1
|
Karimi-Sani I, Sharifi M, Abolpour N, Lotfi M, Atapour A, Takhshid MA, Sahebkar A. Drug repositioning for Parkinson's disease: An emphasis on artificial intelligence approaches. Ageing Res Rev 2025; 104:102651. [PMID: 39755176 DOI: 10.1016/j.arr.2024.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Parkinson's disease (PD) is one of the most incapacitating neurodegenerative diseases (NDDs). PD is the second most common NDD worldwide which affects approximately 1-2 percent of people over 65 years. It is an attractive pursuit for artificial intelligence (AI) to contribute to and evolve PD treatments through drug repositioning by repurposing existing drugs, shelved drugs, or even candidates that do not meet the criteria for clinical trials. A search was conducted in three databases Web of Science, Scopus, and PubMed. We reviewed the data related to the last years (1975-present) to identify those drugs currently being proposed for repositioning in PD. Moreover, we reviewed the present status of the computational approach, including AI/Machine Learning (AI/ML)-powered pharmaceutical discovery efforts and their implementation in PD treatment. It was found that the number of drug repositioning studies for PD has increased recently. Repositioning of drugs in PD is taking off, and scientific communities are increasingly interested in communicating its results and finding effective treatment alternatives for PD. A better chance of success in PD drug discovery has been made possible due to AI/ML algorithm advancements. In addition to the experimentation stage of drug discovery, it is also important to leverage AI in the planning stage of clinical trials to make them more effective. New AI-based models or solutions that increase the success rate of drug development are greatly needed.
Collapse
Affiliation(s)
- Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehrdad Sharifi
- Emergency Medicine Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Artificial Intelligence Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nahid Abolpour
- Artificial Intelligence Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehrzad Lotfi
- Artificial Intelligence Department, Shiraz University of Medical Sciences, Shiraz, Iran; Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad-Ali Takhshid
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Tenchov R, Sasso JM, Zhou QA. Evolving Landscape of Parkinson's Disease Research: Challenges and Perspectives. ACS OMEGA 2025; 10:1864-1892. [PMID: 39866628 PMCID: PMC11755173 DOI: 10.1021/acsomega.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects movement. It occurs due to a gradual deficit of dopamine-producing brain cells, particularly in the substantia nigra. The precise etiology of PD is not fully understood, but it likely involves a combination of genetic and environmental factors. The therapies available at present alleviate symptoms but do not stop the disease's advancement. Research endeavors are currently directed at inventing disease-controlling therapies that aim at the inherent mechanisms of PD. PD biomarker breakthroughs hold enormous potential: earlier diagnosis, better monitoring, and targeted treatment based on individual response could significantly improve patient outcomes and ease the burden of this disease. PD research is an active and evolving field, focusing on understanding disease mechanisms, identifying biomarkers, developing new treatments, and improving care. In this report, we explore data from the CAS Content Collection to outline the research progress in PD. We analyze the publication landscape to offer perspective into the latest expertise advancements. Key emerging concepts are reviewed and strategies to fight disease evaluated. Pharmacological targets, genetic risk factors, as well as comorbid diseases are explored, and clinical usage of products against PD with their production pipelines and trials for drug repurposing are examined. This review aims to offer a comprehensive overview of the advancing landscape of the current understanding about PD, to define challenges, and to assess growth prospects to stimulate efforts in battling the disease.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
3
|
Cardinale A, de Iure A, Picconi B. Neuroinflammation and Dyskinesia: A Possible Causative Relationship? Brain Sci 2024; 14:514. [PMID: 38790492 PMCID: PMC11118841 DOI: 10.3390/brainsci14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Levodopa (L-DOPA) treatment represents the gold standard therapy for Parkinson's disease (PD) patients. L-DOPA therapy shows many side effects, among them, L-DOPA-induced dyskinesias (LIDs) remain the most problematic. Several are the mechanisms underlying these processes: abnormal corticostriatal neurotransmission, pre- and post-synaptic neuronal events, changes in gene expression, and altered plasticity. In recent years, researchers have also suggested non-neuronal mechanisms as a possible cause for LIDs. We reviewed recent clinical and pre-clinical studies on neuroinflammation contribution to LIDs. Microglia and astrocytes seem to play a strategic role in LIDs phenomenon. In particular, their inflammatory response affects neuron-glia communication, synaptic activity and neuroplasticity, contributing to LIDs development. Finally, we describe possible new therapeutic interventions for dyskinesia prevention targeting glia cells.
