1
|
Pereira-Silva R, Teixeira-Pinto A, Neto FL, Martins I. μ-Opioid Receptor Activation at the Dorsal Reticular Nucleus Shifts Diffuse Noxious Inhibitory Controls to Hyperalgesia in Chronic Joint Pain in Male Rats. Anesthesiology 2024; 140:1176-1191. [PMID: 38381969 DOI: 10.1097/aln.0000000000004956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND The dorsal reticular nucleus is a pain facilitatory area involved in diffuse noxious inhibitory control (DNIC) through opioidergic mechanisms that are poorly understood. The hypothesis was that signaling of μ-opioid receptors is altered in this area with prolonged chronic inflammatory pain and that this accounts for the loss of DNICs occurring in this condition. METHODS Monoarthritis was induced in male Wistar rats (n = 5 to 9/group) by tibiotarsal injection of complete Freund's adjuvant. The immunolabeling of µ-opioid receptors and the phosphorylated forms of µ-opioid receptors and cAMP response element binding protein was quantified. Pharmacologic manipulation of μ-opioid receptors at the dorsal reticular nucleus was assessed in DNIC using the Randall-Selitto test. RESULTS At 42 days of monoarthritis, μ-opioid receptor labeling decreased at the dorsal reticular nucleus, while its phosphorylated form and the phosphorylated cAMP response element binding protein increased. [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate (DAMGO) enhanced DNIC analgesia in normal animals (means ± SD: pre-DNIC: 126.9 ± 7.0 g; DNIC - DAMGO: 147.5 ± 8.0 g vs. DNIC + DAMGO: 198.1 ± 19.3 g; P < 0.001), whereas it produced hyperalgesia in monoarthritis (pre-DNIC: 67.8 ± 7.5 g; DNIC - DAMGO: 70.6 ± 7.7 g vs. DNIC + DAMGO: 32.2 ± 2.6 g; P < 0.001). An ultra-low dose of naloxone, which prevents the excitatory signaling of the μ-opioid receptor, restored DNIC analgesia in monoarthritis (DNIC - naloxone: 60.0 ± 6.1 g vs. DNIC + naloxone: 98.0 ± 13.5 g; P < 0.001), compared to saline (DNIC - saline: 62.5 ± 5.2 g vs. DNIC + saline: 64.2 ± 3.8 g). When injected before DAMGO, it restored DNIC analgesia and decreased the phosphorylated cAMP response element binding protein in monoarthritis. CONCLUSIONS The dorsal reticular nucleus is likely involved in a facilitatory pathway responsible for DNIC hyperalgesia. The shift of μ-opioid receptor signaling to excitatory in this pathway likely accounts for the loss of DNIC analgesia in monoarthritis. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Raquel Pereira-Silva
- Institute for Research and Innovation in Health (i3S) of the University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; Department of Biomedicine - Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Armando Teixeira-Pinto
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Centre for Kidney Research, Kids Research Institute, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Fani L Neto
- Institute for Research and Innovation in Health (i3S) of the University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; Department of Biomedicine - Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Isabel Martins
- Institute for Research and Innovation in Health (i3S) of the University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; Department of Biomedicine - Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Costa AR, Tavares I, Martins I. How do opioids control pain circuits in the brainstem during opioid-induced disorders and in chronic pain? Implications for the treatment of chronic pain. Pain 2024; 165:324-336. [PMID: 37578500 DOI: 10.1097/j.pain.0000000000003026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Brainstem areas involved in descending pain modulation are crucial for the analgesic actions of opioids. However, the role of opioids in these areas during tolerance, opioid-induced hyperalgesia (OIH), and in chronic pain settings remains underappreciated. We conducted a revision of the recent studies performed in the main brainstem areas devoted to descending pain modulation with a special focus on the medullary dorsal reticular nucleus (DRt), as a distinctive pain facilitatory area and a key player in the diffuse noxious inhibitory control paradigm. We show that maladaptive processes within the signaling of the µ-opioid receptor (MOR), which entail desensitization and a switch to excitatory signaling, occur in the brainstem, contributing to tolerance and OIH. In the context of chronic pain, the alterations found are complex and depend on the area and model of chronic pain. For example, the downregulation of MOR and δ-opioid receptor (DOR) in some areas, including the DRt, during neuropathic pain likely contributes to the inefficacy of opioids. However, the upregulation of MOR and DOR, at the rostral ventromedial medulla, in inflammatory pain models, suggests therapeutic avenues to explore. Mechanistically, the rationale for the diversity and complexity of alterations in the brainstem is likely provided by the alternative splicing of opioid receptors and the heteromerization of MOR. In conclusion, this review emphasizes how important it is to consider the effects of opioids at these circuits when using opioids for the treatment of chronic pain and for the development of safer and effective opioids.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isabel Martins
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
3
|
