1
|
Kumar A, Chaurasia B. Combating stroke prevention in low and middle income countries. Neurosurg Rev 2024; 47:738. [PMID: 39373826 DOI: 10.1007/s10143-024-03009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Aadesh Kumar
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal.
| |
Collapse
|
2
|
Schild H, Bopp T. [Immunological foundations of neurological diseases]. DER NERVENARZT 2024; 95:894-908. [PMID: 38953921 DOI: 10.1007/s00115-024-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Neurodegenerative diseases represent an increasing challenge in ageing societies, as only limited treatment options are currently available. OBJECTIVE New research methods and interdisciplinary interaction of different disciplines have changed the way neurological disorders are viewed and paved the way for the comparatively new field of neuroimmunology, which was established in the early 1980s. Starting from neurological autoimmune diseases, such as multiple sclerosis, knowledge about the involvement of immunological processes in other contexts, such as stroke or traumatic brain injury, has been significantly expanded in recent years. MATERIAL AND METHODS This review article provides an overview of the role of the immune system and the resulting potential for novel treatment approaches. RESULTS The immune system plays a central role in fighting infections but is also able to react to the body's own signals under sterile conditions and cause inflammation and subsequent adaptive immune responses through the release of immune mediators and the recruitment and differentiation of certain immune cell types. This can be beneficial in initiating healing processes; however, chronic inflammatory conditions usually have destructive consequences for the tissue and the organism and must be interrupted. CONCLUSION It is now known that different cells of the immune system play an important role in neurological diseases. Regulatory mechanisms, which are mediated by regulatory T cells or Th2 cells, are usually associated with a good prognosis, whereas inflammatory processes and polarization towards Th1 or Th17 have a destructive character. Novel immunomodulators, which are also increasingly being used in cancer treatment, can now be used in a tissue-specific manner and therefore offer great potential for use in neurological diseases.
Collapse
Affiliation(s)
- Hansjörg Schild
- Institut für Immunologie, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - Tobias Bopp
- Institut für Immunologie, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland.
| |
Collapse
|
3
|
Savaliya R, Chavda VK, Patel B, Brahmbhatt R, Chaurasia B. Acute ischemic stroke: research perspective vs. clinical practice. Neurosurg Rev 2024; 47:612. [PMID: 39271530 DOI: 10.1007/s10143-024-02853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Affiliation(s)
- Rutvik Savaliya
- Department of Medicine & Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
| | - Vishal K Chavda
- Department of Medicine & Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India.
- Department of Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India.
| | - Bipin Patel
- Department of Medicine & Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
- Department of Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
| | - Raxit Brahmbhatt
- Department of Medicine & Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
- Department of Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal.
| |
Collapse
|
4
|
Savaliya R, Chavda V, Patel B, Brahmbhatt R, Figueiredo EG, Chaurasia B. Post-ischemic scars and 'The micro-metabolic-glia-cerebral changes": do we know everything? Neurosurg Rev 2024; 47:455. [PMID: 39168927 DOI: 10.1007/s10143-024-02721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Rutvik Savaliya
- Department of Medicine, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
| | - Vishal Chavda
- Department of Medicine, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
- Department of Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
| | - Bipin Patel
- Department of Medicine, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
- Department of Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
| | - Raxit Brahmbhatt
- Department of Medicine, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
- Department of Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
| | - Eberval G Figueiredo
- Neurology and Neurosurgery Department, Hospital Das Clinicas FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal.
