1
|
Wong SL, Shih CL, Cho HY, Wu SN. Effective suppression of I h and I Na caused by capsazepine, known to be a blocker of TRPV1 receptor. Brain Res 2024; 1839:149008. [PMID: 38761846 DOI: 10.1016/j.brainres.2024.149008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
A synthetic inhibitor of capsaicin-induced TRPV1 channel activation is called capsazepine (CPZ). In this study, we aimed to explore the effects of CPZ on hyperpolarization-activated cationic current (Ih) and voltage-gated Na + current (INa) in pituitary tumor (GH3) cells. Through patch-clamp recordings, we found that CPZ concentration-dependently inhibited Ih amplitude and slowed its activation time course. The IC50 and KD values were 3.1 and 3.16 μM, respectively. CPZ also shifted the steady-state activation curve of Ih towards a more hyperpolarized potential. However, there was no change in the gating charge of the curve. A modified Markovian model predicted the CPZ-induced decrease in the voltage-dependent hysteresis of Ih. CPZ suppressed INa in GH3 cells, without altering its activation or inactivation time course. Additionally, exposure to CPZ reduced spontaneous firing. These findings suggest that CPZ's inhibitory effects on Ih and INa are direct and not dependent on vanilloid receptor binding. This could provide light on an unidentified ionic mechanism influencing the membrane excitability of neurons and endocrine or neuroendocrine cells in vivo.
Collapse
Affiliation(s)
- Siew-Lee Wong
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chia-Lung Shih
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan.
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; Department of Research and Education, An Nan Hospital, China Medical University, Tainan 709040, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804201 Taiwan.
| |
Collapse
|
2
|
Dmytrenko G, Fernández-Solari J, Correa F, De Laurentiis A. Oxytocin alleviates periodontitis in adult rats. J Periodontal Res 2024; 59:280-288. [PMID: 38226427 DOI: 10.1111/jre.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVE The objective of the study was to evaluate the expression of oxytocin receptors in normal and inflamed gingiva, as well as the effects of systemic administration of oxytocin in bone loss and gum inflammatory mediators in a rat model of experimental periodontitis. BACKGROUND DATA Current evidence supports the hypothesis of a disbalance between the oral microbiota and the host's immune response in the pathogenesis of periodontitis. Increased complexity of the microbial biofilm present in the periodontal pocket leads to local production of nitrogen and oxygen-reactive species, cytokines, chemokines, and other proinflammatory mediators which contribute to periodontal tissue destruction and bone loss. Oxytocin has been suggested to participate in the modulation of immune and inflammatory processes. We have previously shown that oxytocin, nitric oxide, and endocannabinoid system interact providing a mechanism of regulation for systemic inflammation. Here, we aimed at investigating not only the presence and levels of expression of oxytocin receptors on healthy and inflamed gingiva, but also the effects of oxytocin treatment on alveolar bone loss, and systemic and gum expression of inflammatory mediators involved in periodontal tissue damage using ligature-induced periodontitis. Therefore, anti-inflammatory strategies oriented at modulating the host's immune response could be valuable adjuvants to the main treatment of periodontal disease. METHODS We used an animal model of ligature-induced periodontitis involving the placement of a linen thread (Barbour flax 100% linen suture, No. 50; size 2/0) ligature around the neck of first lower molars of adult male rats. The ligature was left in place during the entire experiment (7 days) until euthanasia. Animals with periodontitis received daily treatment with oxytocin (OXT, 1000 μg/kg, sc.) or vehicle and/or atosiban (3 mg/kg, sc.), an antagonist of oxytocin receptors. The distance between the cement-enamel junction and the alveolar bone crest was measured in stained hemimandibles in the long axis of both buccal and lingual surfaces of both inferior first molars using a caliper. TNF-α levels in plasma were determined using specific rat enzyme-linked immunosorbent assays (ELISA). OXT receptors, IL-6, IL-1β, and TNF-α expression were determined in gingival tissues by semiquantitative or real-time PCR. RESULTS We show that oxytocin receptors are expressed in normal and inflamed gingival tissues in male rats. We also show that the systemic administration of oxytocin prevents the experimental periodontitis-induced increased gum expression of oxytocin receptors, TNF-α, IL-6, and IL-1β (p < .05). Furthermore, we observed a reduction in bone loss in rats treated with oxytocin in our model. CONCLUSIONS Our results demonstrate that oxytocin is a novel and potent modulator of the gingival inflammatory process together with bone loss preventing effects in an experimental model of ligature-induced periodontitis.
