1
|
Murphy E, Rollo PS, Segaert K, Hagoort P, Tandon N. Multiple dimensions of syntactic structure are resolved earliest in posterior temporal cortex. Prog Neurobiol 2024; 241:102669. [PMID: 39332803 DOI: 10.1016/j.pneurobio.2024.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
How we combine minimal linguistic units into larger structures remains an unresolved topic in neuroscience. Language processing involves the abstract construction of 'vertical' and 'horizontal' information simultaneously (e.g., phrase structure, morphological agreement), but previous paradigms have been constrained in isolating only one type of composition and have utilized poor spatiotemporal resolution. Using intracranial recordings, we report multiple experiments designed to separate phrase structure from morphosyntactic agreement. Epilepsy patients (n = 10) were presented with auditory two-word phrases grouped into pseudoword-verb ('trab run') and pronoun-verb either with or without Person agreement ('they run' vs. 'they runs'). Phrase composition and Person violations both resulted in significant increases in broadband high gamma activity approximately 300 ms after verb onset in posterior middle temporal gyrus (pMTG) and posterior superior temporal sulcus (pSTS), followed by inferior frontal cortex (IFC) at 500 ms. While sites sensitive to only morphosyntactic violations were distributed, those sensitive to both composition types were generally confined to pSTS/pMTG and IFC. These results indicate that posterior temporal cortex shows the earliest sensitivity for hierarchical linguistic structure across multiple dimensions, providing neural resources for distinct windows of composition. This region is comprised of sparsely interwoven heterogeneous constituents that afford cortical search spaces for dissociable syntactic relations.
Collapse
Affiliation(s)
- Elliot Murphy
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States.
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Katrien Segaert
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK; Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, the Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6525 HR, the Netherlands
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Memorial Hermann Hospital, Texas Medical Center, Houston, TX 77030, United States.
| |
Collapse
|
2
|
Zioga I, Kenett YN, Giannopoulos A, Luft CDB. The role of alpha oscillations in free- and goal-directed semantic associations. Hum Brain Mapp 2024; 45:e26770. [PMID: 38970217 PMCID: PMC11226545 DOI: 10.1002/hbm.26770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024] Open
Abstract
Alpha oscillations are known to play a central role in several higher-order cognitive functions, especially selective attention, working memory, semantic memory, and creative thinking. Nonetheless, we still know very little about the role of alpha in the generation of more remote semantic associations, which is key to creative and semantic cognition. Furthermore, it remains unclear how these oscillations are shaped by the intention to "be creative," which is the case in most creativity tasks. We aimed to address these gaps in two experiments. In Experiment 1, we compared alpha oscillatory activity (using a method which distinguishes genuine oscillatory activity from transient events) during the generation of free associations which were more vs. less distant from a given concept. In Experiment 2, we replicated these findings and also compared alpha oscillatory activity when people were generating free associations versus associations with the instruction to be creative (i.e. goal-directed). We found that alpha was consistently higher during the generation of more distant semantic associations, in both experiments. This effect was widespread, involving areas in both left and right hemispheres. Importantly, the instruction to be creative seems to increase alpha phase synchronisation from left to right temporal brain areas, suggesting that intention to be creative changed the flux of information in the brain, likely reflecting an increase in top-down control of semantic search processes. We conclude that goal-directed generation of remote associations relies on top-down mechanisms compared to when associations are freely generated.
