1
|
Esteves M, Cristóvão AC, Vale A, Machado-Pereira M, Ferreira R, Bernardino L. MicroRNA-124-3p Modulates Alpha-Synuclein Expression Levels in a Paraquat-Induced in vivo Model for Parkinson's Disease. Neurochem Res 2024; 49:1677-1686. [PMID: 38451434 PMCID: PMC11144150 DOI: 10.1007/s11064-024-04130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/08/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and the most common movement disorder. Although PD etiology is not fully understood, alpha (α)-synuclein is a key protein involved in PD pathology. MicroRNAs (miRNA), small gene regulatory RNAs that control gene expression, have been identified as biomarkers and potential therapeutic targets for brain diseases, including PD. In particular, miR-124 is downregulated in the plasma and brain samples of PD patients. Recently we showed that the brain delivery of miR-124 counteracts 6-hydroxydopamine-induced motor deficits. However, its role in α-synuclein pathology has never been addressed. Here we used paraquat (PQ)-induced rat PD model to evaluate the role of miR-124-3p in α-synuclein accumulation and dopaminergic neuroprotection. Our results showed that an intranigral administration of miR-124-3p reduced the expression and aggregation of α-synuclein in the substantia nigra (SN) of rats exposed to PQ. NADPH oxidases (NOX), responsible for reactive oxygen species generation, have been considered major players in the development of α-synuclein pathology. Accordingly, miR-124-3p decreased protein expression levels of NOX1 and its activator, small GTPase Rac1, in the SN of PQ-lesioned rats. Moreover, miR-124-3p was able to counteract the reduced levels of pituitary homeobox 3 (PITX3), a protein required for the dopaminergic phenotype, induced by PQ in the SN. This is the first study showing that miR-124-3p decreases PQ-induced α-synuclein levels and the associated NOX1/Rac1 signaling pathway, and impacts PITX3 protein levels, supporting the potential of miR-124-3p as a disease-modifying agent for PD and related α-synucleinopathies.
Collapse
Affiliation(s)
- Marta Esteves
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Clara Cristóvão
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSov, UBImedical, University of Beira Interior, Covilhã, Portugal
| | - Ana Vale
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marta Machado-Pereira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Raquel Ferreira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Liliana Bernardino
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
- Brain Repair Group, CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã, 6200-506, Portugal.
| |
Collapse
|
2
|
Pfeifer GP. DNA Damage and Parkinson's Disease. Int J Mol Sci 2024; 25:4187. [PMID: 38673772 PMCID: PMC11050701 DOI: 10.3390/ijms25084187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The etiology underlying most sporadic Parkinson's' disease (PD) cases is unknown. Environmental exposures have been suggested as putative causes of the disease. In cell models and in animal studies, certain chemicals can destroy dopaminergic neurons. However, the mechanisms of how these chemicals cause the death of neurons is not understood. Several of these agents are mitochondrial toxins that inhibit the mitochondrial complex I of the electron transport chain. Familial PD genes also encode proteins with important functions in mitochondria. Mitochondrial dysfunction of the respiratory chain, in combination with the presence of redox active dopamine molecules in these cells, will lead to the accumulation of reactive oxygen species (ROS) in dopaminergic neurons. Here, I propose a mechanism regarding how ROS may lead to cell killing with a specificity for neurons. One rarely considered hypothesis is that ROS produced by defective mitochondria will lead to the formation of oxidative DNA damage in nuclear DNA. Many genes that encode proteins with neuron-specific functions are extraordinary long, ranging in size from several hundred kilobases to well over a