: 10.1109/tmi.2022.3143133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Brain networks allow a topological understanding into the pathophysiology of stroke-induced motor deficits, and have been an influential tool for investigating brain functions. Unfortunately, currently applied methods generally lack in the recognition of the dynamic changes in the cortical networks related to muscle activity, which is crucial to clarify the alterations of the cooperative working patterns in the motor control system after stroke. In this study, we integrate corticomuscular and intermuscular interactions to cortico-cortical network and propose a novel closed-loop construction of cortico-muscular-cortical functional network, named closed-loop network (CLN). Directional characteristic in terms of differentiating causal interactions is endowed on basis of the CLN framework, further expanding the definition of functional connectivity (FC) and effective connectivity (EC) dedicated to CLN. Next, CLN is applied to stroke patients to reveal the underlying after-effects mechanism of low frequency repetitive transcranial magnetic stimulation (rTMS) induced alterations of cortical physiologic functions during movement. Results show that the short-term modulation of rTMS is reflected in the enhancement of information interaction within the interhemispheric primary motor regions and inhibition of the coupling between motor cortex and effector muscles. CLN provides a new perspective for the study of motor-related cortical networks with muscle activities involvement instead of being restricted to brain network analysis of behaviors.
Collapse
|
20
|
Vasudeva B, Tian R, Wu DH, James SA, Refai HH, Ding L, He F, Yang Y. Multi-phase locking value: A generalized method for determining instantaneous multi-frequency phase coupling. Biomed Signal Process Control 2022; 74. [PMID: 35111233 PMCID: PMC8803274 DOI: 10.1016/j.bspc.2022.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Many physical, biological and neural systems behave as coupled oscillators, with characteristic phase coupling across different frequencies. Methods such as n : m phase locking value (where two coupling frequencies are linked as: mf 1 = nf 2) and bi-phase locking value have previously been proposed to quantify phase coupling between two resonant frequencies (e.g. f, 2f/3) and across three frequencies (e.g. f 1, f 2, f 1 + f 2), respectively. However, the existing phase coupling metrics have their limitations and limited applications. They cannot be used to detect or quantify phase coupling across multiple frequencies (e.g. f 1, f 2, f 3, f 4, f 1 + f 2 + f 3 - f 4), or coupling that involves non-integer multiples of the frequencies (e.g. f 1, f 2, 2f 1/3 + f 2/3). NEW METHODS To address the gap, this paper proposes a generalized approach, named multi-phase locking value (M-PLV), for the quantification of various types of instantaneous multi-frequency phase coupling. Different from most instantaneous phase coupling metrics that measure the simultaneous phase coupling, the proposed M-PLV method also allows the detection of delayed phase coupling and the associated time lag between coupled oscillators. RESULTS The M-PLV has been tested on cases where synthetic coupled signals are generated using white Gaussian signals, and a system comprised of multiple coupled Rössler oscillators, as well as a human subject dataset. Results indicate that the M-PLV can provide a reliable estimation of the time window and frequency combination where the phase coupling is significant, as well as a precise determination of time lag in the case of delayed coupling. This method has the potential to become a powerful new tool for exploring phase coupling in complex nonlinear dynamic systems.
Collapse
|
21
|
Nojima I, Sugata H, Takeuchi H, Mima T. Brain-Computer Interface Training Based on Brain Activity Can Induce Motor Recovery in Patients With Stroke: A Meta-Analysis. Neurorehabil Neural Repair 2021; 36:83-96. [PMID: 34958261 DOI: 10.1177/15459683211062895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brain-computer interface (BCI) is a procedure involving brain activity in which neural status is provided to the participants for self-regulation. The current review aims to evaluate the effect sizes of clinical studies investigating the use of BCI-based rehabilitation interventions in restoring upper extremity function and effective methods to detect brain activity for motor recovery. METHODS A computerized search of MEDLINE, CENTRAL, Web of Science, and PEDro was performed to identify relevant articles. We selected clinical trials that used BCI-based training for post-stroke patients and provided motor assessment scores before and after the intervention. The pooled standardized mean differences of BCI-based training were calculated using the random-effects model. RESULTS We initially identified 655 potentially relevant articles; finally, 16 articles fulfilled the inclusion criteria, involving 382 participants. A significant effect of neurofeedback intervention for the paretic upper limb was observed (standardized mean difference = .48, [.16-.80], P = .006). However, the effect estimates were moderately heterogeneous among the studies (I2 = 45%, P = .03). Subgroup analysis of the method of measurement of brain activity indicated the effectiveness of the algorithm focusing on sensorimotor rhythm. CONCLUSION This meta-analysis suggested that BCI-based training was superior to conventional interventions for motor recovery of the upper limbs in patients with stroke. However, the results are not conclusive because of a high risk of bias and a large degree of heterogeneity due to the differences in the BCI interventions and the participants; therefore, further studies involving larger cohorts are required to confirm these results.
Collapse
Affiliation(s)
- Ippei Nojima
- Department of Physical Therapy, 84161Shinshu University School of Health Sciences, Matsumoto, Japan
| | - Hisato Sugata
- Faculty of Welfare and Health Science, 6339Oita University, Oita, Japan
| | - Hiroki Takeuchi
- National Hospital Organization, 73721Higashinagoya National Hospital, Nagoya, Japan
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, 316844Ritsumeikan University, Kyoto, Japan
| |
Collapse
|
22
|
Fiveash A, Bedoin N, Gordon RL, Tillmann B. Processing rhythm in speech and music: Shared mechanisms and implications for developmental speech and language disorders. Neuropsychology 2021; 35:771-791. [PMID: 34435803 PMCID: PMC8595576 DOI: 10.1037/neu0000766] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Music and speech are complex signals containing regularities in how they unfold in time. Similarities between music and speech/language in terms of their auditory features, rhythmic structure, and hierarchical structure have led to a large body of literature suggesting connections between the two domains. However, the precise underlying mechanisms behind this connection remain to be elucidated. METHOD In this theoretical review article, we synthesize previous research and present a framework of potentially shared neural mechanisms for music and speech rhythm processing. We outline structural similarities of rhythmic signals in music and speech, synthesize prominent music and speech rhythm theories, discuss impaired timing in developmental speech and language disorders, and discuss music rhythm training as an additional, potentially effective therapeutic tool to enhance speech/language processing in these disorders. RESULTS We propose the processing rhythm in speech and music (PRISM) framework, which outlines three underlying mechanisms that appear to be shared across music and speech/language processing: Precise auditory processing, synchronization/entrainment of neural oscillations to external stimuli, and sensorimotor coupling. The goal of this framework is to inform directions for future research that integrate cognitive and biological evidence for relationships between rhythm processing in music and speech. CONCLUSION The current framework can be used as a basis to investigate potential links between observed timing deficits in developmental disorders, impairments in the proposed mechanisms, and pathology-specific deficits which can be targeted in treatment and training supporting speech therapy outcomes. On these grounds, we propose future research directions and discuss implications of our framework. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Anna Fiveash
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR5292, INSERM, U1028, F-69000, Lyon, France
- University Lyon 1, Lyon, France
| | - Nathalie Bedoin
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR5292, INSERM, U1028, F-69000, Lyon, France
- University Lyon 1, Lyon, France
- University of Lyon 2, CNRS, UMR5596, Lyon, F-69000, France
| | - Reyna L. Gordon
- Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR5292, INSERM, U1028, F-69000, Lyon, France
- University Lyon 1, Lyon, France
| |
Collapse
|
23
|
Liu J, Wang J, Tan G, Sheng Y, Chang H, Xie Q, Liu H. Correlation Evaluation of Functional Corticomuscular Coupling With Abnormal Muscle Synergy After Stroke. IEEE Trans Biomed Eng 2021; 68:3261-3272. [PMID: 33764872 DOI: 10.1109/tbme.2021.3068997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE While neuroplasticity and functional reorganization during motor recovery can be indirectly reflected and evaluated by functional corticomuscular coupling (fCMC), little work has been published regarding the cortical origin of abnormal muscle synergy and compensatory mechanism in the separation movement of stroke patients. METHODS In this study, we proposed to use extended partial directed coherence (ePDC) combined with an optimal spatial filtering approach to estimate fCMC in stroke patients and healthy controls, and further established muscle synergy model (MSM) to jointly explore the modulation mechanism between cortex and muscles. RESULTS Compared to healthy controls, stroke patients had significantly reduced coupling strength in both descending and ascending pathway. Moreover, the MSM were abnormal with high variability and low similarity in the separation stage of stroke patients. Further exploration of the positive relationship between fCMC characteristics and MSM parameters proved the possibility of using fCMC-MSM-based correlation indicator to evaluate abnormality of the cortical related synergy movement as well as the rehabilitation level of stroke patients. CONCLUSION We developed a computational procedure to evaluate the correlation between fCMC and MSM in stroke patients. SIGNIFICANCE This article provides a quantitative evaluation metrics based on fCMC to reveal the deficits during poststroke motor restoration and a promising approach to help patients correct abnormal movement habits, paving the way for neurophysiological assessment of neuromuscular control in conjunction with clinical scores.