Collapse
Affiliation(s)
- Antonella Cardinale
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Antonio de Iure
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| |
Collapse
|
4
|
Ribeiro DL, Guimarães RP, Bariotto-Dos-Santos K, Del Bel E, Padovan-Neto FE. Sodium nitroprusside enhances stepping test performance and increases medium spiny neurons responsiveness to cortical inputs in a rat model of Levodopa-induced dyskinesias. Eur J Neurosci 2024; 59:1604-1620. [PMID: 38359910 DOI: 10.1111/ejn.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
Levodopa (L-DOPA) is the classical gold standard treatment for Parkinson's disease. However, its chronic administration can lead to the development of L-DOPA-induced dyskinesias (LIDs). Dysregulation of the nitric oxide-cyclic guanosine monophosphate pathway in striatal networks has been linked to deficits in corticostriatal transmission in LIDs. This study investigated the effects of the nitric oxide (NO) donor sodium nitroprusside (SNP) on behavioural and electrophysiological outcomes in sham-operated and 6-hydroxydopamine-lesioned rats chronically treated with vehicle or L-DOPA, respectively. In sham-operated animals, systemic administration of SNP increased the spike probability of putative striatal medium spiny neurons (MSNs) in response to electrical stimulation of the primary motor cortex. In 6-hydroxydopamine-lesioned animals, SNP improved the stepping test performance without exacerbating abnormal involuntary movements. Additionally, SNP significantly increased the responsiveness of putative striatal MSNs in the dyskinetic striatum. These findings highlight the critical role of the NO signalling pathway in facilitating the responsiveness of striatal MSNs in both the intact and dyskinetic striata. The study suggests that SNP has the potential to enhance L-DOPA's effects in the stepping test without exacerbating abnormal involuntary movements, thereby offering new possibilities for optimizing Parkinson's disease therapy. In conclusion, this study highlights the involvement of the NO signalling pathway in the pathophysiology of LIDs.
Collapse
Affiliation(s)
- Danilo Leandro Ribeiro
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rayanne Poletti Guimarães
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Keila Bariotto-Dos-Santos
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando E Padovan-Neto
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
5
|
Gureev AP, Alimova AA, Silachev DN, Plotnikov EY. Noncoupled Mitochondrial Respiration as Therapeutic Approach for the Treatment of Metabolic Diseases: Focus on Transgenic Animal Models. Int J Mol Sci 2023; 24:16491. [PMID: 38003681 PMCID: PMC10671337 DOI: 10.3390/ijms242216491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction contributes to numerous chronic diseases, and mitochondria are targets for various toxins and xenobiotics. Therefore, the development of drugs or therapeutic strategies targeting mitochondria is an important task in modern medicine. It is well known that the primary, although not the sole, function of mitochondria is ATP generation, which is achieved by coupled respiration. However, a high membrane potential can lead to uncontrolled reactive oxygen species (ROS) production and associated dysfunction. For over 50 years, scientists have been studying various synthetic uncouplers, and for more than 30 years, uncoupling proteins that are responsible for uncoupled respiration in mitochondria. Additionally, the proteins of the mitochondrial alternative respiratory pathway exist in plant mitochondria, allowing noncoupled respiration, in which electron flow is not associated with membrane potential formation. Over the past two decades, advances in genetic engineering have facilitated the creation of various cellular and animal models that simulate the effects of uncoupled and noncoupled respiration in different tissues under various disease conditions. In this review, we summarize and discuss the findings obtained from these transgenic models. We focus on the advantages and limitations of transgenic organisms, the observed physiological and biochemical changes, and the therapeutic potential of uncoupled and noncoupled respiration.
Collapse
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.); (A.A.A.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Alina A. Alimova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.); (A.A.A.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
6
|
Herrero MT, Yuste JE, Cuenca-Bermejo L, Almela P, Arenas-Betancur L, De Pablos V, Gonzalez-Cuello A, Del Bel E, Navarro-Zaragoza J, Fernández-Villalba E. 7-Nitroindazole reduces L-DOPA-induced dyskinesias in non-human Parkinsonian primate. Open Biol 2023; 13:220370. [PMID: 37192671 DOI: 10.1098/rsob.220370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/31/2023] [Indexed: 05/18/2023] Open
Abstract
Nitric oxide (NO) plays a pivotal role in integrating dopamine transmission in the basal ganglia and has been implicated in the pathogenesis of Parkinson disease (PD). The objective of this study was to ascertain whether the NO synthase inhibitor, 7-nitroindazole (7-NI), is able to reduce L-DOPA-induced dyskinesias (LIDs) in a non-human primate model of PD chronically intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Six Parkinsonian macaques were treated daily with L-DOPA for 3-4 months until they developed LIDs. Three animals were then co-treated with a single dose of 7-NI administered 45 min before each L-DOPA treatment. Dyskinetic MPTP-treated monkeys showed a significant decrease in LIDs compared with their scores without 7-NI treatment (p < 0.05). The anti-Parkinsonian effect of L-DOPA was similar in all three monkeys with and without 7-NI co-treatment. This improvement was significant with respect to the intensity and duration of LIDs while the beneficial effect of L-DOPA treatment was maintained and could represent a promising therapy to improve the quality of life of PD patients.