Collapse
Affiliation(s)
- Ioanna Zioga
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Yoed N. Kenett
- Faculty of Data and Decision Sciences, Technion—Israel Institute of TechnologyHaifaIsrael
| | - Anastasios Giannopoulos
- School of Electrical and Computer EngineeringNational Technical University of Athens (NTUA) AthensAthensGreece
| | | |
Collapse
|
3
|
van der Burght CL, Friederici AD, Maran M, Papitto G, Pyatigorskaya E, Schroën JAM, Trettenbrein PC, Zaccarella E. Cleaning up the Brickyard: How Theory and Methodology Shape Experiments in Cognitive Neuroscience of Language. J Cogn Neurosci 2023; 35:2067-2088. [PMID: 37713672 DOI: 10.1162/jocn_a_02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The capacity for language is a defining property of our species, yet despite decades of research, evidence on its neural basis is still mixed and a generalized consensus is difficult to achieve. We suggest that this is partly caused by researchers defining "language" in different ways, with focus on a wide range of phenomena, properties, and levels of investigation. Accordingly, there is very little agreement among cognitive neuroscientists of language on the operationalization of fundamental concepts to be investigated in neuroscientific experiments. Here, we review chains of derivation in the cognitive neuroscience of language, focusing on how the hypothesis under consideration is defined by a combination of theoretical and methodological assumptions. We first attempt to disentangle the complex relationship between linguistics, psychology, and neuroscience in the field. Next, we focus on how conclusions that can be drawn from any experiment are inherently constrained by auxiliary assumptions, both theoretical and methodological, on which the validity of conclusions drawn rests. These issues are discussed in the context of classical experimental manipulations as well as study designs that employ novel approaches such as naturalistic stimuli and computational modeling. We conclude by proposing that a highly interdisciplinary field such as the cognitive neuroscience of language requires researchers to form explicit statements concerning the theoretical definitions, methodological choices, and other constraining factors involved in their work.
Collapse
Affiliation(s)
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matteo Maran
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Giorgio Papitto
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Elena Pyatigorskaya
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Joëlle A M Schroën
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Patrick C Trettenbrein
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
- University of Göttingen, Göttingen, Germany
| | - Emiliano Zaccarella
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
4
|
Liu Y, Gao C, Wang P, Friederici AD, Zaccarella E, Chen L. Exploring the neurobiology of Merge at a basic level: insights from a novel artificial grammar paradigm. Front Psychol 2023; 14:1151518. [PMID: 37287773 PMCID: PMC10242141 DOI: 10.3389/fpsyg.2023.1151518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Human language allows us to generate an infinite number of linguistic expressions. It's proposed that this competence is based on a binary syntactic operation, Merge, combining two elements to form a new constituent. An increasing number of recent studies have shifted from complex syntactic structures to two-word constructions to investigate the neural representation of this operation at the most basic level. Methods This fMRI study aimed to develop a highly flexible artificial grammar paradigm for testing the neurobiology of human syntax at a basic level. During scanning, participants had to apply abstract syntactic rules to assess whether a given two-word artificial phrase could be further merged with a third word. To control for lower-level template-matching and working memory strategies, an additional non-mergeable word-list task was set up. Results Behavioral data indicated that participants complied with the experiment. Whole brain and region of interest (ROI) analyses were performed under the contrast of "structure > word-list." Whole brain analysis confirmed significant involvement of the posterior inferior frontal gyrus [pIFG, corresponding to Brodmann area (BA) 44]. Furthermore, both the signal intensity in Broca's area and the behavioral performance showed significant correlations with natural language performance in the same participants. ROI analysis within the language atlas and anatomically defined Broca's area revealed that only the pIFG was reliably activated. Discussion Taken together, these results support the notion that Broca's area, particularly BA 44, works as a combinatorial engine where words are merged together according to syntactic information. Furthermore, this study suggests that the present artificial grammar may serve as promising material for investigating the neurobiological basis of syntax, fostering future cross-species studies.
