1
|
Comini G, Dowd E. The loaded matrix: neurotrophin-enriched hydrogels for stem cell brain repair in Parkinson's disease. Neural Regen Res 2025; 20:2315-2316. [PMID: 39359086 DOI: 10.4103/nrr.nrr-d-24-00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Giulia Comini
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| | | |
Collapse
|
2
|
Comini G, Kelly R, Jarrin S, Patton T, Narasimhan K, Pandit A, Drummond N, Kunath T, Dowd E. Survival and maturation of human induced pluripotent stem cell-derived dopaminergic progenitors in the parkinsonian rat brain is enhanced by transplantation in a neurotrophin-enriched hydrogel. J Neural Eng 2024; 21:024002. [PMID: 38479026 DOI: 10.1088/1741-2552/ad33b2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Objective.Although human induced pluripotent stem cell (iPSC)-derived cell replacement for Parkinson's disease has considerable reparative potential, its full therapeutic benefit is limited by poor graft survival and dopaminergic maturation. Injectable biomaterial scaffolds, such as collagen hydrogels, have the potential to address these issues via a plethora of supportive benefits including acting as a structural scaffold for cell adherence, shielding from the host immune response and providing a reservoir of neurotrophic factors to aid survival and differentiation. Thus, the aim of this study was to determine if a neurotrophin-enriched collagen hydrogel could improve the survival and maturation of iPSC-derived dopaminergic progenitors (iPSC-DAPs) after transplantation into the rat parkinsonian brain.Approach.Human iPSC-DAPs were transplanted into the 6-hydroxydopamine-lesioned striatum either alone, with the neurotrophins GDNF and BDNF, in an unloaded collagen hydrogel, or in a neurotrophin-loaded collagen hydrogel.Post-mortem, human nuclear immunostaining was used to identify surviving iPSC-DAPs while tyrosine hydroxylase immunostaining was used to identify iPSC-DAPs that had differentiated into mature dopaminergic neurons.Main results.We found that iPSC-DAPs transplanted in the neurotrophin-enriched collagen hydrogel survived and matured significantly better than cells implanted without the biomaterial (8 fold improvement in survival and 16 fold improvement in dopaminergic differentiation). This study shows that transplantation of human iPSC-DAPs in a neurotrophin-enriched collagen hydrogel improves graft survival and maturation in the parkinsonian rat brain.Significance.The data strongly supports further investigation of supportive hydrogels for improving the outcome of iPSC-derived brain repair in Parkinson's disease.
Collapse
Affiliation(s)
- Giulia Comini
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| | - Rachel Kelly
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Jarrin
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| | - Tommy Patton
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| | | | - Abhay Pandit
- CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Nicola Drummond
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Tilo Kunath
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Eilís Dowd
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Maheshwari S, Akram H, Bulstrode H, Kalia SK, Morizane A, Takahashi J, Natalwala A. Dopaminergic Cell Replacement for Parkinson's Disease: Addressing the Intracranial Delivery Hurdle. JOURNAL OF PARKINSON'S DISEASE 2024; 14:415-435. [PMID: 38457149 DOI: 10.3233/jpd-230328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Parkinson's disease (PD) is an increasingly prevalent neurological disorder, affecting more than 8.5 million individuals worldwide. α-Synucleinopathy in PD is considered to cause dopaminergic neuronal loss in the substantia nigra, resulting in characteristic motor dysfunction that is the target for current medical and surgical therapies. Standard treatment for PD has remained unchanged for several decades and does not alter disease progression. Furthermore, symptomatic therapies for PD are limited by issues surrounding long-term efficacy and side effects. Cell replacement therapy (CRT) presents an alternative approach that has the potential to restore striatal dopaminergic input and ameliorate debilitating motor symptoms in PD. Despite promising pre-clinical data, CRT has demonstrated mixed success clinically. Recent advances in graft biology have renewed interest in the field, resulting in several worldwide ongoing clinical trials. However, factors surrounding the effective neurosurgical delivery of cell grafts have remained under-studied, despite their significant potential to influence therapeutic outcomes. Here, we focus on the key neurosurgical factors to consider for the clinical translation of CRT. We review the instruments that have been used for cell graft delivery, highlighting current features and limitations, while discussing how future devices could address these challenges. Finally, we review other novel developments that may enhance graft accessibility, delivery, and efficacy. Challenges surrounding neurosurgical delivery may critically contribute to the success of CRT, so it is crucial that we address these issues to ensure that CRT does not falter at the final hurdle.