Navratilova E, Qu C, Ji G, Neugebauer V, Guerrero M, Rosen H, Roberts E, Porreca F. Opposing Effects on Descending Control of Nociception by µ and κ Opioid Receptors in the Anterior Cingulate Cortex. Anesthesiology 2024; 140:272-283. [PMID: 37725756 PMCID: PMC11466009 DOI: 10.1097/aln.0000000000004773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND The efficiency of descending pain modulation, commonly assessed with the conditioned pain modulation procedure, is diminished in patients with chronic pain. The authors hypothesized that the efficiency of pain modulation is controlled by cortical opioid circuits. METHODS This study evaluated the effects of µ opioid receptor activation in the anterior cingulate cortex on descending control of nociception, a preclinical correlate of conditioned pain modulation, in male Sprague-Dawley rats with spinal nerve ligation-induced chronic pain or in sham-operated controls. Additionally, the study explored the consequences of respective activation or inhibition of κ opioid receptor in the anterior cingulate cortex of naive rats or animals with neuropathic pain. Descending control of nociception was measured as the hind paw withdrawal response to noxious pressure (test stimulus) in the absence or presence of capsaicin injection in the forepaw (conditioning stimulus). RESULTS Descending control of nociception was diminished in the ipsilateral, but not contralateral, hind paw of rats with spinal nerve ligation. Bilateral administration of morphine in the anterior cingulate cortex had no effect in shams but restored diminished descending control of nociception without altering hypersensitivity in rats with neuropathic pain. Bilateral anterior cingulate cortex microinjection of κ opioid receptor antagonists, including nor-binaltorphimine and navacaprant, also re-established descending control of nociception in rats with neuropathic pain without altering hypersensitivity and with no effect in shams. Conversely, bilateral injection of a κ opioid receptor agonist, U69,593, in the anterior cingulate cortex of naive rats inhibited descending control of nociception without altering withdrawal thresholds. CONCLUSIONS Anterior cingulate cortex κ opioid receptor activation therefore diminishes descending control of nociception both in naive animals and as an adaptive response to chronic pain, likely by enhancing net descending facilitation. Descending control of nociception can be restored by activation of μ opioid receptors in the anterior cingulate cortex, but also by κ opioid receptor antagonists, providing a nonaddictive alternative to opioid analgesics. Navacaprant is now in advanced clinical trials. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Chaoling Qu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Miguel Guerrero
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Hugh Rosen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Edward Roberts
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
4
|
Zhang Z, Zheng H, Yu Q, Jing X. Understanding of Spinal Wide Dynamic Range Neurons and Their Modulation on Pathological Pain. J Pain Res 2024; 17:441-457. [PMID: 38318328 PMCID: PMC10840524 DOI: 10.2147/jpr.s446803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
The spinal dorsal horn (SDH) transmits sensory information from the periphery to the brain. Wide dynamic range (WDR) neurons within this relay site play a critical role in modulating and integrating peripheral sensory inputs, as well as the process of central sensitization during pathological pain. This group of spinal multi-receptive neurons has attracted considerable attention in pain research due to their capabilities for encoding the location and intensity of nociception. Meanwhile, transmission, processing, and modulation of incoming afferent information in WDR neurons also establish the underlying basis for investigating the integration of acupuncture and pain signals. This review aims to provide a comprehensive examination of the distinctive features of WDR neurons and their involvement in pain. Specifically, we will examine the regulation of diverse supraspinal nuclei on these neurons and analyze their potential in elucidating the mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hao Zheng
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Qingquan Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Combined spinal-epidural anesthesia with acupoint injection for labor anesthesia reduces IL-1β/IL-10 ratio in maternal peripheral blood, umbilical cord blood and improves the labor outcomes: A prospective randomized controlled trial. Clin Immunol 2022; 236:108935. [PMID: 35093596 DOI: 10.1016/j.clim.2022.108935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/29/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND This study aimed to investigate the effects of combined spinal-epidural anesthesia (CSEA) with acupoint injection (AI) on the maternal-fetal expression of interleukin-1β (IL-1β), interleukin-10 (IL-10), analgesia effect, and labor outcomes. METHODS A total of 360 healthy primiparas were randomized into the CSEA+AI group, the CSEA group, the AI group, and the control group (n = 90, each group) according to the labor analgesia methods. RESULTS Compared to the CSEA group, the CSEA+AI group had significantly lower visual analog scale (VAS) scores, adverse events, dose of ropivacaine/sufentanil, and shorter labor durations. The IL-1β/IL-10 ratio in maternal peripheral blood and umbilical cord blood was reduced in the CSEA+AI group compared with the CSEA group. CONCLUSION The combination of CSEA and AI can reduce the ratio of IL-1β/ IL-10 in maternal peripheral blood and umbilical cord blood, which can effectively relieve labor pain.