Collapse
|
24
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
25
|
Liang T, Zhang Q, Hong L, Liu X, Dong B, Wang H, Liu X. Directed Information Flow Analysis Reveals Muscle Fatigue-Related Changes in Muscle Networks and Corticomuscular Coupling. Front Neurosci 2021; 15:750936. [PMID: 34566576 PMCID: PMC8458941 DOI: 10.3389/fnins.2021.750936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/20/2021] [Indexed: 12/04/2022] Open
Abstract
As a common neurophysiological phenomenon, voluntary muscle fatigue is accompanied by changes in both the central nervous system and peripheral muscles. Considering the effectiveness of the muscle network and the functional corticomuscular coupling (FCMC) in analyzing motor function, muscle fatigue can be analyzed by quantitating the intermuscular coupling and corticomuscular coupling. However, existing coherence-based research on muscle fatigue are limited by the inability of the coherence algorithm to identify the coupling direction, which cannot further reveal the underlying neural mechanism of muscle fatigue. To address this problem, we applied the time-delayed maximal information coefficient (TDMIC) method to quantitate the directional informational interaction in the muscle network and FCMC during a right-hand stabilized grip task. Eight healthy subjects were recruited to the present study. For the muscle networks, the beta-band information flow increased significantly due to muscle fatigue, and the information flow between the synergist muscles were stronger than that between the synergist and antagonist muscles. The information flow in the muscle network mainly flows to flexor digitorum superficialis (FDS), flexor carpi ulnar (FCU), and brachioradialis (BR). For the FCMC, muscle fatigue caused a significant decrease in the beta- and gamma-band bidirectional information flow. Further analysis revealed that the beta-band information flow was significantly stronger in the descending direction [electroencephalogram (EEG) to surface electromyography (sEMG)] than that in the ascending direction (sEMG to EEG) during pre-fatigue tasks. After muscle fatigue, the beta-band information flow in the ascending direction was significantly stronger than that in the descending direction. The present study demonstrates the influence of muscle fatigue on information flow in muscle networks and FCMC. We proposes that beta-band intermuscular and corticomuscular informational interaction plays an adjusting role in autonomous movement completion under muscle fatigue. Directed information flow analysis can be used as an effective method to explore the neural mechanism of muscle fatigue on the macroscopic scale.
Collapse
Affiliation(s)
- Tie Liang
- Institute of Electric Engineering, Yanshan University, Qinhuangdao, China.,College of Electronic Information Engineering, Hebei University, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
| | - Qingyu Zhang
- College of Electronic Information Engineering, Hebei University, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
| | - Lei Hong
- College of Electronic Information Engineering, Hebei University, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
| | - Xiaoguang Liu
- College of Electronic Information Engineering, Hebei University, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
| | - Bin Dong
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China.,Development Planning Office, Affiliated Hospital of Hebei University, Baoding, China
| | - Hongrui Wang
- Institute of Electric Engineering, Yanshan University, Qinhuangdao, China.,College of Electronic Information Engineering, Hebei University, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
| | - Xiuling Liu
- College of Electronic Information Engineering, Hebei University, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
| |
Collapse
|
26
|
Cortico-muscular interaction to monitor the effects of neuromuscular electrical stimulation pedaling training in chronic stroke. Comput Biol Med 2021; 137:104801. [PMID: 34481180 DOI: 10.1016/j.compbiomed.2021.104801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022]
Abstract
Neuromuscular electrical stimulation (NMES) has been widely utilized in post-stroke motor restoration. However, its impact on the closed-loop sensorimotor control process remains largely unclear. This is the first study to investigate the directional changes in cortico-muscular interactions after repetitive rehabilitation training by measuring the noninvasive electroencephalogram (EEG) and electromyography (EMG) signals. In this study, 10 subjects with chronic stroke received 20 sessions of NMES-pedaling interventions, and each training session included three 10-min NMES-driven pedaling trials. In addition, pre- and post-intervention assessments of lower limb isometric contraction were conducted before and after the whole NMES-pedaling interventions. The EEG (128 channels) and EMG (3 bilateral lower limb sensors) signals were collected during the isometric contraction tasks for the paretic and non-paretic lower limbs. Both the cortico-muscular coherence (CMC) and generalized partial directed coherence (GPDC) values were analyzed between eight selected EEG channels in the central primary motor cortex and EMG channels. The results revealed significant clinical improvements. Additionally, rehabilitation training facilitated cortico-muscular interaction of the ipsilesional brain and paretic lower limbs (p = 0.004). Moreover, both the descending and ascending cortico-muscular pathways were altered after NMES-training (p = 0.001, p < 0.001). Therefore, the results implied potential applications of EEG-EMG in understanding neuromuscular changes during the post-stroke motor rehabilitation process.