Collapse
Affiliation(s)
- Ganna Dmytrenko
- Facultad de Odontología, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Fernández-Solari
- Facultad de Odontología, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fernando Correa
- Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos, CEFYBO-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Odontología, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea De Laurentiis
- Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos, CEFYBO-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Odontología, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Marino M, D’Auria R, Mele E, Pastorino GMG, Di Pietro P, D’Angelo S, Della Rocca N, Operto FF, Vecchione C, Fasano S, Pierantoni R, Viggiano A, Meccariello R, Santoro A. The interplay between kisspeptin and endocannabinoid systems modulates male hypothalamic and gonadic control of reproduction in vivo. Front Endocrinol (Lausanne) 2023; 14:1269334. [PMID: 37900144 PMCID: PMC10602894 DOI: 10.3389/fendo.2023.1269334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Male reproduction is under the control of the hypothalamus-pituitary-gonadal (HPG) axis. The endocannabinoid system (ECS) and the kisspeptin system (KS) are two major signaling systems in the central and peripheral control of reproduction, but their possible interaction has been poorly investigated in mammals. This manuscript analyzes their possible reciprocal modulation in the control of the HPG axis. Materials and methods Adolescent male rats were treated with kisspeptin-10 (Kp10) and endocannabinoid anandamide (AEA), the latter alone or in combination with the type 1 cannabinoid receptor (CB1) antagonist rimonabant (SR141716A). The hypothalamic KS system and GnRH expression, circulating sex steroids and kisspeptin (Kiss1) levels, and intratesticular KS and ECS were evaluated by immunohistochemical and molecular methods. Non-coding RNAs (i.e., miR145-5p, miR-132-3p, let7a-5p, let7b-5p) were also considered. Results Circulating hormonal values were not significantly affected by Kp10 or AEA; in the hypothalamus, Kp10 significantly increased GnRH mRNA and aromatase Cyp19, Kiss1, and Kiss1 receptor (Kiss1R) proteins. By contrast, AEA treatment affected the hypothalamic KS at the protein levels, with opposite effects on the ligand and receptor, and SR141716A was capable of attenuating the AEA effects. Among the considered non-coding RNA, only the expression of miR145-5p was positively affected by AEA but not by Kp10 treatment. Localization of Kiss1+/Kiss1R+ neurons in the arcuate nucleus revealed an increase of Kiss1R-expressing neurons in Kp10- and AEA-treated animals associated with enlargement of the lateral ventricles in Kp10-treated animals. In the brain and testis, the selected non-coding RNA was differently modulated by Kp10 or AEA. Lastly, in the testis, AEA treatment affected the KS at the protein levels, whereas Kp10 affected the intragonadal levels of CB1 and FAAH, the main modulator of the AEA tone. Changes in pubertal transition-related miRNAs and the intratesticular distribution of Kiss1, Kiss1R, CB1, and CB2 following KP and AEA treatment corroborate the KS-ECS crosstalk also showing that the CB1 receptor is involved in this interplay. Conclusion For the first time in mammals, we report the modulation of the KS in both the hypothalamus and testis by AEA and revealed the KP-dependent modulation of CB1 and FAAH in the testis. KP involvement in the progression of spermatogenesis is also suggested.
Collapse
Affiliation(s)
- Marianna Marino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Raffaella D’Auria
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Elena Mele
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Grazia Maria Giovanna Pastorino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
- Unità Operativa Complessa (U.O.C.) Neuropsichiatria Infantile, Azienda Ospedaliero Universitaria San Giovanni di Dio Ruggi d’Aragona, “Scuola Medica Salernitana”, Salerno, Italy
| | - Paola Di Pietro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Stefania D’Angelo
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Natalia Della Rocca
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | | | - Carmine Vecchione
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università della Campania L. Vanvitelli, Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università della Campania L. Vanvitelli, Napoli, Italy
| | - Andrea Viggiano
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Antonietta Santoro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| |
Collapse
|
4
|
De Laurentiis A, Correa F, Fernandez Solari J. Endocannabinoid System in the Neuroendocrine Response to Lipopolysaccharide-induced Immune Challenge. J Endocr Soc 2022; 6:bvac120. [PMID: 36042978 PMCID: PMC9419496 DOI: 10.1210/jendso/bvac120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/19/2022] Open
Abstract
The endocannabinoid system plays a key role in the intersection of the nervous, endocrine, and immune systems, regulating not only their functions but also how they interplay with each other. Endogenous ligands, named endocannabinoids, are produced "on demand" to finely regulate the synthesis and secretion of hormones and neurotransmitters, as well as to regulate the production of cytokines and other proinflammatory mediators. It is well known that immune challenges, such as exposure to lipopolysaccharide, the main component of the Gram-negative bacteria cell wall, disrupt not only the hypothalamic-pituitary-adrenal axis but also affects other endocrine systems such as the hypothalamic-pituitary-gonadal axis and the release of oxytocin from the neurohypophysis. Here we explore which actors and molecular mechanisms are involved in these processes.