megabase. It is predictable that such long genes will contain large numbers of damaged DNA bases, for example in the form of 8-oxoguanine (8-oxoG), which is a major DNA damage type produced by ROS. These DNA lesions will slow down or stall the progression of RNA polymerase II, which is a term referred to as transcription stress. Furthermore, ROS-induced DNA damage may cause mutations, even in postmitotic cells such as neurons. I propose that the impaired transcription and mutagenesis of long, neuron-specific genes will lead to a loss of neuronal integrity, eventually leading to the death of these cells during a human lifetime.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
3
|
Beigoli S, Hajizadeh AA, Taghavizadeh Yazdi ME, Khosravi R, Vafaee F, Boskabady MH. Improvement of inhaled paraquat induced lung and systemic inflammation, oxidative stress and memory changes by safranal. Toxicon 2024; 241:107687. [PMID: 38484848 DOI: 10.1016/j.toxicon.2024.107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The effects of safranal and pioglitazone alone and their combination on inhaled paraquat (PQ)-induced systemic oxidative stress and inflammation as well as behavioral changes were examined in rats. In this study, animals were exposed to saline (Ctrl) or PQ (PQ groups) aerosols. PQ exposed animals were treated with dexamethasone, 0.8 and 3.2 mg/kg/day safranal (Saf-L and Saf-H), 5 mg/kg/day pioglitazone (Pio), and Saf-L + Pio for 16 days during PQ exposure period. PQ group showed increased numbers of total and differential WBCs in blood and bronchoalveolar lavage fluid (BALF), increased malondialdehyde (MDA), in the serum BALF and brain reduced thiol, catalase (CAT), and superoxide dismutase (SOD) levels compared to the control group (for all, p < 0.001). The escape latency and traveled distance were enhanced, but the time spent in the target quadrant in the probe day and the latency to enter the dark room 3, 24, 48, and 72 h after receiving an electrical shock, (in the shuttle box test) were decreased in the PQ group (p < 0.05 to P < 0.001). In all treated groups, all measure values were improved compared to PQ group (p < 0.05 to p < 0.001). In combination treated group of Saf-L + Pio, most measured values were more improved than the Saf-L and Pio groups (p < 0.05 to p < 0.001). Saf and Pio improved PQ-induced changes similar to dexamethasone but the effects produced by combination treatments of Saf-L + Pio were more prominent than Pio and Saf-L alone, suggesting a potentiating effect for the combination of the two agents.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Asghar Hajizadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reyhaneh Khosravi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Harini VS, Marimuthu R, Tantry MSA, Santhakumar K. Induction of Paraquat-Mediated Parkinsonian Phenotype in Zebrafish. Curr Protoc 2024; 4:e990. [PMID: 38348973 DOI: 10.1002/cpz1.990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Paraquat (PQ) is a well-known neurotoxin closely associated with neurodegenerative Parkinson's disease (PD). Zebrafish are utilized as a model for PD research because of their well-defined neuropathology and locomotor behavior. Here, we highlight protocols for inducing PD using PQ and analyzing locomotor activity in adult zebrafish. Basic Protocol 1 details the treatment of adult male zebrafish with 60 mg/kg PQ via intraperitoneal injection to induce a PD-like phenotype, followed by the steps to perform a locomotor assay. Basic Protocol 2 provides step-by-step guidance for processing the acquired videos in ToxTrac software to understand the locomotor parameters of 0.9% saline- and 60 mg/kg PQ-injected adult zebrafish. The simplicity of the treatment strategy, low-cost video acquisition setup, and free video processing make these protocols accessible without prior experience. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Development of Parkinson's disease features in adult zebrafish Basic Protocol 2: ToxTrac analysis for locomotor assay.