Collapse
|
27
|
Tian R, Dewald JPA, Yang Y. Assessing the Usage of Indirect Motor Pathways Following a Hemiparetic Stroke. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1568-1572. [PMID: 34343095 PMCID: PMC8372540 DOI: 10.1109/tnsre.2021.3102493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A hallmark impairment in a hemiparetic stroke is a loss of independent joint control resulting in abnormal co-activation of shoulder abductor and elbow flexor muscles in their paretic arm, clinically known as the flexion synergy. The flexion synergy appears while generating shoulder abduction (SABD) torques as lifting the paretic arm. This likely be caused by an increased reliance on contralesional indirect motor pathways following damage to direct corticospinal projections. The assessment of functional connectivity between brain and muscle signals, i.e., brain-muscle connectivity (BMC), may provide insight into such changes to the usage of motor pathways. Our previous model simulation shows that multi-synaptic connections along the indirect motor pathway can generate nonlinear connectivity. We hypothesize that increased usage of indirect motor pathways (as increasing SABD load) will lead to an increase of nonlinear BMC. To test this hypothesis, we measured brain activity, muscle activity from shoulder abductors when stroke participants generate 20% and 40% of maximum SABD torque with their paretic arm. We computed both linear and nonlinear BMC between EEG and EMG. We found dominant nonlinear BMC at contralesional/ipsilateral hemisphere for stroke, whose magnitude increased with the SABD load. These results supported our hypothesis and indicated that nonlinear BMC could provide a quantitative indicator for determining the usage of indirect motor pathways following a hemiparetic stroke.
Collapse
|
28
|
Tian N, Chen Y, Sun W, Liu H, Wang X, Yan T, Song R. Investigating the Stroke- and Aging-Related Changes in Global and Instantaneous Intermuscular Coupling Using Cross-Fuzzy Entropy. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1573-1582. [PMID: 34329167 DOI: 10.1109/tnsre.2021.3101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Intermuscular coupling is essential in the coordination of agonist and antagonist muscles. However, its dynamic characteristics are not fully understood, especially the alterations of intermuscular coupling induced by stroke and aging. This study aimed to investigate the aging- and stroke-related changes in the global and instantaneous intermuscular coupling between agonist and antagonist muscles. In the experiment, 8 patients after stroke, 18 healthy young subjects and 10 healthy middle-aged subjects were recruited and instructed to finish the elbow flexion and extension tasks. Cross-fuzzy entropy (C-FuzzyEn) and instantaneous C-FuzzyEn ( [Formula: see text]-FuzzyEn) based on a sliding window were used to analyze the global and instantaneous intermuscular coupling, respectively. Instantaneous FuzzyEn ( i -FuzzyEn) based on a sliding window was also applied to investigate the dynamic complexity of the EMG segment. Pearson correlation analysis revealed that i -FuzzyEn values were negatively correlated with [Formula: see text]-FuzzyEn values in most cases, which implied that there was a positive correlation between EMG complexity and intermuscular coupling. The C-FuzzyEn values between agonist and antagonist muscles increased significantly in both tasks of the patients after stroke than those of the healthy subjects (p < 0.05), which might be due to the decrease in intermuscular coupling induced by the damage of the corticospinal pathways after stroke. The combined application of C-FuzzyEn, [Formula: see text]-FuzzyEn and i -FuzzyEn provides a more comprehensive understanding of the global and instantaneous intermuscular coupling.
Collapse
|
29
|
Liu X, Chen S, Shen X, Zhang X, Wang Y. A Nonlinear Maximum Correntropy Information Filter for High-Dimensional Neural Decoding. ENTROPY (BASEL, SWITZERLAND) 2021; 23:743. [PMID: 34204814 PMCID: PMC8231488 DOI: 10.3390/e23060743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022]
Abstract
Neural signal decoding is a critical technology in brain machine interface (BMI) to interpret movement intention from multi-neural activity collected from paralyzed patients. As a commonly-used decoding algorithm, the Kalman filter is often applied to derive the movement states from high-dimensional neural firing observation. However, its performance is limited and less effective for noisy nonlinear neural systems with high-dimensional measurements. In this paper, we propose a nonlinear maximum correntropy information filter, aiming at better state estimation in the filtering process for a noisy high-dimensional measurement system. We reconstruct the measurement model between the high-dimensional measurements and low-dimensional states using the neural network, and derive the state estimation using the correntropy criterion to cope with the non-Gaussian noise and eliminate large initial uncertainty. Moreover, analyses of convergence and robustness are given. The effectiveness of the proposed algorithm is evaluated by applying it on multiple segments of neural spiking data from two rats to interpret the movement states when the subjects perform a two-lever discrimination task. Our results demonstrate better and more robust state estimation performance when compared with other filters.
Collapse
Affiliation(s)
- Xi Liu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China; (X.L.); (X.S.); (X.Z.)
| | - Shuhang Chen
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China;
| | - Xiang Shen
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China; (X.L.); (X.S.); (X.Z.)
| | - Xiang Zhang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China; (X.L.); (X.S.); (X.Z.)
| | - Yiwen Wang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China; (X.L.); (X.S.); (X.Z.)
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China;
| |
Collapse
|
30
|
Liu J, Tan G, Sheng Y, Liu H. Multiscale Transfer Spectral Entropy for Quantifying Corticomuscular Interaction. IEEE J Biomed Health Inform 2021; 25:2281-2292. [PMID: 33090963 DOI: 10.1109/jbhi.2020.3032979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Corticomuscular coupling reflects nonlinear interactions and multi-layer neural information transmission between the motor cortex and effector muscle in the sensorimotor system. Transfer spectral entropy (TSE) method has been used to describe corticomuscular coupling within single scale. As an extension of TSE, multiscale transfer spectral entropy (MSTSE) is proposed in this paper to depict multi-layer of neural information transfer between two coupling signals. The reliability and effectiveness of MSTSE were verified on data generated by nonlinear numerical models and those of a force tracking task. Compared with TSE, MSTSE is more robust to the embedding dimension and performs optimally in the detection of the coupling properties. Further analysis of the physiological signals showed that the MSTSE provided more detailed band characteristics than the single scale TSE measurement. MSTSE indicates significant coupling scattered in alpha, beta and low gamma bands during the force tracking task. Besides, the coupling strength in the descending direction of the beta band was significantly higher than that in the ascending direction. This study constructs multi-scale coupling information to provide a new perspective for exploring corticomuscular interaction.
Collapse
|
31
|
Wan W, Cui X, Gao Z, Gu Z. Frontal EEG-Based Multi-Level Attention States Recognition Using Dynamical Complexity and Extreme Gradient Boosting. Front Hum Neurosci 2021; 15:673955. [PMID: 34140885 PMCID: PMC8204057 DOI: 10.3389/fnhum.2021.673955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 01/25/2023] Open
Abstract
Measuring and identifying the specific level of sustained attention during continuous tasks is essential in many applications, especially for avoiding the terrible consequences caused by reduced attention of people with special tasks. To this end, we recorded EEG signals from 42 subjects during the performance of a sustained attention task and obtained resting state and three levels of attentional states using the calibrated response time. EEG-based dynamical complexity features and Extreme Gradient Boosting (XGBoost) classifier were proposed as the classification model, Complexity-XGBoost, to distinguish multi-level attention states with improved accuracy. The maximum average accuracy of Complexity-XGBoost were 81.39 ± 1.47% for four attention levels, 80.42 ± 0.84% for three attention levels, and 95.36 ± 2.31% for two attention levels in 5-fold cross-validation. The proposed method is compared with other models of traditional EEG features and different classification algorithms, the results confirmed the effectiveness of the proposed method. We also found that the frontal EEG dynamical complexity measures were related to the changing process of response during sustained attention task. The proposed dynamical complexity approach could be helpful to recognize attention status during important tasks to improve safety and efficiency, and be useful for further brain-computer interaction research in clinical research or daily practice, such as the cognitive assessment or neural feedback treatment of individuals with attention deficit hyperactivity disorders, Alzheimer’s disease, and other diseases which affect the sustained attention function.