Collapse
Affiliation(s)
- Yang Liu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Chenyang Gao
- School of Global Education and Development, University of Chinese Academy of Social Sciences, Beijing, China
| | - Peng Wang
- Method and Development Group (MEG and Cortical Networks), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Hardy SM, Jensen O, Wheeldon L, Mazaheri A, Segaert K. Modulation in alpha band activity reflects syntax composition: an MEG study of minimal syntactic binding. Cereb Cortex 2023; 33:497-511. [PMID: 35311899 PMCID: PMC9890467 DOI: 10.1093/cercor/bhac080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Successful sentence comprehension requires the binding, or composition, of multiple words into larger structures to establish meaning. Using magnetoencephalography, we investigated the neural mechanisms involved in binding at the syntax level, in a task where contributions from semantics were minimized. Participants were auditorily presented with minimal sentences that required binding (pronoun and pseudo-verb with the corresponding morphological inflection; "she grushes") and pseudo-verb wordlists that did not require binding ("cugged grushes"). Relative to no binding, we found that syntactic binding was associated with a modulation in alpha band (8-12 Hz) activity in left-lateralized language regions. First, we observed a significantly smaller increase in alpha power around the presentation of the target word ("grushes") that required binding (-0.05 to 0.1 s), which we suggest reflects an expectation of binding to occur. Second, during binding of the target word (0.15-0.25 s), we observed significantly decreased alpha phase-locking between the left inferior frontal gyrus and the left middle/inferior temporal cortex, which we suggest reflects alpha-driven cortical disinhibition serving to strengthen communication within the syntax composition neural network. Altogether, our findings highlight the critical role of rapid spatial-temporal alpha band activity in controlling the allocation, transfer, and coordination of the brain's resources during syntax composition.
Collapse
Affiliation(s)
- Sophie M Hardy
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Psychology, University of Warwick, Coventry CV4 7AL, UK
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Linda Wheeldon
- Department of Foreign Languages and Translations, University of Agder, Kristiansand 4630, Norway
| | - Ali Mazaheri
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Katrien Segaert
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Syntax through the looking glass: A review on two-word linguistic processing across behavioral, neuroimaging and neurostimulation studies. Neurosci Biobehav Rev 2022; 142:104881. [DOI: 10.1016/j.neubiorev.2022.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
|
7
|
Maran M, Numssen O, Hartwigsen G, Zaccarella E. Online neurostimulation of Broca's area does not interfere with syntactic predictions: A combined TMS-EEG approach to basic linguistic combination. Front Psychol 2022; 13:968836. [PMID: 36619118 PMCID: PMC9815778 DOI: 10.3389/fpsyg.2022.968836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023] Open
Abstract
Categorical predictions have been proposed as the key mechanism supporting the fast pace of syntactic composition in language. Accordingly, grammar-based expectations are formed-e.g., the determiner "a" triggers the prediction for a noun-and facilitate the analysis of incoming syntactic information, which is then checked against a single or few other word categories. Previous functional neuroimaging studies point towards Broca's area in the left inferior frontal gyrus (IFG) as one fundamental cortical region involved in categorical prediction during incremental language processing. Causal evidence for this hypothesis is however still missing. In this study, we combined Electroencephalography (EEG) and Transcranial Magnetic Stimulation (TMS) to test whether Broca's area is functionally relevant in predictive mechanisms for language. We transiently perturbed Broca's area during the first word in a two-word construction, while simultaneously measuring the Event-Related Potential (ERP) correlates of syntactic composition. We reasoned that if Broca's area is involved in predictive mechanisms for syntax, disruptive TMS during the first word would mitigate the difference in the ERP responses for predicted and unpredicted categories in basic two-word constructions. Contrary to this hypothesis, perturbation of Broca's area at the predictive stage did not affect the ERP correlates of basic composition. The correlation strength between the electrical field induced by TMS and the ERP responses further confirmed this pattern. We discuss the present results considering an alternative account of the role of Broca's area in syntactic composition, namely the bottom-up integration of words into constituents, and of compensatory mechanisms within the language predictive network.
Collapse
Affiliation(s)
- Matteo Maran
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany,*Correspondence: Matteo Maran,
| | - Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
8
|
Egurtzegi A, Blasi DE, Bornkessel-Schlesewsky I, Laka I, Meyer M, Bickel B, Sauppe S. Cross-linguistic differences in case marking shape neural power dynamics and gaze behavior during sentence planning. BRAIN AND LANGUAGE 2022; 230:105127. [PMID: 35605312 DOI: 10.1016/j.bandl.2022.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Languages differ in how they mark the dependencies between verbs and arguments, e.g., by case. An eye tracking and EEG picture description study examined the influence of case marking on the time course of sentence planning in Basque and Swiss German. While German assigns an unmarked (nominative) case to subjects, Basque specifically marks agent arguments through ergative case. Fixations to agents and event-related synchronization (ERS) in the theta and alpha frequency bands, as well as desynchronization (ERD) in the alpha and beta bands revealed multiple effects of case marking on the time course of early sentence planning. Speakers decided on case marking under planning early when preparing sentences with ergative-marked agents in Basque, whereas sentences with unmarked agents allowed delaying structural commitment across languages. These findings support hierarchically incremental accounts of sentence planning and highlight how cross-linguistic differences shape the neural dynamics underpinning language use.