Collapse
Affiliation(s)
- V S Harini
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Raghunath Marimuthu
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - M S Ananthakrishna Tantry
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kirankumar Santhakumar
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
5
|
Enemali FU, Iteire KA, Uweigho RE, Blessing O, Judah GT. Aqueous leaf extract of Phyllanthus amarus protects against oxidative stress and misfiring of dopaminergic neurons in Paraquat-induced Parkinson's disease-like model of adult Wistar rats. J Chem Neuroanat 2024; 135:102365. [PMID: 38030098 DOI: 10.1016/j.jchemneu.2023.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND OF THE STUDY Phyllanthus amarus has high nutritional value and is beneficial in managing and treating diverse ailments. This study assessed the role of aqueous leaf extract of Phyllanthus amarus on Paraquat (PQ) induced neurotoxicity in the substantia nigra of Wistar rats. MATERIALS AND METHODS The role of aqueous leaves extract of Phyllanthus amarus was assessed using an open field test (OFT) for motor activity, oxidative stress biomarkers [Catalase (CAT), and Superoxide Dismutase (SOD)], histological examination (H and E stained) for cytoarchitectural changes and immunohistochemical studies using tyrosine hydroxylase (TH) as a marker for dopaminergic neurons. Forty-two (42) rats were categorized into six groups (n = 7); group 1: control was administered 0.5 ml/kg distilled water, group 2: received 10 mg/kg PQ + 10 mg/kg L-dopa as reference drug, group 3; received 10 mg/kg PQ, while group 4: received 10 mg/kg PQ + 200 mg/kg P. amarus, group 5: received 10 mg/kg PQ + 300 mg/kg P. amarus, and group 6: received 10 mg/kg PQ + 400 mg/kg P. amarus respectively, for 14 days. All administrations were done orally; a significant difference was set at p < 0.05. RESULTS AND DISCUSSION The study's open field test (OFT) revealed no motor activity deficit with Paraquat (PQ) exposure. Also, cytoarchitectural distortions were not observed with Paraquat (PQ) only treatment group compared to the control and other groups pretreated with P. amarus and L-dopa. Moreover, the Paraquat (PQ) only treatment group showed oxidative stress by significantly decreasing the antioxidant enzyme (SOD) compared to the control and L-dopa pretreated group. A significant decrease in tyrosine hydroxylase (TH) expressing dopaminergic neurons was also observed in Paraquat (PQ) only treatment. However, P. amarus treatment showed therapeutic properties by significantly increasing tyrosine hydroxylase (TH) expressing dopaminergic neuron levels relative to control. CONCLUSION Aqueous leaf extract of Phyllanthus amarus possesses therapeutic properties against Paraquat (PQ) induced changes in the substantia nigra of Wistar rats.
Collapse
Affiliation(s)
- Felix U Enemali
- Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | | | - Raphael E Uweigho
- Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Ogunberi Blessing
- Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | | |
Collapse
|
6
|
Saraiva C, Lopes-Nunes J, Esteves M, Santos T, Vale A, Cristóvão AC, Ferreira R, Bernardino L. CtBP Neuroprotective Role in Toxin-Based Parkinson's Disease Models: From Expression Pattern to Dopaminergic Survival. Mol Neurobiol 2023; 60:4246-4260. [PMID: 37060501 PMCID: PMC10293336 DOI: 10.1007/s12035-023-03331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/07/2023] [Indexed: 04/16/2023]
Abstract
C-terminal binding proteins (CtBP) are transcriptional co-repressors regulating gene expression. CtBP promote neuronal survival through repression of pro-apoptotic genes, and may represent relevant targets for neurodegenerative disorders, such as Parkinson's disease (PD). Nevertheless, evidence of the role of CtBP1 and CtBP2 in neurodegeneration are scarce. Herein, we showed that CtBP1 and CtBP2 are expressed in neurons, dopaminergic neurons, astrocytes, and microglia in the substantia nigra (SN) and striatum of adult mice. Old mice showed a lower expression of CtBP1 in the SN and higher expression of CtPB2 in the SN and striatum compared with adult mice. In vivo models for PD (paraquat, MPTP, 6-OHDA) showed increased expression of CtBP1 in the SN and striatum while CtBP2 expression was increased in the striatum of paraquat-treated rats only. Moreover, an increased expression of both CtBP was found in a dopaminergic cell line (N27) exposed to 6-OHDA. In the 6-OHDA PD model, we found a dual effect using an unspecific ligand of CtBP, the 4-methylthio 2-oxobutyric acid (MTOB): higher concentrations (e.g. 2500 µM, 1000 µM) inhibited dopaminergic survival, while at 250 μM it counteracted cell death. In vitro, this latter protective role was absent after the siRNA silencing of CtBP1 or CtBP2. Altogether, this is the first report exploring the cellular and regional expression pattern of CtBP in the nigrostriatal pathway and the neuroprotective role in PD toxin-based models. CtBP could counteract dopaminergic cell death in the 6-OHDA PD model and, therefore, CtBP function and therapeutic potential in PD should be further explored.