Collapse
Affiliation(s)
- Saumya Maheshwari
- The Medical School, University of Edinburgh, Edinburgh BioQuarter, UK
| | - Harith Akram
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Harry Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Division of Academic Neurosurgery, University of Cambridge, Cambridge, UK
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Regenerative Medicine, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ammar Natalwala
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
- Department for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| |
Collapse
|
4
|
Xu J, Chen TY, Tai CH, Hsu SH. Bioactive self-healing hydrogel based on tannic acid modified gold nano-crosslinker as an injectable brain implant for treating Parkinson's disease. Biomater Res 2023; 27:8. [PMID: 36755333 PMCID: PMC9909866 DOI: 10.1186/s40824-023-00347-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common long-term neurodegenerative diseases. Current treatments for PD are mostly based on surgery and medication because of the limitation and challenges in selecting proper biomaterials. In this study, an injectable bioactive hydrogel based on novel tannic acid crosslinker was developed to treat PD. METHODS The oxidized tannic acid modified gold nano-crosslinker was synthesized and used to effectively crosslink chitosan for preparation of the bioactive self-healing hydrogel. The crosslinking density, conductivity, self-healing ability, and injectability of the hydrogel were characterized. Abilities of the hydrogel to promote the proliferation and differentiation of neural stem cells (NSCs) were assessed in vitro. Anti-inflammatory property was analyzed on J774A.1 macrophages. The hydrogel was injected in the PD rat model for evaluation of the motor function recovery, electrophysiological performance improvement, and histological repair. RESULTS The hydrogel exhibited self-healing property and 34G (~ 80 μm) needle injectability. NSCs grown in the hydrogel displayed long-term proliferation and differentiation toward neurons in vitro. Besides, the hydrogel owned strong anti-inflammatory and antioxidative capabilities to rescue inflamed NSCs (~ 90%). Brain injection of the bioactive hydrogel recovered the motor function of PD rats. Electrophysiological measurements showed evident alleviation of irregular discharge of nerve cells in the subthalamic nucleus of PD rats administered with the hydrogel. Histological examination confirmed that the hydrogel alone significantly increased the density of tyrosine hydroxylase positive neurons and fibers as well as reduced inflammation, with a high efficacy similar to drug-loaded hydrogel. CONCLUSION The new bioactive hydrogel serves as an effective brain injectable implant to treat PD and a promising biomaterial for developing novel strategies to treat brain diseases.
Collapse
Affiliation(s)
- Junpeng Xu
- grid.19188.390000 0004 0546 0241Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617 Taiwan, Republic of China
| | - Tsai-Yu Chen
- grid.19188.390000 0004 0546 0241Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617 Taiwan, Republic of China
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, No.7, Zhongshan South Road, Zhongzheng District, Taipei, 100225, Taiwan, Republic of China.
| | - Shan-hui Hsu
- grid.19188.390000 0004 0546 0241Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617 Taiwan, Republic of China ,grid.59784.370000000406229172Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli, 35053 Taiwan, Republic of China
| |
Collapse
|
5
|
Torres-Ortega PV, Del Campo-Montoya R, Plano D, Paredes J, Aldazabal J, Luquin MR, Santamaría E, Sanmartín C, Blanco-Prieto MJ, Garbayo E. Encapsulation of MSCs and GDNF in an Injectable Nanoreinforced Supramolecular Hydrogel for Brain Tissue Engineering. Biomacromolecules 2022; 23:4629-4644. [DOI: 10.1021/acs.biomac.2c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pablo Vicente Torres-Ortega
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - Rubén Del Campo-Montoya
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - Jacobo Paredes
- Tecnun, School of Engineering, University of Navarra, C/Manuel de Lardizábal 15, 20018San Sebastián, Spain
| | - Javier Aldazabal
- Tecnun, School of Engineering, University of Navarra, C/Manuel de Lardizábal 15, 20018San Sebastián, Spain
| | - María-Rosario Luquin
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
- Department of Neurology and Neurosciences, Clínica Universidad de Navarra, Pamplona, C/Pío XII 36, 31008Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdisNa), 31008Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - María J. Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008Pamplona, Spain
| |
Collapse
|
6
|
Del Campo-Montoya R, Luquin MR, Puerta E, Garbayo E, Blanco-Prieto M. Hydrogels for Brain Repair: Application to Parkinson's Disease. Expert Opin Drug Deliv 2022; 19:1521-1537. [PMID: 36240170 DOI: 10.1080/17425247.2022.2136161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Parkinson's disease is the second most common neurodegenerative disease. Currently, there are no curative therapies, with only symptomatic treatment available. One of the principal reasons for the lack of treatments is the problem of delivering drugs to the brain, mainly due to the blood-brain barrier. Hydrogels are presented as ideal platforms for delivering treatments to the brain ranging from small molecules to cell replacement therapies. AREAS COVERED The potential application of hydrogel-based therapies for Parkinson's disease is addressed. The desirable composition and mechanical properties of these therapies for brain application are discussed, alongside the preclinical research available with hydrogels in Parkinson's disease. Lastly, translational and manufacturing challenges are presented. EXPERT OPINION Parkinson's disease urgently needs novel therapies to delay its progression and for advanced stages, at which conventional therapies fail to control motor symptoms. Neurotrophic factor-loaded hydrogels with stem cells offer one of the most promising therapies. This approach may increase the striatal dopamine content while protecting and promoting the differentiation of stem cells although the generation of synapses between engrafted and host cells remains an issue to overcome. Other challenges to consider are related to the route of administration of hydrogels and their large-scale production, required to accelerate their translation toward the clinic.