Collapse
Affiliation(s)
- Aitor Egurtzegi
- Department of Comparative Language Science, University of Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Switzerland; English Department, University of Zurich, Switzerland
| | - Damián E Blasi
- Department of Human Evolutionary Biology, Harvard University, United States; Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, Germany
| | - Ina Bornkessel-Schlesewsky
- School of Psychology, Social Work and Social Policy, University of South Australia, Australia; Cognitive and Systems Neuroscience Research Hub, University of South Australia, Australia
| | - Itziar Laka
- Department of Linguistics and Basque Studies, University of the Basque Country (UPV/EHU), Spain
| | - Martin Meyer
- Department of Comparative Language Science, University of Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Switzerland; Cognitive Psychology Unit, Psychological Institute, University of Klagenfurt, Austria
| | - Balthasar Bickel
- Department of Comparative Language Science, University of Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Switzerland
| | - Sebastian Sauppe
- Department of Comparative Language Science, University of Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Switzerland.
| |
Collapse
|
9
|
Zheng Y, Kirk I, Chen T, O'Hagan M, Waldie KE. Task-Modulated Oscillation Differences in Auditory and Spoken Chinese-English Bilingual Processing: An Electroencephalography Study. Front Psychol 2022; 13:823700. [PMID: 35712178 PMCID: PMC9197074 DOI: 10.3389/fpsyg.2022.823700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Neurophysiological research on the bilingual activity of interpretation or interpreting has been very fruitful in understanding the bilingual brain and has gained increasing popularity recently. Issues like word interpreting and the directionality of interpreting have been attended to by many researchers, mainly with localizing techniques. Brain structures such as the dorsolateral prefrontal cortex have been repeatedly identified during interpreting. However, little is known about the oscillation and synchronization features of interpreting, especially sentence-level overt interpreting. In this study we implemented a Chinese-English sentence-level overt interpreting experiment with electroencephalography on 43 Chinese-English bilinguals and compared the oscillation and synchronization features of interpreting with those of listening, speaking and shadowing. We found significant time-frequency power differences in the delta-theta (1–7 Hz) and gamma band (above 30 Hz) between motor and silent tasks. Further theta-gamma coupling analysis revealed different synchronization networks in between speaking, shadowing and interpreting, indicating an idea-formulation dependent mechanism. Moreover, interpreting incurred robust right frontotemporal gamma coactivation network compared with speaking and shadowing, which we think may reflect the language conversion process inherent in interpreting.