Collapse
Affiliation(s)
- Cláudia Saraiva
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Present Address: Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue Des Hauts-Fourneaux, Esch-Sur-Alzette, Luxembourg
| | - Jéssica Lopes-Nunes
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Marta Esteves
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Tiago Santos
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Vale
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Clara Cristóvão
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Raquel Ferreira
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Present Address: CEDOC, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, Lisboa, Portugal
| | - Liliana Bernardino
- Brain Repair Group, Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
7
|
Ortega Moreno L, Bagues A, Martínez V, Abalo R. New Pieces for an Old Puzzle: Approaching Parkinson's Disease from Translatable Animal Models, Gut Microbiota Modulation, and Lipidomics. Nutrients 2023; 15:2775. [PMID: 37375679 DOI: 10.3390/nu15122775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease characterized by disabling motor alterations that are diagnosed at a relatively late stage in its development, and non-motor symptoms, including those affecting the gastrointestinal tract (mainly constipation), which start much earlier than the motor symptoms. Remarkably, current treatments only reduce motor symptoms, not without important drawbacks (relatively low efficiency and impactful side effects). Thus, new approaches are needed to halt PD progression and, possibly, to prevent its development, including new therapeutic strategies that target PD etiopathogeny and new biomarkers. Our aim was to review some of these new approaches. Although PD is complex and heterogeneous, compelling evidence suggests it might have a gastrointestinal origin, at least in a significant number of patients, and findings in recently developed animal models strongly support this hypothesis. Furthermore, the modulation of the gut microbiome, mainly through probiotics, is being tested to improve motor and non-motor symptoms and even to prevent PD. Finally, lipidomics has emerged as a useful tool to identify lipid biomarkers that may help analyze PD progression and treatment efficacy in a personalized manner, although, as of today, it has only scarcely been applied to monitor gut motility, dysbiosis, and probiotic effects in PD. Altogether, these new pieces should be helpful in solving the old puzzle of PD.
Collapse
Affiliation(s)
- Lorena Ortega Moreno
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Ana Bagues
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
8
|
Khan E, Hasan I, Haque ME. Parkinson's Disease: Exploring Different Animal Model Systems. Int J Mol Sci 2023; 24:ijms24109088. [PMID: 37240432 DOI: 10.3390/ijms24109088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Disease modeling in non-human subjects is an essential part of any clinical research. To gain proper understanding of the etiology and pathophysiology of any disease, experimental models are required to replicate the disease process. Due to the huge diversity in pathophysiology and prognosis in different diseases, animal modeling is customized and specific accordingly. As in other neurodegenerative diseases, Parkinson's disease is a progressive disorder coupled with varying forms of physical and mental disabilities. The pathological hallmarks of Parkinson's disease are associated with the accumulation of misfolded protein called α-synuclein as Lewy body, and degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) area affecting the patient's motor activity. Extensive research has already been conducted regarding animal modeling of Parkinson's diseases. These include animal systems with induction of Parkinson's, either pharmacologically or via genetic manipulation. In this review, we will be summarizing and discussing some of the commonly employed Parkinson's disease animal model systems and their applications and limitations.
