1
|
Callan L, Caroland-Williams A, Lee G, Belflower J, Belflower J, Modi U, Kase C, Patel A, Collins N, Datta A, Qasi S, Gheidi A. After a period of forced abstinence, rats treated with the norepinephrine neurotoxin DSP-4 still exhibit preserved food-seeking behavior and prefrontal cortex fos-expressing neurons. Heliyon 2024; 10:e32146. [PMID: 39027623 PMCID: PMC11255514 DOI: 10.1016/j.heliyon.2024.e32146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Aims Relapse is a common characteristic of compulsive behaviors like addiction, where individuals tend to return to drug use or overeating after a period of abstinence. PFC (prefrontal cortex) neuronal ensembles are required for drug and food-seeking behaviors and are partially regulated by Norepinephrine (NE). However, the contributions of neuromodulators, such as the adrenergic system, in food-seeking behavior are not fully understood. Main methods To investigate this, we trained male and female rats to press a lever in an operant chamber to obtain banana-flavored food pellets for ten days. We then administered DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride), a neurotoxin that diminishes norepinephrine levels in the brain. The rats were kept in their home cages for ten more days before being returned to the operant chambers to measure food-seeking behavior. Key findings Despite receiving DSP-4, the PFC neuronal ensembles measured by Fos and food-seeking behavior did not differ between groups, but rather sex. Significance Although both NE and Fos expressing neurons are implicated in food-seeking, they do not seem to be involved in a cue-contextual induced re-exposure response.
Collapse
Affiliation(s)
- L.N. Callan
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A.J. Caroland-Williams
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - G. Lee
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - J.M. Belflower
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - J.T. Belflower
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - U.A. Modi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - C.V. Kase
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A.D. Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - N.A. Collins
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A. Datta
- Lincoln Memorial University DeBusk College of Osteopathic Medicine, Harrogate, TN, USA
| | - S. Qasi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A. Gheidi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| |
Collapse
|
2
|
Visser E, Matos MR, Mitrić MM, Kramvis I, van der Loo RJ, Mansvelder HD, Smit AB, van den Oever MC. Extinction of Cocaine Memory Depends on a Feed-Forward Inhibition Circuit Within the Medial Prefrontal Cortex. Biol Psychiatry 2022; 91:1029-1038. [PMID: 34715992 DOI: 10.1016/j.biopsych.2021.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cocaine-associated environments (i.e., contexts) evoke persistent memories of cocaine reward and thereby contribute to the maintenance of addictive behavior in cocaine users. From a therapeutic perspective, enhancing inhibitory control over cocaine-conditioned responses is of pivotal importance but requires a more detailed understanding of the neural circuitry that can suppress context-evoked cocaine memories, e.g., through extinction learning. The ventral medial prefrontal cortex (vmPFC) and dorsal medial prefrontal cortex (dmPFC) are thought to bidirectionally regulate responding to cocaine cues through their projections to other brain regions. However, whether these mPFC subregions interact to enable adaptive responding to cocaine-associated contextual stimuli has remained elusive. METHODS We used antero- and retrograde tracing combined with chemogenetic intervention to examine the role of vmPFC-to-dmPFC projections in extinction of cocaine-induced place preference in mice. In addition, electrophysiological recordings and optogenetics were used to determine whether parvalbumin-expressing inhibitory interneurons and pyramidal neurons in the dmPFC are innervated by vmPFC projections. RESULTS We found that vmPFC-to-dmPFC projecting neurons are activated during unreinforced re-exposure to a cocaine-associated context, and selective suppression of these cells impairs extinction learning. Parvalbumin-expressing inhibitory interneurons in the dmPFC receive stronger monosynaptic excitatory input from vmPFC projections than local dmPFC pyramidal neurons, consequently resulting in disynaptic inhibition of pyramidal neurons. In line with this, we show that chemogenetic suppression of dmPFC parvalbumin-expressing inhibitory interneurons impairs extinction learning. CONCLUSIONS Our data reveal that vmPFC projections mediate extinction of a cocaine-associated contextual memory through recruitment of feed-forward inhibition in the dmPFC, thereby providing a novel neuronal substrate that promotes extinction-induced inhibitory control.
Collapse
Affiliation(s)
- Esther Visser
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mariana R Matos
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Miodrag M Mitrić
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ioannis Kramvis
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrated Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|