Collapse
Affiliation(s)
- Wang Wan
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Xingran Cui
- Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.,Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, China
| | - Zhilin Gao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.,Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, China
| |
Collapse
|
32
|
Liang T, Zhang Q, Liu X, Dong B, Liu X, Wang H. Identifying bidirectional total and non-linear information flow in functional corticomuscular coupling during a dorsiflexion task: a pilot study. J Neuroeng Rehabil 2021; 18:74. [PMID: 33947410 PMCID: PMC8097856 DOI: 10.1186/s12984-021-00872-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
Background The key challenge to constructing functional corticomuscular coupling (FCMC) is to accurately identify the direction and strength of the information flow between scalp electroencephalography (EEG) and surface electromyography (SEMG). Traditional TE and TDMI methods have difficulty in identifying the information interaction for short time series as they tend to rely on long and stable data, so we propose a time-delayed maximal information coefficient (TDMIC) method. With this method, we aim to investigate the directional specificity of bidirectional total and nonlinear information flow on FCMC, and to explore the neural mechanisms underlying motor dysfunction in stroke patients. Methods We introduced a time-delayed parameter in the maximal information coefficient to capture the direction of information interaction between two time series. We employed the linear and non-linear system model based on short data to verify the validity of our algorithm. We then used the TDMIC method to study the characteristics of total and nonlinear information flow in FCMC during a dorsiflexion task for healthy controls and stroke patients. Results The simulation results showed that the TDMIC method can better detect the direction of information interaction compared with TE and TDMI methods. For healthy controls, the beta band (14–30 Hz) had higher information flow in FCMC than the gamma band (31–45 Hz). Furthermore, the beta-band total and nonlinear information flow in the descending direction (EEG to EMG) was significantly higher than that in the ascending direction (EMG to EEG), whereas in the gamma band the ascending direction had significantly higher information flow than the descending direction. Additionally, we found that the strong bidirectional information flow mainly acted on Cz, C3, CP3, P3 and CPz. Compared to controls, both the beta-and gamma-band bidirectional total and nonlinear information flows of the stroke group were significantly weaker. There is no significant difference in the direction of beta- and gamma-band information flow in stroke group. Conclusions The proposed method could effectively identify the information interaction between short time series. According to our experiment, the beta band mainly passes downward motor control information while the gamma band features upward sensory feedback information delivery. Our observation demonstrate that the center and contralateral sensorimotor cortex play a major role in lower limb motor control. The study further demonstrates that brain damage caused by stroke disrupts the bidirectional information interaction between cortex and effector muscles in the sensorimotor system, leading to motor dysfunction.
Collapse
Affiliation(s)
- Tie Liang
- Institute of Electric Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, 071002, China
| | - Qingyu Zhang
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xiaoguang Liu
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, 071002, China
| | - Bin Dong
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, 071002, China.,Development Planning Office, Affiliated Hospital of Hebei University, Baoding, 071002, China
| | - Xiuling Liu
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Hongrui Wang
- Institute of Electric Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, China. .,Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
33
|
Promsri A, Mohr M, Federolf P. Principal postural acceleration and myoelectric activity: Interrelationship and relevance for characterizing neuromuscular function in postural control. Hum Mov Sci 2021; 77:102792. [PMID: 33862279 DOI: 10.1016/j.humov.2021.102792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/15/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
One approach to investigating sensorimotor control is to assess the accelerations that produce changes in the kinematic state of the system. When assessing complex whole-body movements, structuring the multi-segmental accelerations is important. A useful structuring can be achieved through a principal component analysis (PCA) performed on segment positions followed by double-differentiation to obtain "principal accelerations" (PAs). In past research PAs have proven sensitive to altered motor control strategies, however, the interrelationship between PAs and muscle activation (surface electromyography, sEMG) have never been determined. The purpose of the current study was therefore to assess the relationship between PAs and sEMG signals recorded from muscles controlling the ankle joint during one-leg standing trials. It was hypothesized that medium correlation should be observed when accounting for neurophysiologic latencies (electro-mechanical delay). Unipedal balancing on a level-rigid ground was performed by 25 volunteers. sEMG activities were recorded from the tibialis anterior, peroneus longus, gastrocnemius medialis, and soleus muscles of the stance leg. The first eight PA-time series were determined from kinematic marker data. Then, a cross-correlation analysis was performed between sEMG and PA time series. We found that peak correlation coefficients for many participants aligned at time delays between 0.116 and 0.362 s and were typically in the range small to medium (|r| = 0.1 to 0.6). Thus, the current study confirmed a direct association between many principal accelerations PA(t) and muscle activation signals recorded from four muscles crossing the ankle joint complex. The combined analysis of PA and sEMG signals allowed exploring the neuromuscular function of each muscle in different postural movement components.
Collapse
Affiliation(s)
- Arunee Promsri
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, A-6020 Innsbruck, Austria; Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, 19 Moo 2 Maeka, Muang, Phayao 56000, Thailand; Unit of Excellence in Well-Being and Health Innovation, School of Allied Health Sciences, University of Phayao, 19 Moo2 Maeka, Muang, Phayao 56000, Thailand.
| | - Maurice Mohr
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, A-6020 Innsbruck, Austria.
| | - Peter Federolf
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, A-6020 Innsbruck, Austria.
| |
Collapse
|
34
|
He F, Yang Y. Nonlinear System Identification of Neural Systems from Neurophysiological Signals. Neuroscience 2021; 458:213-228. [PMID: 33309967 PMCID: PMC7925423 DOI: 10.1016/j.neuroscience.2020.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Abstract
The human nervous system is one of the most complicated systems in nature. Complex nonlinear behaviours have been shown from the single neuron level to the system level. For decades, linear connectivity analysis methods, such as correlation, coherence and Granger causality, have been extensively used to assess the neural connectivities and input-output interconnections in neural systems. Recent studies indicate that these linear methods can only capture a certain amount of neural activities and functional relationships, and therefore cannot describe neural behaviours in a precise or complete way. In this review, we highlight recent advances in nonlinear system identification of neural systems, corresponding time and frequency domain analysis, and novel neural connectivity measures based on nonlinear system identification techniques. We argue that nonlinear modelling and analysis are necessary to study neuronal processing and signal transfer in neural systems quantitatively. These approaches can hopefully provide new insights to advance our understanding of neurophysiological mechanisms underlying neural functions. These nonlinear approaches also have the potential to produce sensitive biomarkers to facilitate the development of precision diagnostic tools for evaluating neurological disorders and the effects of targeted intervention.