Collapse
Affiliation(s)
- Engila Khan
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ikramul Hasan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Emdadul Haque
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
9
|
Fu G, Duan Y, Yi W, Zhang S, Liang W, Li H, Yan H, Wu B, Fu S, Zhang J, Zhang G, Wang G, Liu Y, Xu S. A rapid and reliable immunochromatographic strip for detecting paraquat poinsoning in domestic water and real human samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120324. [PMID: 36191800 DOI: 10.1016/j.envpol.2022.120324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Paraquat (PQ) is one of the most commonly used herbicides, but it has polluted the environment and threatened human health through extensive and improper usage. Here, a new naked-eye PQ immunochromatographic strip was developed to recognize PQ in domestic water and real human samples within 10 min based on a novel custom-designed anti-PQ antibody. The PQ test strip could recognize PQ at a concentration as low as 10 ng/ml, reaching the high-efficiency time-of-flight mass spectrometry detection level and identifying trace amounts of PQ in samples treated with a diquat (DQ) and PQ mixture. Notably, both the performance evaluation and clinical trial of the proposed PQ strips were validated in multiple hospitals and public health agencies. Taken together, our study firstly provide the clinical PQ-targeted colloidal gold immunochromatographic test strip designed both for environment water and human sample detection with multiple advantages, which are ready for environmental monitoring and clinical practice.
Collapse
Affiliation(s)
- Guanyan Fu
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College Chongqing 400060, China
| | - Yu Duan
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College Chongqing 400060, China
| | | | - Shun Zhang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, China; Zybio Inc, Chongqing, 400016, China
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Huiling Li
- Department of Occupational Medicine and Clinical Toxicology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Huifang Yan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Beijing, 100050, China
| | - Banghua Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Sheng Fu
- Hunan Prevention and Treatment Institute for Occupational Diseases, Hunan Province, 410007, China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Gen Zhang
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430010, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yongsheng Liu
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College Chongqing 400060, China
| | - Shangcheng Xu
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College Chongqing 400060, China.
| |
Collapse
|
10
|
Su Q, Ng WL, Goh SY, Gulam MY, Wang LF, Tan EK, Ahn M, Chao YX. Targeting the inflammasome in Parkinson's disease. Front Aging Neurosci 2022; 14:957705. [PMID: 36313019 PMCID: PMC9596750 DOI: 10.3389/fnagi.2022.957705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/20/2022] [Indexed: 02/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases in which neuroinflammation plays pivotal roles. An important mechanism of neuroinflammation is the NLRP3 inflammasome activation that has been implicated in PD pathogenesis. In this perspective, we will discuss the relationship of some key PD-associated proteins including α-synuclein and Parkin and their contribution to inflammasome activation. We will also review promising inhibitors of NLRP3 inflammasome pathway that have potential as novel PD therapeutics. Finally, we will provide a summary of current and potential in vitro and in vivo models that are available for therapeutic discovery and development.
Collapse
Affiliation(s)
- Qi Su
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Wei Lun Ng
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Suh Yee Goh
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Muhammad Yaaseen Gulam
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Program, Duke–NUS Medical School, Singapore, Singapore
| | - Matae Ahn
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Yin-Xia Chao
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Program, Duke–NUS Medical School, Singapore, Singapore
| |
Collapse
|
11
|
Paredes-Barquero M, Niso-Santano M, Fuentes JM, Martínez-Chacón G. In vitro and in vivo models to study the biological and pharmacological properties of queen bee acid (QBA, 10-hydroxy-2-decenoic acid): A systematic review. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Miller SJ, Campbell CE, Jimenez-Corea HA, Wu GH, Logan R. Neuroglial Senescence, α-Synucleinopathy, and the Therapeutic Potential of Senolytics in Parkinson’s Disease. Front Neurosci 2022; 16:824191. [PMID: 35516803 PMCID: PMC9063319 DOI: 10.3389/fnins.2022.824191] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder and the second most prevalent neurodegenerative disease after Alzheimer’s disease. Despite decades of research, there is still no cure for PD and the complicated intricacies of the pathology are still being worked out. Much of the research on PD has focused on neurons, since the disease is characterized by neurodegeneration. However, neuroglia has become recognized as key players in the health and disease of the central nervous system. This review provides a current perspective on the interactive roles that α-synuclein and neuroglial senescence have in PD. The self-amplifying and cyclical nature of oxidative stress, neuroinflammation, α-synucleinopathy, neuroglial senescence, neuroglial chronic activation and neurodegeneration will be discussed. Finally, the compelling role that senolytics could play as a therapeutic avenue for PD is explored and encouraged.