Collapse
|
6
|
Mills EP, Keay KA, Henderson LA. Brainstem Pain-Modulation Circuitry and Its Plasticity in Neuropathic Pain: Insights From Human Brain Imaging Investigations. FRONTIERS IN PAIN RESEARCH 2021; 2:705345. [PMID: 35295481 PMCID: PMC8915745 DOI: 10.3389/fpain.2021.705345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Acute pain serves as a protective mechanism that alerts us to potential tissue damage and drives a behavioural response that removes us from danger. The neural circuitry critical for mounting this behavioural response is situated within the brainstem and is also crucial for producing analgesic and hyperalgesic responses. In particular, the periaqueductal grey, rostral ventromedial medulla, locus coeruleus and subnucleus reticularis dorsalis are important structures that directly or indirectly modulate nociceptive transmission at the primary nociceptive synapse. Substantial evidence from experimental animal studies suggests that plasticity within this system contributes to the initiation and/or maintenance of chronic neuropathic pain, and may even predispose individuals to developing chronic pain. Indeed, overwhelming evidence indicates that plasticity within this circuitry favours pro-nociception at the primary synapse in neuropathic pain conditions, a process that ultimately contributes to a hyperalgesic state. Although experimental animal investigations have been crucial in our understanding of the anatomy and function of the brainstem pain-modulation circuitry, it is vital to understand this system in acute and chronic pain states in humans so that more effective treatments can be developed. Recent functional MRI studies have identified a key role of this system during various analgesic and hyperalgesic responses including placebo analgesia, offset analgesia, attentional analgesia, conditioned pain modulation, central sensitisation and temporal summation. Moreover, recent MRI investigations have begun to explore brainstem pain-modulation circuitry plasticity in chronic neuropathic pain conditions and have identified altered grey matter volumes and functioning throughout the circuitry. Considering the findings from animal investigations, it is likely that these changes reflect a shift towards pro-nociception that ultimately contributes to the maintenance of neuropathic pain. The purpose of this review is to provide an overview of the human brain imaging investigations that have improved our understanding of the pain-modulation system in acute pain states and in neuropathic conditions. Our interpretation of the findings from these studies is often guided by the existing body of experimental animal literature, in addition to evidence from psychophysical investigations. Overall, understanding the plasticity of this system in human neuropathic pain conditions alongside the existing experimental animal literature will ultimately improve treatment options.
