1
|
Tu G, Jiang N, Chen W, Liu L, Hu M, Liao B. The neurobiological mechanisms underlying the effects of exercise interventions in autistic individuals. Rev Neurosci 2024; 0:revneuro-2024-0058. [PMID: 39083671 DOI: 10.1515/revneuro-2024-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Autism spectrum disorder is a pervasive and heterogeneous neurodevelopmental condition characterized by social communication difficulties and rigid, repetitive behaviors. Owing to the complex pathogenesis of autism, effective drugs for treating its core features are lacking. Nonpharmacological approaches, including education, social-communication, behavioral and psychological methods, and exercise interventions, play important roles in supporting the needs of autistic individuals. The advantages of exercise intervention, such as its low cost, easy implementation, and high acceptance, have garnered increasing attention. Exercise interventions can effectively improve the core features and co-occurring conditions of autism, but the underlying neurobiological mechanisms are unclear. Abnormal changes in the gut microbiome, neuroinflammation, neurogenesis, and synaptic plasticity may individually or interactively be responsible for atypical brain structure and connectivity, leading to specific autistic experiences and characteristics. Interestingly, exercise can affect these biological processes and reshape brain network connections, which may explain how exercise alleviates core features and co-occurring conditions in autistic individuals. In this review, we describe the definition, diagnostic approach, epidemiology, and current support strategies for autism; highlight the benefits of exercise interventions; and call for individualized programs for different subtypes of autistic individuals. Finally, the possible neurobiological mechanisms by which exercise improves autistic features are comprehensively summarized to inform the development of optimal exercise interventions and specific targets to meet the needs of autistic individuals.
Collapse
Affiliation(s)
- Genghong Tu
- Department of Sports Medicine, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Nan Jiang
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Weizhong Chen
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Lining Liu
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Bagen Liao
- Department of Sports Medicine, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| |
Collapse
|
2
|
Towers EB, Shapiro DA, Abel JM, Bakhti-Suroosh A, Kupkova K, Auble DT, Grant PA, Lynch WJ. Transcriptional Profile of Exercise-Induced Protection Against Relapse to Cocaine Seeking in a Rat Model. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:734-745. [PMID: 37881559 PMCID: PMC10593899 DOI: 10.1016/j.bpsgos.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Background Exercise has shown promise as a treatment for cocaine use disorder; however, the mechanism underlying its efficacy has remained elusive. Methods We used a rat model of relapse (cue-induced reinstatement) and exercise (wheel running, 2 hours/day) coupled with RNA sequencing to establish transcriptional profiles associated with the protective effects of exercise (during early withdrawal [days 1-7] or throughout withdrawal [days 1-14]) versus noneffective exercise (during late withdrawal [days 8-14]) against cocaine-seeking and sedentary conditions. Results As expected, cue-induced cocaine seeking was highest in the sedentary and late-withdrawal exercise groups; both groups also showed upregulation of a Grin1-associated transcript and enrichment of Drd1-Nmdar1 complex and glutamate receptor complex terms. Surprisingly, these glutamate markers were also enriched in the early- and throughout-withdrawal exercise groups, despite lower levels of cocaine seeking. However, a closer examination of the Grin1-associated transcript revealed a robust loss of transcripts spanning exons 9 and 10 in the sedentary condition relative to saline controls that was normalized by early- and throughout-withdrawal exercise, but not late-withdrawal exercise, indicating that these exercise conditions may normalize RNA mis-splicing induced by cocaine seeking. Our findings also revealed novel mechanisms by which exercise initiated during early withdrawal may modulate glutamatergic signaling in dorsomedial prefrontal cortex (e.g., via transcripts associated with non-NMDA glutamate receptors or those affecting signaling downstream of NMDA receptors), along with mechanisms outside of glutamatergic signaling such as circadian rhythm regulation and neuronal survival. Conclusions These findings provide a rich resource for future studies aimed at manipulating these molecular networks to better understand how exercise decreases cocaine seeking.
Collapse
Affiliation(s)
- Eleanor Blair Towers
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
- Medical Scientist Training Program, University of Virginia, Charlottesville, Virginia
| | - Daniel A. Shapiro
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Jean M. Abel
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Anousheh Bakhti-Suroosh
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Kristyna Kupkova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Patrick A. Grant
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
| | - Wendy J. Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
3
|
Preventing incubation of drug craving to treat drug relapse: from bench to bedside. Mol Psychiatry 2023; 28:1415-1429. [PMID: 36646901 DOI: 10.1038/s41380-023-01942-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
In 1986, Gawin and Kleber reported a progressive increase in cue-induced drug craving in individuals with cocaine use disorders during prolonged abstinence. After years of controversy, as of 2001, this phenomenon was confirmed in rodent studies using self-administration model, and defined as the incubation of drug craving. The intensification of cue-induced drug craving after withdrawal exposes abstinent individuals to a high risk of relapse, which urged us to develop effective interventions to prevent incubated craving. Substantial achievements have been made in deciphering the neural mechanisms, with potential implications for reducing drug craving and preventing the relapse. The present review discusses promising drug targets that have been well investigated in animal studies, including some neurotransmitters, neuropeptides, neurotrophic factors, and epigenetic markers. We also discuss translational exploitation and challenges in the field of the incubation of drug craving, providing insights into future investigations and highlighting the potential of pharmacological interventions, environment-based interventions, and neuromodulation techniques.
Collapse
|
4
|
Physical exercise rescues cocaine-evoked synaptic deficits in motor cortex. Mol Psychiatry 2021; 26:6187-6197. [PMID: 34686765 DOI: 10.1038/s41380-021-01336-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
Drug exposure impairs cortical plasticity and motor learning, which underlies the reduced behavioral flexibility in drug addiction. Physical exercise has been used to prevent relapse in drug rehabilitation program. However, the potential benefits and molecular mechanisms of physical exercise on drug-evoked motor-cortical dysfunctions are unknown. Here we report that 1-week treadmill training restores cocaine-induced synaptic deficits, in the form of improved in vivo spine formation, synaptic transmission, and spontaneous activities of cortical pyramidal neurons, as well as motor-learning ability. The synaptic and behavioral benefits relied on de novo protein synthesis, which are directed by the activation of the mechanistic target of rapamycin (mTOR)-ribosomal protein S6 pathway. These findings establish synaptic functional restoration and mTOR signaling as the critical mechanism supporting physical exercise training in rehabilitating the addicted brain.
Collapse
|