| |
Collapse
|
5
|
Zaidi DA, Yaqoob E, Chaurasia B, Javed S. Addressing stroke care deficiencies in Pakistan: a call for nationwide reforms and strategic initiatives. Neurosurg Rev 2024; 47:396. [PMID: 39093320 DOI: 10.1007/s10143-024-02648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Dua Abbas Zaidi
- Violence, Injury Prevention & Disability Unit, Health Services Academy, Islamabad, Pakistan
| | - Eesha Yaqoob
- Violence, Injury Prevention & Disability Unit, Health Services Academy, Islamabad, Pakistan
- Ministry of National Health Services Regulations and Coordination, Government of Pakistan, Islamabad, Pakistan
| | | | - Saad Javed
- Violence, Injury Prevention & Disability Unit, Health Services Academy, Islamabad, Pakistan
- Ministry of National Health Services Regulations and Coordination, Government of Pakistan, Islamabad, Pakistan
- Registrar Neurosurgery, Brain Surgery Hospital, Research Fellow at Violence, Injury Prevention and Disability Unit, Health Services Academy, Ministry of National Health Services, Regulations … Coordination, Islamabad, Pakistan
| |
Collapse
|
6
|
Bauer A, Boehme C, Mayer-Suess L, Rudzki D, Knoflach M, Kiechl S, Reindl M. Peripheral inflammatory response in people after acute ischaemic stroke and isolated spontaneous cervical artery dissection. Sci Rep 2024; 14:12063. [PMID: 38802464 PMCID: PMC11130263 DOI: 10.1038/s41598-024-62557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Abstract
The systemic inflammatory response following acute ischaemic stroke remains incompletely understood. We characterised the circulating inflammatory profile in 173 acute ischaemic stroke patients by measuring 65 cytokines and chemokines in plasma. Participants were grouped based on their inflammatory response, determined by high-sensitivity C-reactive protein levels in the acute phase. We compared stroke patients' profiles with 42 people experiencing spontaneous cervical artery dissection without stroke. Furthermore, variations in cytokine levels among stroke aetiologies were analysed. Follow-up samples were collected in a subgroup of ischaemic stroke patients at three and twelve months. Ischaemic stroke patients had elevated plasma levels of HGF and SDF-1α, and lower IL-4 levels, compared to spontaneous cervical artery dissection patients without stroke. Aetiology-subgroup analysis revealed reduced levels of nine cytokines/chemokines (HGF, SDF-1α, IL-2R, CD30, TNF-RII, IL-16, MIF, APRIL, SCF), and elevated levels of IL-4 and MIP-1β, in spontaneous cervical artery dissection (with or without ischaemic stroke as levels were comparable between both groups) compared to other aetiologies. The majority of cytokine/chemokine levels remained stable across the study period. Our research indicates that stroke due to large artery atherosclerosis, cardioembolism, and small vessel occlusion triggers a stronger inflammatory response than spontaneous cervical artery dissection.
Collapse
Affiliation(s)
- Angelika Bauer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Boehme
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Mayer-Suess
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dagmar Rudzki
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Michael Knoflach
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Stefan Kiechl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Farooq M, Scalia G, Umana GE, Parekh UA, Naeem F, Abid SF, Khan MH, Zahra SG, Sarkar HP, Chaurasia B. A Systematic Review of Nanomedicine in Glioblastoma Treatment: Clinical Efficacy, Safety, and Future Directions. Brain Sci 2023; 13:1727. [PMID: 38137175 PMCID: PMC10742051 DOI: 10.3390/brainsci13121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Glioblastoma (GBM) is categorized as a grade IV astrocytoma by the World Health Organization (WHO), representing the most aggressive and prevalent form of glioma. It presents a significant clinical challenge, with limited treatment options and poor prognosis. This systematic review evaluates the efficacy and safety of various nanotherapy approaches for GBM and explores future directions in tumor management. Nanomedicine, which involves nanoparticles in the 1-100 nm range, shows promise in improving drug delivery and targeting tumor cells. (2) Methods: Following PRISMA guidelines, a systematic search of databases including Google Scholar, NCBI PubMed, Cochrane Library, and ClinicalTrials.gov was conducted to identify clinical trials on GBM and nanomedicine. The primary outcome measures were median overall survival, progression-free survival, and quality of life assessed through Karnofsky performance scores. The safety profile was assessed by adverse events. (3) Results: The analysis included 225 GBM patients, divided into primary and recurrent sub-populations. Primary GBM patients had a median overall survival of 6.75 months, while recurrent GBM patients had a median overall survival of 9.7 months. The mean PFS period was 2.3 months and 3.92 months in primary GBM and recurrent GBM patients, respectively. Nanotherapy showed an improvement in quality of life, with KPS scores increasing after treatment in recurrent GBM patients. Adverse events were observed in 14.2% of patients. Notably, Bevacizumab therapy exhibited better survival outcomes but with a higher incidence of adverse events. (4) Conclusions: Nanotherapy offers a modest increase in survival with fewer severe side effects. It shows promise in improving the quality of life, especially in recurrent GBM patients. However, it falls short in terms of overall survival compared to Bevacizumab. The heterogeneous nature of treatment protocols and reporting methods highlights the need for standardized multicenter trials to further evaluate the potential of nanomedicine in GBM management.