Collapse
Affiliation(s)
- Sean J. Miller
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
| | | | | | - Guan-Hui Wu
- Department of Neurology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Robert Logan
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
- *Correspondence: Robert Logan,
| |
Collapse
|
13
|
Thirugnanam T, Santhakumar K. Chemically induced models of Parkinson's disease. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109213. [PMID: 34673252 DOI: 10.1016/j.cbpc.2021.109213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Environmental toxins are harmful substances detrimental to humans. Constant exposure to these fatal neurotoxins can cause various neurodegenerative disorders. Although poisonous, specific neurotoxins at optimal concentrations mimic the clinical features of neurodegenerative diseases in several animal models. Such chemically-induced model systems are beneficial in deciphering the molecular mechanisms of neurodegeneration and drug screening for these disorders. One such neurotoxin is 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a widely used chemical that recapitulates Parkinsonian features in various animal models. Apart from MPTP, other neurotoxins like 6-hydroxydopamine (6-OHDA), paraquat, rotenone also induce specific clinical features of Parkinson's disease in animal models. These chemically-induced Parkinson's disease models are playing a crucial role in understanding Parkinson's disease onset, pathology, and novel therapeutics. In this review, we provide a concise overview of various neurotoxins that can recapitulate Parkinsonian features in different in vivo and in vitro model systems specifically focusing on the different treatment methodologies of neurotoxins.
Collapse
Affiliation(s)
- Thilaga Thirugnanam
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kirankumar Santhakumar
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
14
|
Fathy SM, El-Dash HA, Said NI. Neuroprotective effects of pomegranate (Punica granatum L.) juice and seed extract in paraquat-induced mouse model of Parkinson's disease. BMC Complement Med Ther 2021; 21:130. [PMID: 33902532 PMCID: PMC8074500 DOI: 10.1186/s12906-021-03298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Paraquat, (PQ), an herbicide that can induce Parkinsonian-like symptoms in rodents and humans. The consumption of phytochemical-rich plants can reduce the risk of chronic illnesses such as inflammation and neurodegenerative diseases. The present study aimed to investigate the protective effects of pomegranate seed extract (PSE) and juice (PJ) against PQ-induced neurotoxicity in mice. METHODS Mice were assigned into 4 groups; three groups received PQ (10 mg/kg, i.p.) twice a week for 3 weeks. Two of the PQ-induced groups pretreated with either PSE or PJ. Detection of phytochemicals, total phenolics, and total flavonoids in PSE and PJ was performed. Tyrosine hydroxylase (TH) level was measured in the substantia nigra (SN) by Western blotting technique. Striatal dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were detected using high-performance liquid chromatography (HPLC). The levels of adenosine triphosphate (ATP), malondialdehyde (MDA), and the activity of the antioxidant enzymes were estimated in the striatum by colorimetric analysis. Striatal pro-inflammatory and anti-inflammatory markers using enzyme-linked immunosorbent assay (ELISA) as well as DNA fragmentation degree by qualitative DNA fragmentation assay, were evaluated. Real-time polymerase chain reaction (qPCR) assay was performed for the detection of nuclear factor kappa B (NF-кB) gene expression. Moreover, Western blotting analysis was used for the estimation of the cluster of differentiation 11b (CD11b), transforming growth factor β (TGF-β), and glial cell-derived neurotrophic factor (GDNF) levels in the striatum. RESULTS Pretreatment with PSE or PJ increased the levels of TH in the SN as well as DA and its metabolite in the striatum that were reduced by PQ injection. PSE and PJ preadministration improved the PQ-induced oxidative stress via a significant reduction of the MDA level and the augmentation of antioxidant enzyme activities. PSE and PJ also significantly downregulated the striatal NF-кB gene expression, reduced the PQ-enhanced apoptosis, decreased the levels of; pro-inflammatory cytokines, CD11b, and TGF-β coupled with a significant increase of; interleukin-10 (IL-10), GDNF, and ATP levels as compared with PQ-treated mice. CONCLUSIONS The current study indicated that PSE and PJ consumption may exhibit protective effects against PQ-induced neurotoxicity in mice.