Collapse
Affiliation(s)
- Fei He
- Centre for Data Science, Coventry University, Coventry CV1 2JH, UK
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Tulsa, OK 74135, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| |
Collapse
|
35
|
Calabrò RS, Billeri L, Ciappina F, Balletta T, Porcari B, Cannavò A, Pignolo L, Manuli A, Naro A. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation. Expert Rev Med Devices 2021; 19:83-95. [PMID: 33616471 DOI: 10.1080/17434440.2021.1894125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Conventional physical therapy interventions are strongly recommended to improve ambulation potential and upright mobility in persons with incomplete spinal cord injury (iSCI). Ankle rehabilitation plays a significant role, as it aims to stem drop foot consequences.Research question: This pilot study aimed to assess the neurophysiological underpinnings of robot-aided ankle rehabilitation (using a platform robot) compared to conventional physiotherapy and its efficacy in improving gait performance and balance in persons with iSCI.Methods: Ten individuals with subacute/chronic iSCI (six males and four females, 39 ± 13 years, time since injury 8 ± 4 months, ASIA impairment scale grade C-D) were provided with one-month intensive training for robot-aided ankle rehabilitation (24 sessions, 1 h daily, six times a week). Clinical (10-Meter Walk Test (10MWT), 6-Minute Walk Test (6MWT), and Timed Up and Go test (TUG)), and electrophysiological aftereffects (surface-EMG from tibialis anterior and medial gastrocnemius muscles to estimate muscle activation patterns; and corticomuscular coherence-CMC-to assess functional synchronization between sensorimotor cortex and muscles, i.e. the functional integrity of corticospinal output) were assessed at baseline (PRE) and after the trial completion (POST). The experimental group (EG) data were compared with those coming from a retrospective control group (CG; n = 10) matched for clinical-demographic characteristics, who previously underwent conventional ankle rehabilitation.Results: the EG achieved a greater improvement in balance and gait as compared to the CG (TUG EG from 70 ± 18 to 45 ± 15 s, p = 0.002; CG from 68 ± 21 to 48 ± 18 s, p = 0.01; group-comparison p = 0.001; 10MWT EG from 0.43 ± 0.11 to 0.51 ± 0.09 m/s, p = 0.006; CG from 0.4 ± 0.13 to 0.45 ± 0.12, p = 0.01; group-comparison p = 0.006; 6 MWT EG from 231 ± 13 to 274 ± 15 m, p < 0.001; CG from 236 ± 13 to 262 ± 15 m, p = 0.003; group-comparison p = 0.01). Furthermore, the EG showed a retraining of muscle activation (an increase within proper movements, with a reduction of co-contractions) and CMC (beta frequency increase within proper movements, i.e. in a framework of preserved motor coordination). The improvements in CMC, gait, balance, and muscle activation were not correlated with each other.Conclusions: Robot-aided ankle rehabilitation improved gait performance by selectively ameliorating CMC, muscle activation patterns, and, lastly, gait balance and speed. Despite CMC, gait, balance, and muscle activation were not correlated, this pilot study suggests that robot-aided ankle rehabilitation may favor a better communication between above-SCI and below-SCI structures. This communication improvement may depend on a more synchronized corticospinal output (as per CMC increase) and a better responsiveness of below-SCI motorneurons to corticospinal output (as per specific and ankle movement focused muscle activation increases at the surface EMG), thus favoring greater recruitment of spinal motor units and, ultimately, improving muscle activation pattern and strength.Significance: Adopting robot-aided ankle rehabilitation protocols for persons with iSCI in the subacute/chronic phase may allow achieving a clinically significant improvement in gait performance.
Collapse
Affiliation(s)
| | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Tina Balletta
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Bruno Porcari
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
36
|
van den Berg B, Manoochehri M, Kasting M, Schouten AC, van der Helm FCT, Buitenweg JR. Multisine frequency modulation of intra-epidermal electric pulse sequences: A novel tool to study nociceptive processing. J Neurosci Methods 2021; 353:109106. [PMID: 33626370 DOI: 10.1016/j.jneumeth.2021.109106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
A sustained sensory stimulus with a periodic variation of intensity creates an electrophysiological brain response at associated frequencies, referred to as the steady-state evoked potential (SSEP). The SSEPs elicited by the periodic stimulation of nociceptors in the skin may represent activity of a brain network that is primarily involved in nociceptive processing. Exploring the behavior of this network could lead to valuable insights regarding the pathway from nociceptive stimulus to pain perception. We present a method to directly modulate the pulse rate of nociceptive afferents in the skin with a multisine waveform through intra-epidermal electric stimulation. The technique was demonstrated in healthy volunteers. Each subject was stimulated using a pulse sequence modulated by a multisine waveform of 3, 7 and 13 Hz. The EEG was analyzed for the presence of the base frequencies and associated (sub)harmonics. Topographies showed significant central and contralateral SSEP responses at 3, 7 and 13 Hz in respectively 7, 4 and 3 out of the 9 participants included for analysis. As such, we found that intra-epidermal stimulation with a multisine frequency modulated pulse sequence can generate nociceptive SSEPs. The possibility to stimulate the nociceptive system using multisine frequency modulated pulses offers novel opportunities to study the temporal dynamics of nociceptive processing.
Collapse
Affiliation(s)
- Boudewijn van den Berg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Enschede, the Netherlands.
| | - Mana Manoochehri
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands
| | - Mindy Kasting
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands
| | - Alfred C Schouten
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA; Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Frans C T van der Helm
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jan R Buitenweg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| |
Collapse
|
37
|
Gu Y, Yang Y, Dewald JPA, van der Helm FCT, Schouten AC, Wei HL. Nonlinear Modeling of Cortical Responses to Mechanical Wrist Perturbations Using the NARMAX Method. IEEE Trans Biomed Eng 2021; 68:948-958. [PMID: 32746080 DOI: 10.1109/tbme.2020.3013545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Nonlinear modeling of cortical responses (EEG) to wrist perturbations allows for the quantification of cortical sensorimotor function in healthy and neurologically impaired individuals. A common model structure reflecting key characteristics shared across healthy individuals may provide a reference for future clinical studies investigating abnormal cortical responses associated with sensorimotor impairments. Thus, the goal of our study is to identify this common model structure and therefore to build a nonlinear dynamic model of cortical responses, using nonlinear autoregressive-moving-average model with exogenous inputs (NARMAX). METHODS EEG was recorded from ten participants when receiving continuous wrist perturbations. A common model structure detection method was developed for identifying a common NARMAX model structure across all participants, with individualized parameter values. The results were compared to conventional subject-specific models. RESULTS The proposed method achieved 93.91% variance accounted for (VAF) when implementing a one-step-ahead prediction and around 50% VAF for a k-step ahead prediction (k = 3), without a substantial drop of VAF as compare to subject-specific models. The estimated common structure suggests that the measured cortical response is a mixed outcome of the nonlinear transformation of external inputs and local neuronal interactions or inherent neuronal dynamics at the cortex. CONCLUSION The proposed method well determined the common characteristics across subjects in the cortical responses to wrist perturbations. SIGNIFICANCE It provides new insights into the human sensorimotor nervous system in response to somatosensory inputs and paves the way for future translational studies on assessments of sensorimotor impairments using our modeling approach.
Collapse
|
38
|
Ladda AM, Wallwork SB, Lotze M. Multimodal Sensory-Spatial Integration and Retrieval of Trained Motor Patterns for Body Coordination in Musicians and Dancers. Front Psychol 2020; 11:576120. [PMID: 33312150 PMCID: PMC7704436 DOI: 10.3389/fpsyg.2020.576120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022] Open
Abstract
Dancers and musicians are experts in spatial and temporal processing, which allows them to coordinate movement with music. This high-level processing has been associated with structural and functional adaptation of the brain for high performance sensorimotor integration. For these integration processes, adaptation does not only take place in primary and secondary sensory and motor areas but also in tertiary brain areas, such as the lateral prefrontal cortex (lPFC) and the intraparietal sulcus (IPS), providing vital resources for highly specialized performance. Here, we review evidence for the role of these brain areas in multimodal training protocols and integrate these findings into a new model of sensorimotor processing in complex motor learning.