Collapse
Affiliation(s)
- Yuxuan Zheng
- School of Psychology, The University of Auckland, Auckland, New Zealand
| | - Ian Kirk
- School of Psychology, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Tengfei Chen
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, China
| | - Minako O'Hagan
- School of Cultures Languages and Linguistics, The University of Auckland, Auckland, New Zealand
| | - Karen E Waldie
- School of Psychology, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Murphy E, Woolnough O, Rollo PS, Roccaforte ZJ, Segaert K, Hagoort P, Tandon N. Minimal Phrase Composition Revealed by Intracranial Recordings. J Neurosci 2022; 42:3216-3227. [PMID: 35232761 PMCID: PMC8994536 DOI: 10.1523/jneurosci.1575-21.2022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
The ability to comprehend phrases is an essential integrative property of the brain. Here, we evaluate the neural processes that enable the transition from single-word processing to a minimal compositional scheme. Previous research has reported conflicting timing effects of composition, and disagreement persists with respect to inferior frontal and posterior temporal contributions. To address these issues, 19 patients (10 male, 9 female) implanted with penetrating depth or surface subdural intracranial electrodes, heard auditory recordings of adjective-noun, pseudoword-noun, and adjective-pseudoword phrases and judged whether the phrase matched a picture. Stimulus-dependent alterations in broadband gamma activity, low-frequency power, and phase-locking values across the language-dominant left hemisphere were derived. This revealed a mosaic located on the lower bank of the posterior superior temporal sulcus (pSTS), in which closely neighboring cortical sites displayed exclusive sensitivity to either lexicality or phrase structure, but not both. Distinct timings were found for effects of phrase composition (210-300 ms) and pseudoword processing (∼300-700 ms), and these were localized to neighboring electrodes in pSTS. The pars triangularis and temporal pole encoded anticipation of composition in broadband low frequencies, and both regions exhibited greater functional connectivity with pSTS during phrase composition. Our results suggest that the pSTS is a highly specialized region composed of sparsely interwoven heterogeneous constituents that encodes both lower and higher level linguistic features. This hub in pSTS for minimal phrase processing may form the neural basis for the human-specific computational capacity for forming hierarchically organized linguistic structures.SIGNIFICANCE STATEMENT Linguists have claimed that the integration of multiple words into a phrase demands a computational procedure distinct from single-word processing. Here, we provide intracranial recordings from a large patient cohort, with high spatiotemporal resolution, to track the cortical dynamics of phrase composition. Epileptic patients volunteered to participate in a task in which they listened to phrases (red boat), word-pseudoword or pseudoword-word pairs (e.g., red fulg). At the onset of the second word in phrases, greater broadband high gamma activity was found in posterior superior temporal sulcus in electrodes that exclusively indexed phrasal meaning and not lexical meaning. These results provide direct, high-resolution signatures of minimal phrase composition in humans, a potentially species-specific computational capacity.
Collapse
Affiliation(s)
- Elliot Murphy
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Zachary J Roccaforte
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Katrien Segaert
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD Nijmegen, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, 6525 HR Nijmegen, The Netherlands
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas 77030
- Memorial Hermann Hospital, Texas Medical Center, Houston, Texas 77030
| |
Collapse
|
11
|
Segaert K, Poulisse C, Markiewicz R, Wheeldon L, Marchment D, Adler Z, Howett D, Chan D, Mazaheri A. Detecting impaired language processing in patients with mild cognitive impairment using around-the-ear cEEgrid electrodes. Psychophysiology 2021; 59:e13964. [PMID: 34791701 DOI: 10.1111/psyp.13964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Mild cognitive impairment (MCI) is the term used to identify those individuals with subjective and objective cognitive decline but with preserved activities of daily living and an absence of dementia. Although MCI can impact functioning in different cognitive domains, most notably episodic memory, relatively little is known about the comprehension of language in MCI. In this study, we used around-the-ear electrodes (cEEGrids) to identify impairments during language comprehension in patients with MCI. In a group of 23 patients with MCI and 23 age-matched controls, language comprehension was tested in a two-word phrase paradigm. We examined the oscillatory changes following word onset as a function of lexico-semantic single-word retrieval (e.g., swrfeq vs. swift) and multiword binding processes (e.g., horse preceded by swift vs. preceded by swrfeq). Electrophysiological signatures (as measured by the cEEGrids) were significantly different between patients with MCI and controls. In controls, lexical retrieval was associated with a rebound in the alpha/beta range, and binding was associated with a post-word alpha/beta suppression. In contrast, both the single-word retrieval and multiword binding signatures were absent in the MCI group. The signatures observed using cEEGrids in controls were comparable with those signatures obtained with a full-cap EEG setup. Importantly, our findings suggest that patients with MCI have impaired electrophysiological signatures for comprehending single words and multiword phrases. Moreover, cEEGrid setups provide a noninvasive and sensitive clinical tool for detecting early impairments in language comprehension in MCI.