Collapse
Affiliation(s)
- Minaam Farooq
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10021, USA;
| | - Gianluca Scalia
- Neurosurgery Unit, Department of Head and Neck Surgery, Garibaldi Hospital, 95123 Catania, Italy
| | - Giuseppe E. Umana
- Department of Neurosurgery, Gamma Knife and Trauma Center, Cannizzaro Hospital, 95126 Catania, Italy;
| | - Urja A. Parekh
- German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Faiza Naeem
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Sayeda Fatima Abid
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Muhammad Hammad Khan
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Shah Gul Zahra
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Hrishikesh P. Sarkar
- Department of Neurological Sciences, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| |
Collapse
|
8
|
Lu Y, Zhou W, Cui Q, Cui C. G Protein-Coupled Receptor 40 Agonist LY2922470 Alleviates Ischemic-Stroke-Induced Acute Brain Injury and Functional Alterations in Mice. Int J Mol Sci 2023; 24:12244. [PMID: 37569618 PMCID: PMC10418587 DOI: 10.3390/ijms241512244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Stroke is a major cause of fatalities and disabilities around the world, yet the available treatments for it are still limited. The quest for more efficacious drugs and therapies is still an arduous task. LY2922470 is currently used as a G protein-coupled receptor 40 (GPR40) agonist for the treatment of type 2 diabetes. Previous studies have reported protective effects of other GPR40 activators on the brain; however, it remains unclear whether LY2922470 could be a new stroke therapy and improve the stroke-induced brain damage. Here, we first reveal that the transcriptomic gene signature induced by LY2922470 is highly similar to those induced by some agents being involved in defending from cerebrovascular accidents and transient ischemic attacks, including acetylsalicylic acid, progesterone, estradiol, dipyridamole, and dihydroergotamine. This result thus suggests that LY2922470 could have protective effects against ischemic stroke. As a result, further experiments show that giving the small molecule LY2922470 via oral administration or intraperitoneal injection was seen to have a positive effect on neuroprotection with a reduction in infarct size and an improvement in motor skills in mice. Finally, it was demonstrated that LY2922470 could successfully mitigate the harm to the brain caused by ischemic stroke.
Collapse
Affiliation(s)
| | | | - Qinghua Cui
- Department of Biomedical Informatics, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd., Beijing 100191, China; (Y.L.); (W.Z.)
| | - Chunmei Cui
- Department of Biomedical Informatics, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd., Beijing 100191, China; (Y.L.); (W.Z.)
| |
Collapse
|
9
|
Tao H, Dong L, Li L. N6-methyladenosine modulation classes and immune microenvironment regulation in ischemic stroke. Front Mol Neurosci 2022; 15:1013076. [PMID: 36762188 PMCID: PMC9907088 DOI: 10.3389/fnmol.2022.1013076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
N6-methyladenosine (m6A) modifications play an important role in the differentiation and regulation of immune cells. However, research on m6A in ischemic stroke (IS) is still in its infancy, and their role of the immune microenvironment remains unknown. In this study, we systematically assessed the modification classes of m6A regulators in IS based on the GEO database (GSE16561 and GSE22255). We found that in IS patients, IGF2BP2, IGF2BP1, and YTHDF2 expression was significantly upregulated, and ELAVL1, LRPPRC, METTL3, ALKBH5, CBLL1, and METTL14 expression was significantly downregulated. Seven IS-related genes (ELAVL1, IGF2BP2, LRPPRC, YTHDF2, ALKBH5, METTL14, and YTHDC1) were finally screened by logistic and least absolute shrinkage and selection operator (LASSO) regressions, and the AUC of the riskScore was 0.942, which was a good classification. For immune infiltration, there were highly significant differences in memory B cells, CD8 T cells, monocytes, activated dendritic cells, and mast cells between IS and normal samples. The IS samples were grouped into three classes by consistent clustering, and 15 m6A genes were differentially expressed in the different classes. Multiple infiltrating immune cells, immune-associated genes, and HLA-associated genes differed significantly across m6A modification classes, indicating the diversity and complexity of m6A modifications in the immune microenvironment of IS. Finally, 487 genes associated with the m6A modification class were identified, and 227 potential drugs were found. Our findings demonstrated that m6A modification plays a crucial role in the immune regulation of IS.