Collapse
Affiliation(s)
- Aija Marie Ladda
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald, Germany
| | - Sarah B. Wallwork
- IIMPACT in Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Martin Lotze
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
39
|
Méndez JM, Goller F. Multifunctional bilateral muscle control of vocal output in the songbird syrinx. J Neurophysiol 2020; 124:1857-1874. [PMID: 33026896 DOI: 10.1152/jn.00332.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Songbirds produce complex vocalizations by coordinating neuromuscular control of syrinx, respiratory system, and upper vocal tract. The functional roles of syringeal muscles have been documented mainly with correlative data, which have suggested that synergistic activation plays a role in the fine control of vocal features. However, the specific involvement of individual muscles in achieving this fine control is still largely unknown. Here we investigate the contributions of the two main airflow controlling muscles, the dorsal and ventral tracheobronchial muscles in the zebra finch, through a new approach. Ablation of the muscle insertion on the cartilage framework reveals detailed insights into their respective roles in the fine control of song features. Unilateral ablation of a tracheobronchial muscle resulted in mostly subtle changes of the air sac pressure pattern and song features. Effects of ablation varied with the acoustic elements, thus indicating a context-dependent specific synergistic activation of muscles. High-frequency notes were most affected by the ablation, highlighting the importance of coordinated bilateral control. More pronounced effects on song features and air sac pressure were observed after bilateral ablation of the dorsal tracheobronchial muscles. The results illustrate that the gating muscles serve multiple functions in control of acoustic features and that each feature arises through context-dependent, synergistic activation patterns of syringeal muscles. Although many changes after the ablation are subtle, they fall within the perceptual range and thus may control behaviorally relevant features of sound. These data therefore provide important specific details about the underlying motor code for song production.NEW & NOTEWORTHY A new experimental approach was used to analyze the involvement of individual muscles in birdsong vocal control. Ablation of tracheobronchial muscles showed how these muscles contribute in manner specific to the acoustic structure of sound segments and how disruption of airflow regulation affects bilateral coordination. The results of this study illustrate that the gating muscles serve multiple functions in control of acoustic features and give further insight into the complex motor control of birdsong.
Collapse
Affiliation(s)
- Jorge M Méndez
- Department of Physics and Astronomy, Minnesota State University-Mankato, Mankato, Minnesota
| | - Franz Goller
- Department of Biology, University of Utah, Salt Lake City, Utah.,Institute of Zoophysiology, University of Münster, Münster, Germany
| |
Collapse
|
40
|
Sinha N, Heckman CJ, Yang Y. Slowly activating outward membrane currents generate input-output sub-harmonic cross frequency coupling in neurons. J Theor Biol 2020; 509:110509. [PMID: 33022285 DOI: 10.1016/j.jtbi.2020.110509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/16/2020] [Accepted: 09/27/2020] [Indexed: 02/01/2023]
Abstract
A major challenge in understanding spike-time dependent information encoding in the neural system is the non-linear firing response to inputs of the individual neurons. Hence, quantitative exploration of the putative mechanisms of this non-linear behavior is fundamental to formulating the theory of information transfer in the neural system. The objective of this simulation study was to evaluate and quantify the effect of slowly activating outward membrane current, on the non-linearity in the output of a one-compartment Hodgkin-Huxley styled neuron. To evaluate this effect, the peak conductance of the slow potassium channel (gK-slow) was varied from 0% to 200% of its normal value in steps of 33%. Both cross- and iso-frequency coupling between the input and the output of the simulated neuron was computed using a generalized coherence measure, i.e., n:m coherence. With increasing gK-slow, the amount of sub-harmonic cross-frequency coupling, where the output frequencies (1-8 Hz) are lower than the input frequencies (15-35 Hz), increased progressively whereas no change in iso-frequency coupling was observed. Power spectral and phase-space analysis of the neuronal membrane voltage vs. slow potassium channel activation variable showed that the interaction of the slow channel dynamics with the fast membrane voltage dynamics generates the observed sub-harmonic coupling. This study provides quantitative insights into the role of an important membrane mechanism i.e. the slowly activating outward current in generating non-linearities in the output of a neuron.
Collapse
Affiliation(s)
- Nirvik Sinha
- Northwestern Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, 320 E Superior Street, Morton 1-645, Chicago, IL 60611-3010, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Suite 1100, Chicago, IL 60611, USA
| | - C J Heckman
- Northwestern Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, 320 E Superior Street, Morton 1-645, Chicago, IL 60611-3010, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Suite 1100, Chicago, IL 60611, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, 310 E. Superior Street Morton 5-660, Chicago, IL 60611, USA
| | - Yuan Yang
- Northwestern Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, 320 E Superior Street, Morton 1-645, Chicago, IL 60611-3010, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Suite 1100, Chicago, IL 60611, USA; Stephenson School of Biomedical Engineering, University of Oklahoma, 4502 E. 41st St, Tulsa, OK 74135, USA; Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136, USA.
| |
Collapse
|
41
|
Tian R, Dewald JPA, Sinha N, Yang Y. Assessing Neural Connectivity and Associated Time Delays of Muscle Responses to Continuous Position Perturbations. Ann Biomed Eng 2020; 49:432-440. [PMID: 32705425 DOI: 10.1007/s10439-020-02573-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
Both linear and nonlinear electromyographic (EMG) connectivity has been reported during the expression of stretch reflexes, though it is not clear whether they are generated by the same neural pathways. To answer this question, we aim to distinguish linear and nonlinear connectivity, as well as their delays in muscle responses, resulting from continuous elbow joint perturbations. We recorded EMG from Biceps Brachii muscle when eight able-bodied participants were performing a steady elbow flexion torque while simultaneously receiving a continuous position perturbation. Using a recently developed phase coupling metric, we estimated linear and nonlinear connectivity as well as their associated delays between Biceps EMG responses and perturbations. We found that the time delay for linear connectivity (24.5 ± 5.4 ms) is in the range of short-latency stretch reflex period (< 35 ms), while that for nonlinear connectivity (53.8 ± 3.2 ms) is in the range of long-latency stretch reflex period (40-70 ms). These results suggest that the estimated linear connectivity between EMG and perturbations is very likely generated by the mono-synaptic spinal stretch reflex loop, while the nonlinear connectivity may be associated with multi-synaptic supraspinal stretch reflex loops. As such, this study provides new evidence of the nature of neural connectivity related to the stretch reflex.