Collapse
|
7
|
Palsson TS, Doménech-García V, Boudreau SS, Graven-Nielsen T. Pain referral area is reduced by remote pain. Eur J Pain 2021; 25:1804-1814. [PMID: 33987881 DOI: 10.1002/ejp.1792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/02/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Endogenous pain inhibitory mechanisms are known to reduce pain intensity, but whether they influence the size and distribution of pain referral is unclear. This study aimed to determine if referred pain is reduced by applying a remote, conditioning painful stimulus. METHODS Twenty-four healthy men participated in this randomized, crossover study with a control and conditioning session. Referred pain was induced from the infraspinatus muscle (dominant side) by a painful pressure for 60 s. When applying pressure, the intensity was adjusted to a local pain intensity of 7/10 on a numerical rating scale. In the conditioning session, tonic painful pressure was simultaneously applied to the non-dominant leg during induction of referred pain. The area of referred pain was drawn onto a digital body chart and size extracted for data analysis. RESULTS For the total group and in a subgroup with distinct patterns of referred pain (n = 15/24), the pain area perceived in the back and front+back was smaller during the conditioning compared with the control (p < 0.05). No significant difference was found between sessions in a subgroup only demonstrating local pain (n = 9/24). CONCLUSIONS Engaging the descending noxious inhibitory control reduced the size of pain areas predominately when distinct pain referral was present. Assuming a conditioning effect of descending inhibitory control acting on dorsal horn neurons, these findings may indicate that mechanisms underlying pain referral can be modulated by endogenous control. The findings may indicate that referred pain may be a useful proxy to evaluate sensitivity of central pain mechanisms as previously suggested. SIGNIFICANCE The current results indicate a link between endogenous inhibition and pain referral. Descending inhibitory control effects on pain referral support a spinal mechanism involved in pain referral. Future studies should investigate whether the spatial characteristics of referred pain (e.g. size, frequency of affected body regions and distribution away from the primary nociceptive stimulus) can useful to evaluate the efficiency of endogenous pain modulation.
Collapse
Affiliation(s)
- Thorvaldur S Palsson
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Victor Doménech-García
- Department of Physiotherapy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
| | - Shellie S Boudreau
- Center For Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center For Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Kucharczyk MW, Valiente D, Bannister K. Developments in Understanding Diffuse Noxious Inhibitory Controls: Pharmacological Evidence from Pre-Clinical Research. J Pain Res 2021; 14:1083-1095. [PMID: 33907456 PMCID: PMC8068490 DOI: 10.2147/jpr.s258602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Bulbospinal pathways regulate nociceptive processing, and inhibitory modulation of nociception can be achieved via the activity of diffuse noxious inhibitory controls (DNIC), a unique descending pathway activated upon application of a conditioning stimulus (CS). Numerous studies have investigated the effects of varied pharmacological systems on the expression status of a) DNIC (as measured in anaesthetised animals) and b) the descending control of nociception (DCN), a surrogate measure of DNIC-like effects in conscious animals. However, the complexity of the underlying circuitry that governs initiation of a top-down inhibitory response in reaction to a CS, coupled with the methodological limitations associated with using pharmacological tools for its study, has often obscured the exact role(s) of a given drug. In this literature review, we discuss the pharmacological manipulation interrogation strategies that have hitherto been used to examine the functionality of DNIC and DCN. Discreet administration of a substance in the spinal cord or brain is considered in the context of action on one of four hypothetical systems that underlie the functionality of DNIC/DCN, where interpreting the outcome is often complicated by overlapping qualities. Systemic pharmacological modulation of DNIC/DCN is also discussed despite the fact that the precise location of drug action(s) cannot be pinpointed. Chiefly, modulation of the noradrenergic, serotonergic and opioidergic transmission systems impacts DNIC/DCN in a manner that relates to drug class, route of administration and health/disease state implicated. The advent of increasingly sophisticated interrogation tools will expedite our full understanding of the circuitries that modulate naturally occurring pain-inhibiting pathways.