Collapse
Affiliation(s)
- Hongmiao Tao
- Medical College, Jinhua Polytechnic, Jinhua, China,*Correspondence: Hongmiao Tao,
| | - Lihua Dong
- Medical College, Jinhua Polytechnic, Jinhua, China
| | - Lin Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Pinčáková K, Krastev G, Haring J, Mako M, Mikulášková V, Bošák V. Low Lymphocyte-to-Monocyte Ratio as a Possible Predictor of an Unfavourable Clinical Outcome in Patients with Acute Ischemic Stroke after Mechanical Thrombectomy. Stroke Res Treat 2022; 2022:9243080. [PMID: 36536620 PMCID: PMC9759396 DOI: 10.1155/2022/9243080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 09/10/2024] Open
Abstract
Background Although considerable progress has been made in the treatment of acute ischemic stroke (AIS), the clinical outcome of patients is still significantly influenced by the inflammatory response that follows stroke-induced brain injury. The aim of this study was to evaluate the potential use of complete blood count parameters, including indices and ratios, for predicting the clinical outcome in AIS patients undergoing mechanical thrombectomy (MT). Methods This single-centre retrospective study is consisted of 179 patients. Patient data including demographic characteristics, risk factors, clinical data, laboratory parameters on admission, and clinical outcome were collected. Based on the clinical outcome assessed at 3 months after MT by the modified Rankin Scale (mRS), patients were divided into two groups: the favourable group (mRS 0-2) and unfavourable group (mRS 3-6). Stepwise multivariate logistic regression analysis was used to detect an independent predictor of the unfavourable clinical outcome. Results An unfavourable clinical outcome was detected after 3 months in 101 patients (54.4%). Multivariate logistic regression analysis confirmed that the lymphocyte-to-monocyte ratio (LMR) was an independent predictor of unfavourable clinical outcome at 3 months (odds ratio = 0.761, 95% confidence interval 0.625-0.928, and P = 0.007). The value of 3.27 was chosen to be the optimal cut-off value of LMR. This value could predict the unfavourable clinical outcome with a 74.0% sensitivity and a 54.4% specificity. Conclusion The LMR at the time of hospital admission is a predictor of an unfavourable clinical outcome at 3 months in AIS patients after MT.
Collapse
Affiliation(s)
- Katarína Pinčáková
- Department of Laboratory Medicine, Faculty of Health and Social Care, Trnava University in Trnava, 918 43 Trnava, Slovakia
- Department of Haematology, Faculty Hospital Trnava, 917 75 Trnava, Slovakia
| | - Georgi Krastev
- Jessenius Medical Faculty in Martin, Comenius University in Bratislava, 036 01 Martin-Záturčie, Slovakia
- Department of Neurology, Faculty Hospital Trnava, 917 75 Trnava, Slovakia
| | - Jozef Haring
- Department of Neurology, Faculty Hospital Trnava, 917 75 Trnava, Slovakia
- Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| | - Miroslav Mako
- Jessenius Medical Faculty in Martin, Comenius University in Bratislava, 036 01 Martin-Záturčie, Slovakia
- Department of Neurology, Faculty Hospital Trnava, 917 75 Trnava, Slovakia
| | - Viktória Mikulášková
- Department of Laboratory Medicine, Faculty of Health and Social Care, Trnava University in Trnava, 918 43 Trnava, Slovakia
| | - Vladimír Bošák
- Department of Laboratory Medicine, Faculty of Health and Social Care, Trnava University in Trnava, 918 43 Trnava, Slovakia
| |
Collapse
|
11
|
Zhang X, Wang Y, Dong B, Jiang Y, Liu D, Xie K, Yu Y. Expression pattern and clinical value of Key RNA methylation modification regulators in ischemic stroke. Front Genet 2022; 13:1009145. [PMID: 36263422 PMCID: PMC9574037 DOI: 10.3389/fgene.2022.1009145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke (IS) is one of the major causes of death and disability worldwide, and effective diagnosis and treatment methods are lacking. RNA methylation, a common epigenetic modification, plays an important role in disease progression. However, little is known about the role of RNA methylation modification in the regulation of IS. The aim of this study was to investigate RNA methylation modification patterns and immune infiltration characteristics in IS through bioinformatics analysis. We downloaded gene expression profiles of control and IS model rat brain tissues from the Gene Expression Omnibus database. IS profiles were divided into two subtypes based on RNA methylation regulators, and functional enrichment analyses