Collapse
Affiliation(s)
- Runfeng Tian
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA.,Stephenson School of Biomedical Engineering, The University of Oklahoma, Tulsa, OK, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Nirvik Sinha
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
| | - Yuan Yang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA. .,Stephenson School of Biomedical Engineering, The University of Oklahoma, Tulsa, OK, USA.
| |
Collapse
|
42
|
Yang Y, Sinha N, Tian R, Gurari N, Drogos JM, Dewald JPA. Quantifying Altered Neural Connectivity of the Stretch Reflex in Chronic Hemiparetic Stroke. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1436-1441. [PMID: 32275603 DOI: 10.1109/tnsre.2020.2986304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Post-stroke flexion synergy limits arm/hand function and is also linked to hyperactive stretch reflexes or spasticity. It is implicated in the increased role of indirect motor pathways following damage to direct corticospinal projections. We hypothesized that this maladaptive neuroplasticity also affects stretch reflexes. Specifically, multi-synaptic interactions in indirect motor pathways may increase nonlinear neural connectivity and time lag between stretch and reflex muscle response. Continuous position perturbations were applied to the elbow joint when eleven participants with stroke generated two levels of shoulder abduction (SABD) torques with their paretic arm to induce synergy-related spasticity. Likewise, the perturbations were applied to eleven control subjects while performing SABD and elbow flexion levels matching the synergy torques in stroke. We quantified linear and non-linear connectivity and the corresponding time lags between perturbations and muscle activity. Enhanced nonlinear connectivity with a prolonged time lag was found in stroke as compared to controls. Non-linear connectivity and time lag also increased with the expression of the flexion synergy, as induced by greater SABD load levels, in stroke. This study provides new evidence of changes in neural connectivity and long-latency time lag in the stretch reflex response post-stroke. The results suggest the contribution of indirect motor pathways to synergy-related spasticity.
Collapse
|
43
|
Gamma frequency band shift of contralateral corticomuscular synchronous oscillations with force strength for hand movement tasks. Neuroreport 2020; 31:338-345. [PMID: 32058430 DOI: 10.1097/wnr.0000000000001409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bilateral voluntary contractions involve functional changes in both primary motor cortices. However how the unilateral voluntary contraction of hand muscles influences the contralateral corticomuscular synchronous oscillations mechanisms remains unclear. In the bimanual tasks, nine healthy subjects were instructed to generate force by abducting their left-hand index finger against a force sensor and simultaneously the right-hand precise pinch task with visual feedback. They were divided into four conditions according to the two contraction force levels of the left-hand muscles 5% and 50% maximal isometric voluntary contraction (MVC) and with/without visual feedback for the right hand. Corticomuscular synchronization of the right hand in the beta band was revealed when the subjects performed the bimanual exercise with 5% MVC of left-hand muscles, which is consistent with previous studies. As the contraction strength of the left-hand muscle increased to 50% MVC, the corticomuscular coherence (CMC) frequency of the right hand shifted to gamma band, and the CMC in beta band decreased significantly (P < 0.05) in the electroencephalography→electromyography direction. This phenomenon suggests that the corticomuscular synchronous oscillation will shift from beta band to higher frequencies (principally gamma) as the contraction force of the contralateral hand increases, which may be due to the changes in the subject's attention and more frequent synchronization of neuromuscular motor neurons oscillations. These findings will be helpful to explore the hand motion control and feedback mechanisms, and further provide a basis for the application of neuromuscular coupling in clinical rehabilitation evaluation.Video abstract: http://links.lww.com/WNR/A571.
Collapse
|
44
|
Yang Y, Yao J, Dewald JPA, van der Helm FCT, Schouten AC. Quantifying the Nonlinear Interaction in the Nervous System Based on Phase-Locked Amplitude Relationship. IEEE Trans Biomed Eng 2020; 67:2638-2645. [PMID: 31976876 DOI: 10.1109/tbme.2020.2967079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This paper introduces the Cross-frequency Amplitude Transfer Function (CATF), a model-free method for quantifying nonlinear stimulus-response interaction based on phase-locked amplitude relationship. METHOD The CATF estimates the amplitude transfer from input frequencies at stimulation signal to their harmonics/intermodulation at the response signal. We first verified the performance of CATF in simulation tests with systems containing a static nonlinear function and a linear dynamic, i.e., Hammerstein and Wiener systems. We then applied the CATF to investigate the second-order nonlinear amplitude transfer in the human proprioceptive system from the periphery to the cortex. RESULT The simulation demonstrated that the CATF is a general method, which can well quantify nonlinear stimulus-response amplitude transfer for different orders of nonlinearity in Wiener or Hammerstein system configurations. Applied to the human proprioceptive system, we found a complicated nonlinear system behavior with substantial amplitude transfer from the periphery stimulation to cortical response signals in the alpha band. This complicated system behavior may be associated with the nonlinear behavior of the muscle spindle and the dynamic interaction in the thalamocortical radiation. CONCLUSION This paper provides a new tool to identify nonlinear interaction in the nervous system. SIGNIFICANCE The results provide novel insight of nonlinear dynamics in the human proprioceptive system.
Collapse
|
45
|
Sinha N, Dewald JPA, Heckman CJ, Yang Y. Cross-Frequency Coupling in Descending Motor Pathways: Theory and Simulation. Front Syst Neurosci 2020; 13:86. [PMID: 31992973 PMCID: PMC6971171 DOI: 10.3389/fnsys.2019.00086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022] Open
Abstract
Coupling of neural oscillations is essential for the transmission of cortical motor commands to motoneuron pools through direct and indirect descending motor pathways. Most studies focus on iso-frequency coupling between brain and muscle activities, i.e., cortico-muscular coherence, which is thought to reflect motor command transmission in the mono-synaptic corticospinal pathway. Compared to this direct pathway, indirect corticobulbospinal motor pathways involve multiple intermediate synaptic connections via spinal interneurons. Neuronal processing of synaptic inputs can lead to modulation of inter-spike intervals which produces cross-frequency coupling. This theoretical study aims to evaluate the effect of the number of synaptic layers in descending pathways on the expression of cross-frequency coupling between supraspinal input and the cumulative output of the motoneuron pool using a computer simulation. We simulated descending pathways as various layers of interneurons with a terminal motoneuron pool using Hogdkin–Huxley styled neuron models. Both cross- and iso-frequency coupling between the supraspinal input and the motorneuron pool output were computed using a novel generalized coherence measure, i.e., n:m coherence. We found that the iso-frequency coupling is only dominant in the mono-synaptic corticospinal tract, while the cross-frequency coupling is dominant in multi-synaptic indirect motor pathways. Furthermore, simulations incorporating both mono-synaptic direct and multi-synaptic indirect descending pathways showed that increased reliance on a multi-synaptic indirect pathway over a mono-synaptic direct pathway enhances the dominance of cross-frequency coupling between the supraspinal input and the motorneuron pool output. These results provide the theoretical basis for future human subject study quantitatively assessing motor command transmission in indirect vs. direct pathways and its changes after neurological disorders such as unilateral brain injury.