Collapse
Affiliation(s)
- K Segaert
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - C Poulisse
- School of Psychology, University of Birmingham, Birmingham, UK
| | - R Markiewicz
- School of Psychology, University of Birmingham, Birmingham, UK
| | - L Wheeldon
- Department of Foreign Languages and Translation, University of Agder, Kristiansand, Norway
| | - D Marchment
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Z Adler
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - D Howett
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - D Chan
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - A Mazaheri
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Markiewicz R, Segaert K, Mazaheri A. How the healthy ageing brain supports semantic binding during language comprehension. Eur J Neurosci 2021; 54:7899-7917. [PMID: 34779069 DOI: 10.1111/ejn.15525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 01/02/2023]
Abstract
Semantic binding refers to constructing complex meaning based on elementary building blocks. Using electroencephalography (EEG), we investigated the age-related changes in modulations of oscillatory brain activity supporting lexical retrieval and semantic binding. Young and older adult participants were visually presented two-word phrases, which for the first word revealed a lexical retrieval signature (e.g., swift vs. swrfeq) and for the second word revealed a semantic binding signature (e.g., horse in a semantic binding "swift horse" vs. no binding "swrfeq horse" context). The oscillatory brain activity associated with lexical retrieval as well as semantic binding significantly differed between healthy older and young adults. Specifically for lexical retrieval, we found that different age groups exhibited opposite patterns of theta and alpha modulation, which as a combined picture suggest that lexical retrieval is associated with different and delayed signatures in older compared with young adults. For semantic binding, in young adults, we found a signature in the low-beta range centred around the target word onset (i.e., a smaller low-beta increase for binding relative to no binding), whereas in healthy older adults, we found an opposite binding signature about ~500 ms later in the low- and high-beta range (i.e., a smaller low- and high-beta decrease for binding relative to no binding). The novel finding of a different and delayed oscillatory signature for semantic binding in healthy older adults reflects that the integration of word meaning into the semantic context takes longer and relies on different mechanisms in healthy older compared with young adults.
Collapse
Affiliation(s)
- Roksana Markiewicz
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Katrien Segaert
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Centre for Developmental Science, University of Birmingham, Birmingham, UK
| | - Ali Mazaheri
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Poulisse C, Wheeldon L, Limachya R, Mazaheri A, Segaert K. The oscillatory mechanisms associated with syntactic binding in healthy ageing. Neuropsychologia 2020; 146:107523. [PMID: 32553723 DOI: 10.1016/j.neuropsychologia.2020.107523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/02/2023]
Abstract
Older adults frequently display differential patterns of brain activity compared to young adults in the same task, alongside widespread neuroanatomical changes. Differing functional activity patterns in older adults are commonly interpreted as being compensatory (e.g., Cabeza et al., 2002). We examined the oscillatory activity in the EEG during syntactic binding in young and older adults, as well as the relationship between oscillatory activity and behavioural performance on a syntactic judgement task within the older adults. 19 young and 41 older adults listened to two-word sentences that differentially load onto morpho-syntactic binding: correct syntactic binding (morpho-syntactically correct, e.g., "I dotch"); incorrect syntactic binding (morpho-syntactic agreement violation, e.g., "they dotches") and no syntactic binding (minimizing morpho-syntactic binding, e.g., "dotches spuff"). Behavioural performance, assessed in a syntactic judgement task, was characterized by inter-individual variability especially in older adults, with accuracy ranging from 76 to 100% in young adults and 58-100% in older adults. Compared to young adults, older adults were slower, but not less accurate. Functional neural signatures for syntactic binding were assessed as the difference in oscillatory power between the correct and no syntactic binding condition. In older adults, syntactic binding was associated with a smaller increase in theta (4-7 Hz), alpha (8-12 Hz) and beta (15-20 Hz) power in a time window surrounding the second word. There was a significant difference between the older and young adults: in the alpha range, the condition difference seemed to be in the opposite direction for older versus young adults. Our findings thus suggest that the neural signature associated with syntactic binding in older adults is different from young adults. However, we found no evidence of a significant association between behavioural performance and the neural signatures of syntactic binding for older adults, which does not readily support the predictions of compensatory models of language and ageing.