Collapse
Affiliation(s)
- M T Herrero
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - J E Yuste
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
| | - L Cuenca-Bermejo
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - P Almela
- Department of Pharmacology, School of Medicine, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - L Arenas-Betancur
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
| | - V De Pablos
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - A Gonzalez-Cuello
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - E Del Bel
- Department of Basic and Oral Biology, Faculty of Odontology of Ribeirão Preto (FORP-USP) and Center for Research Support on Applied Neuroscience (NAPNA-USP), University of São Paulo, Ribeirão Preto, SP 14040-904, Brazil
| | - J Navarro-Zaragoza
- Department of Pharmacology, School of Medicine, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| | - E Fernández-Villalba
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research, School of Medicine, Campus Mare Nostrum, The European University for Well-Being, EUniWell, University of Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Campus of Health Sciences, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
7
|
Hernández-Parra H, Cortés H, Avalos-Fuentes JA, Del Prado-Audelo M, Florán B, Leyva-Gómez G, Sharifi-Rad J, Cho WC. Repositioning of drugs for Parkinson's disease and pharmaceutical nanotechnology tools for their optimization. J Nanobiotechnology 2022; 20:413. [PMID: 36109747 PMCID: PMC9479294 DOI: 10.1186/s12951-022-01612-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Parkinson's disease (PD) significantly affects patients' quality of life and represents a high economic burden for health systems. Given the lack of safe and effective treatments for PD, drug repositioning seeks to offer new medication alternatives, reducing research time and costs compared to the traditional drug development strategy. This review aimed to collect evidence of drugs proposed as candidates to be reused in PD and identify those with the potential to be reformulated into nanocarriers to optimize future repositioning trials. We conducted a detailed search in PubMed, Web of Science, and Scopus from January 2015 at the end of 2021, with the descriptors "Parkinson's disease" and "drug repositioning" or "drug repurposing". We identified 28 drugs as potential candidates, and six of them were found in repositioning clinical trials for PD. However, a limitation of many of these drugs to achieve therapeutic success is their inability to cross the blood-brain barrier (BBB), as is the case with nilotinib, which has shown promising outcomes in clinical trials. We suggest reformulating these drugs in biodegradable nanoparticles (NPs) based on lipids and polymers to perform future trials. As a complementary strategy, we propose functionalizing the NPs surface by adding materials to the surface layer. Among other advantages, functionalization can promote efficient crossing through the BBB and improve the affinity of NPs towards certain brain regions. The main parameters to consider for the design of NPs targeting the central nervous system are highlighted, such as size, PDI, morphology, drug load, and Z potential. Finally, current advances in the use of NPs for Parkinson's disease are cited.
Collapse
Affiliation(s)
- Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación Y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - María Del Prado-Audelo
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, 14380 Ciudad de México, Mexico
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
8
|
Gureev AP, Sadovnikova IS, Popov VN. Molecular Mechanisms of the Neuroprotective Effect of Methylene Blue. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:940-956. [PMID: 36180986 DOI: 10.1134/s0006297922090073] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Methylene blue (MB) is the first fully synthetic compound that had found its way into medicine over 120 years ago as a treatment against malaria. MB has been approved for the treatment of methemoglobinemia, but there are premises for its repurposing as a neuroprotective agent based on the efficacy of this compound demonstrated in the models of Alzheimer's, Parkinson's, and Huntington's diseases, traumatic brain injury, amyotrophic lateral sclerosis, depressive disorders, etc. However, the goal of this review was not so much to focus on the therapeutic effects of MB in the treatment of various neurodegeneration diseases, but to delve into the mechanisms of direct or indirect effect of this drug on the signaling pathways. MB can act as an alternative electron carrier in the mitochondrial respiratory chain in the case of dysfunctional electron transport chain. It also displays the anti-inflammatory and anti-apoptotic effects, inhibits monoamine oxidase (MAO) and nitric oxide synthase (NOS), activates signaling pathways involved in the mitochondrial pool renewal (mitochondrial biogenesis and autophagy), and prevents aggregation of misfolded proteins. Comprehensive understanding of all aspects of direct and indirect influence of MB, and not just some of its effects, can help in further research of this compound, including its clinical applications.
Collapse
Affiliation(s)
- Artem P Gureev
- Voronezh State University, Voronezh, 394018, Russia.
- Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | | | - Vasily N Popov
- Voronezh State University, Voronezh, 394018, Russia
- Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| |
Collapse
|
9
|
Bandopadhyay R, Mishra N, Rana R, Kaur G, Ghoneim MM, Alshehri S, Mustafa G, Ahmad J, Alhakamy NA, Mishra A. Molecular Mechanisms and Therapeutic Strategies for Levodopa-Induced Dyskinesia in Parkinson's Disease: A Perspective Through Preclinical and Clinical Evidence. Front Pharmacol 2022; 13:805388. [PMID: 35462934 PMCID: PMC9021725 DOI: 10.3389/fphar.2022.805388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the second leading neurodegenerative disease that is characterized by severe locomotor abnormalities. Levodopa (L-DOPA) treatment has been considered a mainstay for the management of PD; however, its prolonged treatment is often associated with abnormal involuntary movements and results in L-DOPA-induced dyskinesia (LID). Although LID is encountered after chronic administration of L-DOPA, the appearance of dyskinesia after weeks or months of the L-DOPA treatment has complicated our understanding of its pathogenesis. Pathophysiology of LID is mainly associated with alteration of direct and indirect pathways of the cortico-basal ganglia-thalamic loop, which regulates normal fine motor movements. Hypersensitivity of dopamine receptors has been involved in the development of LID; moreover, these symptoms are worsened by concurrent non-dopaminergic innervations including glutamatergic, serotonergic, and peptidergic neurotransmission. The present study is focused on discussing the recent updates in molecular mechanisms and therapeutic approaches for the effective management of LID in PD patients.
Collapse
Affiliation(s)
- Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Nainshi Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ruhi Rana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gagandeep Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gulam Mustafa
- College of Pharmacy (Boys), Al-Dawadmi Campus, Shaqra University, Riyadh, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Nabil. A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Guwahati, India
| |
Collapse
|
10
|
Petrova ON, Lamarre I, Fasani F, Grillon C, Negrerie M. Soluble Guanylate Cyclase Inhibitors Discovered among Natural Compounds. JOURNAL OF NATURAL PRODUCTS 2020; 83:3642-3651. [PMID: 33290062 DOI: 10.1021/acs.jnatprod.0c00854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soluble guanylate cyclase (sGC) is the human receptor of nitric oxide (NO) in numerous kinds of cells and produces the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) upon NO binding to its heme. sGC is involved in many cell signaling pathways both under healthy conditions and under pathological conditions, such as angiogenesis associated with tumor growth. Addressing the selective inhibition of the NO/cGMP pathway is a strategy worthwhile to be investigated for slowing down tumoral angiogenesis or for curing vasoplegia. However, sGC inhibitors are lacking investigation. We have explored a chemical library of various natural compounds and have discovered inhibitors of sGC. The selected compounds were evaluated for their inhibition of purified sGC in vitro and sGC in endothelial cells. Six natural compounds, from various organisms, have IC50 in the range 0.2-1.5 μM for inhibiting the NO-activated synthesis of cGMP by sGC, and selected compounds exhibit a quantified antiangiogenic activity using an endothelial cell line. These sGC inhibitors can be used directly as tools to investigate angiogenesis and cell signaling or as templates for drug design.
Collapse
Affiliation(s)
- Olga N Petrova
- Laboratoire d'Optique et Biosciences, INSERM U1182, Ecole Polytechnique, Palaiseau, France
| | - Isabelle Lamarre
- Laboratoire d'Optique et Biosciences, INSERM U1182, Ecole Polytechnique, Palaiseau, France
| | - Fabienne Fasani
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Orléans, France
| | | | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U1182, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
11
|
Satish Kumar K, Velayutham R, Roy KK. A systematic computational analysis of human matrix metalloproteinase 13 (MMP-13) crystal structures and structure-based identification of prospective drug candidates as MMP-13 inhibitors repurposable for osteoarthritis. J Biomol Struct Dyn 2019; 38:3074-3086. [PMID: 31378153 DOI: 10.1080/07391102.2019.1651221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ravichandiran Velayutham
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Kuldeep K. Roy
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| |
Collapse
|
12
|
Bargas J, Mena-Segovia J, Smith Y, Bolam JP. Papers arising from the 12th International Basal Ganglia Society Meeting. March 26th-30th 2017, Mérida, Yucatán, México. Eur J Neurosci 2019; 49:591-592. [PMID: 30735599 DOI: 10.1111/ejn.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autnoma de México, México City, Mexico
| | - Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Aidekman Research Center, Rutgers University, Newark, NJ, USA
| | - Yoland Smith
- Yerkes National Primate Research Center and Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - J Paul Bolam
- Department of Pharmacology, MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| |
Collapse
|