Collapse
Affiliation(s)
| | | | | | - E Garbayo
- University of navarra, pamplona, 31008 spain
| | | |
Collapse
|
7
|
Adachi H, Morizane A, Torikoshi S, Raudzus F, Taniguchi Y, Miyamoto S, Sekiguchi K, Takahashi J. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:767-777. [PMID: 35605097 PMCID: PMC9299512 DOI: 10.1093/stcltm/szac033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hiromasa Adachi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Morizane
- Corresponding authors: Asuka Morizane, MD, PhD, Kobe City Medical Center General Hospital, Center for Clinical Research and Innovation, 2-1-1, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650 0046, Japan, Tel: +81 78 302 4321; Fax: +81 78 302 7537;
| | - Sadaharu Torikoshi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fabian Raudzus
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Neuronal Signaling and Regeneration Unit, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Medical Education Center/International Education Section, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Susumu Miyamoto
- Kobe City Medical Center General Hospital, Center for Clinical Research and Innovation, Hyogo, Japan
| | - Kiyotoshi Sekiguchi
- Kiyotoshi Sekiguchi, PhD (for chimeric laminin fragments), Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Tel: +81 6 6105 5935; Fax: +81 6 6105 5935; Email;
| | - Jun Takahashi
- Jun Takahashi, MD, PhD, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan. Tel: +81 75 366 7052; Fax: +81 75 366 7071;
| |
Collapse
|
8
|
Anti-inflammatory cytokine-eluting collagen hydrogel reduces the host immune response to dopaminergic cell transplants in a rat model of Parkinson's disease. Neuronal Signal 2021; 5:NS20210028. [PMID: 34497719 PMCID: PMC8385187 DOI: 10.1042/ns20210028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
In cell replacement approaches for Parkinson’s disease, the intracerebral implantation of dopamine neuron-rich grafts generates a neuroinflammatory response to the grafted cells that contributes to its varied outcome. Thus, the aim of the present study was to fabricate an anti-inflammatory cytokine-eluting collagen hydrogel capable of delivering interleukin (IL)-10 to the brain for reduction of the neuroinflammatory response to intracerebral cellular grafts. In vitro assessment revealed that cross-linker concentration affected the microstructure and gelation kinetics of the hydrogels and their IL-10 elution kinetics, but not their cytocompatibility or the functionality of the eluted IL-10. In vivo evaluation revealed that the hydrogels were capable of delivering and retaining IL-10 in the rat striatum, and reducing the neuroinflammatory (microglial) response to hydrogel-encapsulated grafts. In conclusion, IL-10-eluting collagen hydrogels may have beneficial anti-inflammatory effects in the context of cellular brain repair therapies for Parkinson’s disease and should be investigated further.
Collapse
|
9
|
Guo X, Tang L, Tang X. Current Developments in Cell Replacement Therapy for Parkinson's Disease. Neuroscience 2021; 463:370-382. [PMID: 33774124 DOI: 10.1016/j.neuroscience.2021.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is characterized by tremor, rigidity, and bradykinesia. PD is caused mainly by depletion of the nigrostriatal pathway. Conventional medications such as levodopa are highly effective in the early stage of PD; however, these medications fail to prevent the underlying neurodegeneration. Cell replacement therapy (CRT) is a strategy to achieve long-term motor improvements by preventing or slowing disease progression. Replacement therapy can also increase the number of surviving dopaminergic neurons, an outcome confirmed by positron emission tomography and immunostaining. Several promising cell sources offer authentic and functional dopaminergic replacement neurons. These cell sources include fetal ventral mesencephalic tissue, embryonic stem cells (ESCs), neural stem cells (NSCs), mesenchymal stem cells (MSCs) from various tissues, induced pluripotent stem cells (iPSCs), and induced neural cells. To fully develop the potential of CRT, we need to recognize the advantages and limitations of these cell sources. For example, although fetal ventral midbrain is efficacious in some patients, its ethical issues and the existence of graft-induced dyskinesias (GID) have prevented its use in large-scale clinical applications. ESCs have reliable isolation protocols and the potential to differentiate into dopaminergic progenitors. iPSCs and induced neural cells are suitable for autologous grafting. Here we review milestone improvements and emerging sources for cell-based PD therapy to serve as a framework for clinicians and a key reference to develop replacement therapy for other neurological disorders.