Collapse
Affiliation(s)
- Charlotte Poulisse
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom.
| | - Linda Wheeldon
- Department of Foreign Languages and Translation, University of Agder, Varemottak Universitetsveien 25 D, 4630, Kristiansand, Norway.
| | - Rupali Limachya
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom.
| | - Ali Mazaheri
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, B15 2SA, United Kingdom.
| | - Katrien Segaert
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham, B15 2SA, United Kingdom.
| |
Collapse
|
14
|
Abstract
Human language allows us to create an infinitude of ideas from a finite set of basic building blocks. What is the neurobiology of this combinatory system? Research has begun to dissect the neural basis of natural language syntax and semantics by analyzing the basics of meaning composition, such as two-word phrases. This work has revealed a system of composition that involves rapidly peaking activity in the left anterior temporal lobe and later engagement of the medial prefrontal cortex. Both brain regions show evidence of shared processing between comprehension and production, as well as between spoken and signed language. Both appear to compute meaning, not syntactic structure. This Review discusses how language builds meaning and lays out directions for future neurobiological research on the combinatory system.
Collapse
Affiliation(s)
- Liina Pylkkänen
- Departments of Linguistics and Psychology, New York University, New York, NY, USA.,NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Van Diepen RM, Foxe JJ, Mazaheri A. The functional role of alpha-band activity in attentional processing: the current zeitgeist and future outlook. Curr Opin Psychol 2019; 29:229-238. [DOI: 10.1016/j.copsyc.2019.03.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/08/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
|
16
|
Selective effects of acute low-grade inflammation on human visual attention. Neuroimage 2019; 202:116098. [PMID: 31415883 DOI: 10.1016/j.neuroimage.2019.116098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/04/2019] [Accepted: 08/11/2019] [Indexed: 12/20/2022] Open
Abstract
Illness is often accompanied by perceived cognitive sluggishness, a symptom that may stem from immune system activation. The current study used electroencephalography (EEG) to assess how inflammation affected three different distinct attentional processes: alerting, orienting and executive control. In a double-blinded placebo-controlled within-subjects design (20 healthy males, mean age = 24.5, SD = 3.4), Salmonella typhoid vaccination (0.025 mg; Typhim Vi, Sanofi Pasteur) was used to induce transient mild inflammation, while a saline injection served as a placebo-control. Participants completed the Attention Network Test with concurrent EEG recorded 6 h post-injection. Analyses focused on behavioral task performance and on modulation of oscillatory EEG activity in the alpha band (9-12 Hz) for alerting as well as orienting attention and frontal theta band (4-8 Hz) for executive control. Vaccination induced mild systemic inflammation, as assessed by interleukin-6 (IL-6) levels. While no behavioral task performance differences between the inflammation and placebo condition were evident, inflammation caused significant alterations to task-related brain activity. Specifically, inflammation produced greater cue-induced suppression of alpha power in the alerting aspect of attention and individual variation in the inflammatory response was significantly correlated with the degree of alpha power suppression. Notably, inflammation did not affect orienting (i.e., alpha lateralization) or executive control (i.e., frontal theta activity). These results reveal a unique neurophysiological sensitivity to acute mild inflammation of the neural network that underpins attentional alerting functions. Observed in the absence of performance decrements, these novel findings suggest that acute inflammation requires individuals to exert greater cognitive effort when preparing for a task in order to maintain adequate behavioral performance.
Collapse
|
17
|
Canal P, Bischetti L, Di Paola S, Bertini C, Ricci I, Bambini V. ‘Honey, shall I change the baby? – Well done, choose another one’: ERP and time-frequency correlates of humor processing. Brain Cogn 2019; 132:41-55. [DOI: 10.1016/j.bandc.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
|
18
|
Martorell J. Merging Generative Linguistics and Psycholinguistics. Front Psychol 2018; 9:2283. [PMID: 30546329 PMCID: PMC6279886 DOI: 10.3389/fpsyg.2018.02283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jordi Martorell
- Basque Center on Cognition Brain and Language, Donostia-San Sebastián, Spain
| |
Collapse
|