Collapse
Affiliation(s)
- Mateusz Wojciech Kucharczyk
- Central Modulation of Pain Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL., UK
| | - Diego Valiente
- Central Modulation of Pain Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL., UK
| | - Kirsty Bannister
- Central Modulation of Pain Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL., UK
| |
Collapse
|
9
|
Squintani G, Rasera A, Segatti A, Concon E, Bonetti B, Valeriani M, Tinazzi M. Conditioned pain modulation affects the N2/P2 complex but not the N1 wave: A pilot study with laser-evoked potentials. Eur J Pain 2020; 25:550-557. [PMID: 33170987 DOI: 10.1002/ejp.1693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The 'pain-inhibits-pain' effect stems from neurophysiological mechanisms involving endogenous modulatory systems termed diffuse noxious inhibitory controls (DNIC) or conditioned pain modulation (CPM). Laser-evoked potentials (LEPs) components, the N2/P2 complex, and the N1 wave, reflect the medial and lateral pain pathway, respectively: anatomically, the lateral thalamic nuclei (LT) project mainly to the somatosensory cortex (N1 generator), while the medial thalamic nuclei (MT) are bound to the limbic cortices (N2/P2 generators). METHODS We applied a CPM protocol in which the test stimulus was laser stimulation and the conditioning stimulus was a cold pressor test. LEPs recordings were obtained from 15 healthy subjects in three different conditions: baseline, during heterotopic noxious conditioning stimulation (HNCS) and post-HNCS. RESULTS We observed a significant reduction in N2/P2 amplitude during HNCS and a return to pre-test amplitude post-HNCS, whereas the N1 wave remained unchanged during and post-HNCS. CONCLUSIONS Our results indicate that CPM affects only the medial pain system. The spinothalamic tract (STT) transmits to both the LT and the MT, while the spinoreticulothalamic (SRT) projects only to the MT. The reduction in the amplitude of the N2/P2 complex and the absence of change in the N1 wave suggest that DNIC inhibition on the dorsal horn neurons affects only pain transmission via the SRT, while the neurons that give rise to the STT are not involved. The N1 wave can be a reliable neurophysiological parameter for assessment of STT function in clinical practice, as it does not seem to be influenced by CPM. SIGNIFICANCE No reports have described the effect of DNIC on lateral and medial pain pathways. We studied the N1 wave and the N2/P2 complex to detect changes during a CPM protocol. We found a reduction in the amplitude of the N2/P2 complex and no change in the N1 wave. This suggests that the DNIC inhibitory effect on dorsal horns neurons affects only pain transmission via the SRT, whereas the neurons that give rise to the STT are not involved.
Collapse
Affiliation(s)
- Giovanna Squintani
- Neurology and Neurophysiology Unit, Neuroscience Department, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Andrea Rasera
- Department of Neurological, Neuropsychological, Morphological and Motor Sciences, University of Verona, Verona, Italy
| | - Alessia Segatti
- Neurology and Neurophysiology Unit, Neuroscience Department, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Elisa Concon
- Neurology and Neurophysiology Unit, Neuroscience Department, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Bruno Bonetti
- Neurology and Neurophysiology Unit, Neuroscience Department, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Michele Tinazzi
- Department of Neurological, Neuropsychological, Morphological and Motor Sciences, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Patel R, Dickenson AH. A study of cortical and brainstem mechanisms of diffuse noxious inhibitory controls in anaesthetised normal and neuropathic rats. Eur J Neurosci 2019; 51:952-962. [PMID: 31518451 PMCID: PMC7079135 DOI: 10.1111/ejn.14576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022]
Abstract
Diffuse noxious inhibitory controls (DNIC) are a mechanism of endogenous descending pain modulation and are deficient in a large proportion of chronic pain patients. However, the pathways involved remain only partially determined with several cortical and brainstem structures implicated. This study examined the role of the dorsal reticular nucleus (DRt) and infralimbic (ILC) region of the medial prefrontal cortex in DNIC. In vivo electrophysiology was performed to record from dorsal horn lamina V/VI wide dynamic range neurones with left hind paw receptive fields in anaesthetised sham‐operated and L5/L6 spinal nerve‐ligated (SNL) rats. Evoked neuronal responses were quantified in the presence and absence of a conditioning stimulus (left ear clamp). In sham rats, DNIC were reproducibly recruited by a heterotopically applied conditioning stimulus, an effect that was absent in neuropathic rats. Intra‐DRt naloxone had no effect on spinal neuronal responses to dynamic brush, punctate mechanical, evaporative cooling and heat stimuli in sham and SNL rats. In addition, intra‐DRt naloxone blocked DNIC in sham rats, but had no effect in SNL rats. Intra‐ILC lidocaine had no effect on spinal neuronal responses to dynamic brush, punctate mechanical, evaporative cooling and heat stimuli in sham and SNL rats. However, differential effects were observed in relation to the expression of DNIC; intra‐ILC lidocaine blocked activation of DNIC in sham rats but restored DNIC in SNL rats. These data suggest that the ILC is not directly involved in mediating DNIC but can modulate its activation and that DRt involvement in DNIC requires opioidergic signalling.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|