Collapse
Affiliation(s)
- Nirvik Sinha
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yuan Yang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
46
|
Mazaheri A, Slagter HA, Thut G, Foxe JJ. Orchestration of brain oscillations: principles and functions. Eur J Neurosci 2019; 48:2385-2388. [PMID: 30276895 DOI: 10.1111/ejn.14189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ali Mazaheri
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Heleen A Slagter
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - John J Foxe
- Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
47
|
Xie P, Cheng S, Zhang Y, Liu Z, Liu H, Chen X, Li X. Direct Interaction on Specific Frequency Bands in Functional Corticomuscular Coupling. IEEE Trans Biomed Eng 2019; 67:762-772. [PMID: 31180828 DOI: 10.1109/tbme.2019.2920983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Direct interaction between the brain and muscle is significant for investigating the oscillation mechanisms in the motor control system. METHODS To our knowledge, the partial directed coherence (PDC) method is sufficient to reflect the direct interaction among multivariate time series in the frequency domain, but fails to eliminate the spectral overlap among frequency bands. Therefore, we expanded the PDC method and constructed a novel method, named variational-mode-decomposition-based PDC (VMDPDC), to describe the direct interaction on specific frequency bands. RESULTS To verify this, we made a comparison with the Granger causality (GC), PDC, and FIR-based PDC (FIRPDC) methods in two numerical models (bivariate coupling model and multivariate coupling model). After that, we applied this method to analyze the functional corticomuscular coupling (FCMC) during steady-state grip task. Simulation results showed that, compared with the GC, PDC, and FIRPDC methods, the VMDPDC method could accurately detect the direct interaction on specific frequency bands. The results on experimental data showed that the direct interaction in FCMC mainly focused on the alpha (8-15 Hz), beta (15-35 Hz), and gamma (35-60 Hz) bands. Further analysis demonstrated that the coupling strength in descending direction was significantly higher than that in the opposite direction. CONCLUSION Both simulation and experimental results indicated that the proposed method could effectively describe the direct interaction on specific frequency bands. SIGNIFICANCE This study also provides a theoretical foundation for further exploration on the mechanism of the motor control.
Collapse
|
48
|
Solis-Escalante T, van der Cruijsen J, de Kam D, van Kordelaar J, Weerdesteyn V, Schouten AC. Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands. Neuroimage 2018; 188:557-571. [PMID: 30590120 DOI: 10.1016/j.neuroimage.2018.12.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022] Open
Abstract
The contributions of the cerebral cortex to human balance control are clearly demonstrated by the profound impact of cortical lesions on the ability to maintain standing balance. The cerebral cortex is thought to regulate subcortical postural centers to maintain upright balance and posture under varying environmental conditions and task demands. However, the cortical mechanisms that support standing balance remain elusive. Here, we present an EEG-based analysis of cortical oscillatory dynamics during the preparation and execution of balance responses with distinct postural demands. In our experiment, participants responded to backward movements of the support surface either with one forward step or by keeping their feet in place. To challenge the postural control system, we applied participant-specific high accelerations of the support surface such that the postural demand was low for stepping responses and high for feet-in-place responses. We expected that postural demand modulated the power of intrinsic cortical oscillations. Independent component analysis and time-frequency domain statistics revealed stronger suppression of alpha (9-13 Hz) and low-gamma (31-34 Hz) rhythms in the supplementary motor area (SMA) when preparing for feet-in-place responses (i.e., high postural demand). Irrespective of the response condition, support-surface movements elicited broadband (3-17 Hz) power increase in the SMA and enhancement of the theta (3-7 Hz) rhythm in the anterior prefrontal cortex (PFC), anterior cingulate cortex (ACC), and bilateral sensorimotor cortices (M1/S1). Although the execution of reactive responses resulted in largely similar cortical dynamics, comparison between the bilateral M1/S1 showed that stepping responses corresponded with stronger suppression of the beta (13-17 Hz) rhythm in the M1/S1 contralateral to the support leg. Comparison between response conditions showed that feet-in-place responses corresponded with stronger enhancement of the theta (3-7 Hz) rhythm in the PFC. Our results provide novel insights into the cortical dynamics of SMA, PFC, and M1/S1 during the control of human balance.
Collapse
Affiliation(s)
- Teodoro Solis-Escalante
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Joris van der Cruijsen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Digna de Kam
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joost van Kordelaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Sint Maartenskliniek Research, Nijmegen, the Netherlands
| | - Alfred C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| |
Collapse
|
49
|
Volk D, Dubinin I, Myasnikova A, Gutkin B, Nikulin VV. Generalized Cross-Frequency Decomposition: A Method for the Extraction of Neuronal Components Coupled at Different Frequencies. Front Neuroinform 2018; 12:72. [PMID: 30405385 PMCID: PMC6200871 DOI: 10.3389/fninf.2018.00072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/26/2018] [Indexed: 11/15/2022] Open
Abstract
Perceptual, motor and cognitive processes are based on rich interactions between remote regions in the human brain. Such interactions can be carried out through phase synchronization of oscillatory signals. Neuronal synchronization has been primarily studied within the same frequency range, e.g., within alpha or beta frequency bands. Yet, recent research shows that neuronal populations can also demonstrate phase synchronization between different frequency ranges. An extraction of such cross-frequency interactions in EEG/MEG recordings remains, however, methodologically challenging. Here we present a new method for the robust extraction of cross-frequency phase-to-phase synchronized components. Generalized Cross-Frequency Decomposition (GCFD) reconstructs the time courses of synchronized neuronal components, their spatial filters and patterns. Our method extends the previous state of the art, Cross-Frequency Decomposition (CFD), to the whole range of frequencies: it works for any f1 and f2 whenever f1:f2 is a rational number. GCFD gives a compact description of non-linearly interacting neuronal sources on the basis of their cross-frequency phase coupling. We successfully validated the new method in simulations and tested it with real EEG recordings including resting state data and steady state visually evoked potentials (SSVEP).
Collapse
Affiliation(s)
- Denis Volk
- Interdisciplinary Scientific Center J.-V. Poncelet (CNRS UMI 2615), Moscow, Russia
| | - Igor Dubinin
- Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alexandra Myasnikova
- Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia
| | - Boris Gutkin
- Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia.,Group for Neural Theory, Laboratoire des Neurosciences Cognitives et Computationelles INSERM U960, Department of Cognitive Studies, Ecole Normale Superieure PSL University, Paris, France
| | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Neurophysics Group, Department of Neurology, Charité-Universittsmedizin Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany.,Center for Bioelectric Interfaces of the Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
50
|
Crevecoeur F, Kurtzer I. Long-latency reflexes for inter-effector coordination reflect a continuous state feedback controller. J Neurophysiol 2018; 120:2466-2483. [PMID: 30133376 DOI: 10.1152/jn.00205.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Successful performance in many everyday tasks requires compensating unexpected mechanical disturbance to our limbs and body. The long-latency reflex plays an important role in this process because it is the fastest response to integrate sensory information across several effectors, like when linking the elbow and shoulder or the arm and body. Despite the dozens of studies on inter-effector long-latency reflexes, there has not been a comprehensive treatment of how these reveal the basic control organization that sets constraints on any candidate model of neural feedback control such as optimal feedback control. We considered three contrasting ways that controllers can be organized: multiple independent controllers vs. a multiple-input multiple-output (MIMO) controller, a continuous feedback controller vs. an intermittent feedback controller, and a direct MIMO controller vs. a state feedback controller. Following a primer on control theory and review of the relevant evidence, we conclude that continuous state feedback control best describes the organization of inter-effector coordination by the long-latency reflex.
Collapse
Affiliation(s)
- Frederic Crevecoeur
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain , Louvain-la-Neuve , Belgium.,Institute of Neuroscience, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
| | - Isaac Kurtzer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|