Collapse
Affiliation(s)
- Samah M Fathy
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt.
| | - Heba A El-Dash
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Noha I Said
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| |
Collapse
|
15
|
Najib NH, Nies YH, Abd Halim SA, Yahaya MF, Das S, Lim WL, Teoh SL. Modeling Parkinson’s Disease in Zebrafish. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:386-399. [DOI: 10.2174/1871527319666200708124117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/10/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023]
Abstract
Parkinson’s Disease (PD) is one of the most common neurodegenerative disorders that affects
the motor system, and includes cardinal motor symptoms such as resting tremor, cogwheel rigidity,
bradykinesia and postural instability. Its prevalence is increasing worldwide due to the increase in
life span. Although, two centuries since the first description of the disease, no proper cure with regard
to treatment strategies and control of symptoms could be reached. One of the major challenges faced
by the researchers is to have a suitable research model. Rodents are the most common PD models
used, but no single model can replicate the true nature of PD. In this review, we aim to discuss another
animal model, the zebrafish (Danio rerio), which is gaining popularity. Zebrafish brain has all the major
structures found in the mammalian brain, with neurotransmitter systems, and it also possesses a
functional blood-brain barrier similar to humans. From the perspective of PD research, the zebrafish
possesses the ventral diencephalon, which is thought to be homologous to the mammalian substantia
nigra. We summarize the various zebrafish models available to study PD, namely chemical-induced
and genetic models. The zebrafish can complement the use of other animal models for the mechanistic
study of PD and help in the screening of new potential therapeutic compounds.
Collapse
Affiliation(s)
- Nor H.M. Najib
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Yong H. Nies
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Syarifah A.S. Abd Halim
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamad F. Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wei L. Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| | - Seong L. Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Prasad EM, Hung SY. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson's Disease. Antioxidants (Basel) 2020; 9:E1007. [PMID: 33081318 PMCID: PMC7602991 DOI: 10.3390/antiox9101007] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, neurodegenerative diseases are a major cause of disability around the world. Parkinson's disease (PD) is the second-leading cause of neurodegenerative disorder after Alzheimer's disease. In PD, continuous loss of dopaminergic neurons in the substantia nigra causes dopamine depletion in the striatum, promotes the primary motor symptoms of resting tremor, bradykinesia, muscle rigidity, and postural instability. The risk factors of PD comprise environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular injury, aging, and hereditary defects. The pathologic features of PD include impaired protein homeostasis, mitochondrial dysfunction, nitric oxide, and neuroinflammation, but the interaction of these factors contributing to PD is not fully understood. In neurotoxin-induced PD models, neurotoxins, for instance, 6-hydroxydopamine (6-OHDA), 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-Methyl-4-phenylpyridinium (MPP+), paraquat, rotenone, and permethrin mainly impair the mitochondrial respiratory chain, activate microglia, and generate reactive oxygen species to induce autooxidation and dopaminergic neuronal apoptosis. Since no current treatment can cure PD, using a suitable PD animal model to evaluate PD motor symptoms' treatment efficacy and identify therapeutic targets and drugs are still needed. Hence, the present review focuses on the latest scientific developments in different neurotoxin-induced PD animal models with their mechanisms of pathogenesis and evaluation methods of PD motor symptoms.
Collapse
Affiliation(s)
- E. Maruthi Prasad
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
- Department of Medical Research, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan
| |
Collapse
|