Collapse
Affiliation(s)
- Xiaoqian Guo
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Lisha Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangqi Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
10
|
Harari-Steinberg O, Omer D, Gnatek Y, Pleniceanu O, Goldberg S, Cohen-Zontag O, Pri-Chen S, Kanter I, Ben Haim N, Becker E, Ankawa R, Fuchs Y, Kalisky T, Dotan Z, Dekel B. Ex Vivo Expanded 3D Human Kidney Spheres Engraft Long Term and Repair Chronic Renal Injury in Mice. Cell Rep 2021; 30:852-869.e4. [PMID: 31968258 DOI: 10.1016/j.celrep.2019.12.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 10/04/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
End-stage renal disease is a worldwide epidemic requiring renal replacement therapy. Harvesting tissue from failing kidneys and autotransplantation of tissue progenitors could theoretically delay the need for dialysis. Here we use healthy and end-stage human adult kidneys to robustly expand proliferative kidney epithelial cells and establish 3D kidney epithelial cultures termed "nephrospheres." Formation of nephrospheres reestablishes renal identity and function in primary cultures. Transplantation into NOD/SCID mice shows that nephrospheres restore self-organogenetic properties lost in monolayer cultures, allowing long-term engraftment as tubular structures, potentially adding nephron segments and demonstrating self-organization as critical to survival. Furthermore, long-term tubular engraftment of nephrospheres is functionally beneficial in murine models of chronic kidney disease. Remarkably, nephrospheres inhibit pro-fibrotic collagen production in cultured fibroblasts via paracrine modulation, while transplanted nephrospheres induce transcriptional signatures of proliferation and release from quiescence, suggesting re-activation of endogenous repair. These data support the use of human nephrospheres for renal cell therapy.
Collapse
Affiliation(s)
- Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sanja Goldberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Cohen-Zontag
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sara Pri-Chen
- The Maurice and Gabriela Goldschleger Eye Research Institute, Sheba Medical Center, Ramat-Gan, Israel
| | - Itamar Kanter
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Nissim Ben Haim
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Eli Becker
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Roi Ankawa
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tomer Kalisky
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Zohar Dotan
- Department of Urology, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Nephrology, Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.
| |
Collapse
|
11
|
Jarrin S, Cabré S, Dowd E. The potential of biomaterials for central nervous system cellular repair. Neurochem Int 2021; 144:104971. [PMID: 33515647 DOI: 10.1016/j.neuint.2021.104971] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/01/2023]
Abstract
The central nervous system (CNS) can be injured or damaged through a variety of insults including traumatic injury, stroke, and neurodegenerative or demyelinating diseases, including Alzheimer's disease, Parkinson's disease and multiple sclerosis. Existing pharmacological and other therapeutics strategies are limited in their ability to repair or regenerate damaged CNS tissue meaning there are significant unmet clinical needs facing patients suffering CNS damage and/or degeneration. Through a variety of mechanisms including neuronal replacement, secretion of therapeutic factors, and stimulation of host brain plasticity, cell-based repair offers a potential mechanism to repair and heal the damaged CNS. However, over the decades of its evolution as a therapeutic strategy, cell-based CNS repair has faced significant hurdles that have prevented its translation to widespread clinical practice. In recent years, advances in cell technologies combined with advances in biomaterial-based regenerative medicine and tissue engineering have meant there is very real potential for many of these hurdles to be overcome. This review will provide an overview of the main CNS conditions that lend themselves to cellular repair and will then outline the potential of biomaterial-based approaches for improving the outcome of cellular repair in these conditions.