Collapse
Affiliation(s)
- Andrea De Laurentiis
- Universidad de Buenos Aires (UBA), Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
- Centro de Estudios Farmacológicos y Botánicos, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (UBA/CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fernando Correa
- Centro de Estudios Farmacológicos y Botánicos, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (UBA/CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Javier Fernandez Solari
- Universidad de Buenos Aires (UBA), Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Maeng LY, Rosenfeld D, Simandl GJ, Koehler F, Senko AW, Moon J, Varnavides G, Murillo MF, Reimer AE, Wald A, Anikeeva P, Widge AS. Probing Neuro-Endocrine Interactions Through Remote Magnetothermal Adrenal Stimulation. Front Neurosci 2022; 16:901108. [PMID: 35837128 PMCID: PMC9274974 DOI: 10.3389/fnins.2022.901108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to stressful or traumatic stimuli may alter hypothalamic-pituitary-adrenal (HPA) axis and sympathoadrenal-medullary (SAM) reactivity. This altered reactivity may be a component or cause of mental illnesses. Dissecting these mechanisms requires tools to reliably probe HPA and SAM function, particularly the adrenal component, with temporal precision. We previously demonstrated magnetic nanoparticle (MNP) technology to remotely trigger adrenal hormone release by activating thermally sensitive ion channels. Here, we applied adrenal magnetothermal stimulation to probe stress-induced HPA axis and SAM changes. MNP and control nanoparticles were injected into the adrenal glands of outbred rats subjected to a tone-shock conditioning/extinction/recall paradigm. We measured MNP-triggered adrenal release before and after conditioning through physiologic (heart rate) and serum (epinephrine, corticosterone) markers. Aversive conditioning altered adrenal function, reducing corticosterone and blunting heart rate increases post-conditioning. MNP-based organ stimulation provides a novel approach to probing the function of SAM, HPA, and other neuro-endocrine axes and could help elucidate changes across stress and disease models.
Collapse
Affiliation(s)
- Lisa Y. Maeng
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Dekel Rosenfeld
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gregory J. Simandl
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Florian Koehler
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alexander W. Senko
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Junsang Moon
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Georgios Varnavides
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Maria F. Murillo
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Adriano E. Reimer
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Aaron Wald
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Polina Anikeeva
- Research Laboratory of Electronics and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- *Correspondence: Polina Anikeeva,
| | - Alik S. Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
- Alik S. Widge,
| |
Collapse
|
6
|
Politi M, Ferrante C, Menghini L, Angelini P, Flores GA, Muscatello B, Braca A, De Leo M. Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030349. [PMID: 35161330 PMCID: PMC8840401 DOI: 10.3390/plants11030349] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 05/12/2023]
Abstract
The present work evaluates the aromatic waters of rosemary (Salvia rosmarinus Spenn. syn. Rosmarinus officinalis L.), sage (Salvia officinalis L.), and cypress (Cupressus sempervirens L.) obtained as innovative commercial products of a hydrodistillation process. All extracts were exhaustively analysed by GC-MS, 1H-NMR, and LC-MS in order to evaluate potential metabolite fingerprint differences. GC-MS appears to be the most exhaustive technique for the qualitative identification of the single constituents, although in this case, the use of 1H-NMR and LC-MS techniques allowed some useful considerations in semi-quantitative terms. Antimycotic effects were studied against Tricophyton, Candida, and Arthroderma species, resulting in weak activity. The toxicological impact was partly evaluated in vitro by means of allelopathy and brine shrimp lethality. Cytotoxicity was investigated in human colon cancer cells (HCT116) and in hypothalamic cells (Hypo-E22) challenged with hydrogen peroxide. Sage and rosemary hydrosols were the most effective antimycotics, whereas all hydrosols displayed antiradical effects. Cytotoxic effects against HCT116 cells (at 500 µL/mL) were related in silico to the endovanilloid TRPM8 and TRPV1 receptors. At lower concentrations (5-50 µL/mL), the hydrosols protected hypothalamic neurons Hypo-E22 cells from hydrogen peroxide-induced toxicity. The overall experience indicates that hydrolates are an important source of relevant phytochemicals with significant pharmacological potential.
Collapse
Affiliation(s)
- Matteo Politi
- Dipartimento di Farmacia, Botanic Garden “Giardino dei Semplici”, Università di Chieti-Pescara, Via Vestini 1, 66100 Chieti Scalo, Italy; (M.P.); (C.F.); (L.M.)
| | - Claudio Ferrante
- Dipartimento di Farmacia, Botanic Garden “Giardino dei Semplici”, Università di Chieti-Pescara, Via Vestini 1, 66100 Chieti Scalo, Italy; (M.P.); (C.F.); (L.M.)
| | - Luigi Menghini
- Dipartimento di Farmacia, Botanic Garden “Giardino dei Semplici”, Università di Chieti-Pescara, Via Vestini 1, 66100 Chieti Scalo, Italy; (M.P.); (C.F.); (L.M.)
| | - Paola Angelini
- Dipartimento di Chimica, Biologia e Biotecnologia, Università di Perugia, Via del Giochetto 6, 06122 Perugia, Italy; (P.A.); (G.A.F.)
| | - Giancarlo Angeles Flores
- Dipartimento di Chimica, Biologia e Biotecnologia, Università di Perugia, Via del Giochetto 6, 06122 Perugia, Italy; (P.A.); (G.A.F.)
| | - Beatrice Muscatello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.M.); (M.D.L.)
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Alessandra Braca
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.M.); (M.D.L.)
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-9688
| | - Marinella De Leo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.M.); (M.D.L.)
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|