Collapse
Affiliation(s)
- Sarah Jarrin
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Sílvia Cabré
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
12
|
Björklund A, Parmar M. Neuronal Replacement as a Tool for Basal Ganglia Circuitry Repair: 40 Years in Perspective. Front Cell Neurosci 2020; 14:146. [PMID: 32547369 PMCID: PMC7272540 DOI: 10.3389/fncel.2020.00146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/30/2020] [Indexed: 01/07/2023] Open
Abstract
The ability of new neurons to promote repair of brain circuitry depends on their capacity to re-establish afferent and efferent connections with the host. In this review article, we give an overview of past and current efforts to restore damaged connectivity in the adult mammalian brain using implants of fetal neuroblasts or stem cell-derived neuronal precursors, with a focus on strategies aimed to repair damaged basal ganglia circuitry induced by lesions that mimic the pathology seen in humans affected by Parkinson’s or Huntington’s disease. Early work performed in rodents showed that neuroblasts obtained from striatal primordia or fetal ventral mesencephalon can become anatomically and functionally integrated into lesioned striatal and nigral circuitry, establish afferent and efferent connections with the lesioned host, and reverse the lesion-induced behavioral impairments. Recent progress in the generation of striatal and nigral progenitors from pluripotent stem cells have provided compelling evidence that they can survive and mature in the lesioned brain and re-establish afferent and efferent axonal connectivity with a remarkable degree of specificity. The studies of cell-based circuitry repair are now entering a new phase. The introduction of genetic and virus-based techniques for brain connectomics has opened entirely new possibilities for studies of graft-host integration and connectivity, and the access to more refined experimental techniques, such as chemo- and optogenetics, has provided new powerful tools to study the capacity of grafted neurons to impact the function of the host brain. Progress in this field will help to guide the efforts to develop therapeutic strategies for cell-based repair in Huntington’s and Parkinson’s disease and other neurodegenerative conditions involving damage to basal ganglia circuitry.
Collapse
Affiliation(s)
- Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Front Aging Neurosci 2020; 12:4. [PMID: 32076403 PMCID: PMC7006457 DOI: 10.3389/fnagi.2020.00004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - J Alex Grizzell
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
14
|
Thuringer D, Garrido C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection? FASEB J 2019; 33:11629-11639. [PMID: 31348679 DOI: 10.1096/fj.201900895r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain microvascular endothelial cells (BMECs) interact with astrocytes and pericytes to form the blood-brain barrier (BBB). Their compromised function alters the BBB integrity, which is associated with early events in the pathogenesis of cancer, neurodegenerative diseases, and epilepsy. Interestingly, these conditions also induce the expression of heat shock proteins (HSPs). Here we review the contribution of major HSP families to BMEC and BBB function. Although investigators mainly report protective effects of HSPs in brain, contrasted results were obtained in BMEC, which depend both on the HSP and on its location, intra- or extracellular. The therapeutic potential of HSPs must be scrupulously analyzed before targeting them in patients to reduce the progression of brain lesions and improve neurologic outcomes in the long term.-Thuringer, D., Garrido, C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection?
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Carmen Garrido
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
15
|
Bruggeman KF, Moriarty N, Dowd E, Nisbet DR, Parish CL. Harnessing stem cells and biomaterials to promote neural repair. Br J Pharmacol 2019; 176:355-368. [PMID: 30444942 PMCID: PMC6329623 DOI: 10.1111/bph.14545] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
With the limited capacity for self-repair in the adult CNS, efforts to stimulate quiescent stem cell populations within discrete brain regions, as well as harness the potential of stem cell transplants, offer significant hope for neural repair. These new cells are capable of providing trophic cues to support residual host populations and/or replace those cells lost to the primary insult. However, issues with low-level adult neurogenesis, cell survival, directed differentiation and inadequate reinnervation of host tissue have impeded the full potential of these therapeutic approaches and their clinical advancement. Biomaterials offer novel approaches to stimulate endogenous neurogenesis, as well as for the delivery and support of neural progenitor transplants, providing a tissue-appropriate physical and trophic milieu for the newly integrating cells. In this review, we will discuss the various approaches by which bioengineered scaffolds may improve stem cell-based therapies for repair of the CNS.
Collapse
Affiliation(s)
- K F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of EngineeringThe Australian National UniversityCanberraACTAustralia
| | - N Moriarty
- Pharmacology and Therapeutics and Galway Neuroscience CentreNational University of Ireland GalwayGalwayIreland
| | - E Dowd
- Pharmacology and Therapeutics and Galway Neuroscience CentreNational University of Ireland GalwayGalwayIreland
| | - D R Nisbet
- Laboratory of Advanced Biomaterials, Research School of EngineeringThe Australian National UniversityCanberraACTAustralia
| | - C L Parish
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|