were conducted to determine the differentially expressed genes (DEGs) between the subtypes. Weighted gene co-expression network analysis was used to explore co-expression modules and genes based on DEGs. The IS clinical diagnosis model was successfully constructed and four IS characteristic genes (GFAP, GPNMB, FKBP9, and CHMP5) were identified, which were significantly upregulated in IS samples. Characteristic genes were verified by receiver operating characteristic curve and real-time quantitative PCR analyses. The correlation between characteristic genes and infiltrating immune cells was determined by correlation analysis. Furthermore, GPNMB was screened using the protein-protein interaction network, and its regulatory network and the potential therapeutic drug chloroquine were predicted. Our finding describes the expression pattern and clinical value of key RNA methylation modification regulators in IS and novel diagnostic and therapeutic targets of IS from a new perspective.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yuanlin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Dan Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
- *Correspondence: Yonghao Yu,
| |
Collapse
|
12
|
Wang Z, Wang X, Liao Y, Chen G, Xu K. Immune response treated with bone marrow mesenchymal stromal cells after stroke. Front Neurol 2022; 13:991379. [PMID: 36203971 PMCID: PMC9530191 DOI: 10.3389/fneur.2022.991379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Tissue plasminogen activator (tPA) is an effective treatment for ischemic stroke. However, only a small part of patients could benefit from it. Therefore, finding a new treatment is necessary. Bone marrow mesenchymal stromal cells (BMSCs) provide a novel strategy for stroke patients. Now, many patients take stem cells to treat stroke. However, the researches of the precise inflammatory mechanism of cell replacement treatment are still rare. In this review, we summarize the immune response of BMSCs treated to stroke and may provide a new perspective for stem cell therapy.
Collapse
Affiliation(s)
- Zili Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xudong Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yidong Liao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guangtang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Kaya Xu
| |
Collapse
|
13
|
Luo J, Li J, Xiong L, Fan L, Peng L, Yang Y, Lu D, Shao J. MicroRNA-27a-3p relieves inflammation and neurologic impairment after cerebral ischemia reperfusion via inhibiting LITAF and the TLR4/NF-κB pathway. Eur J Neurosci 2022; 56:4013-4030. [PMID: 35584745 DOI: 10.1111/ejn.15720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
Abstract
Cerebral ischemia reperfusion (CIR) affects microRNA (miR) expression and causes substantial inflammation. Here, we investigated the influence and underlying mechanism of miR-27a-3p in rats with CIR. Firstly, Biliverdin treatment relieved cerebral infarction and decreased the levels of serum interleukin (IL)-1β, IL-6 and TNF-α. Through our previous study, we found key miR-27a-3p and its targeted gene LITAF might involve in the molecular mechanism of CIR. Then, the regulation between miR-27a-3p and LITAF was verified by the temporal miR-27a-3p and LITAF expression profiles and luciferase assay. Moreover, intracerebroventricular injection of the miR-27a-3p mimic significantly decreased the LITAF, TLR4, NF-κB and IL-6 levels at 24h post-surgery, whereas miR-27a-3p inhibitor reversed these effects. Furthermore, miR-27a-3p mimic could relieve cerebral infarct and neurologic deficit after CIR. In addition, injection of miR-27a-3p mimic decreased neuronal damage induced by CIR. Taken together, our results suggest that miR-27a-3p protect against CIR by relieving inflammation, neuronal damage and neurologic deficit via regulating LITAF and the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Jing Luo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Li Xiong
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Linna Fan
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Lijia Peng
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Yuan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Di Lu
- Incubation center for Scientific and technological achievements, Kunming Medical University
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| |
Collapse
|
14
|
The Assessment of Endovascular Therapies in Ischemic Stroke: Management, Problems and Future Approaches. J Clin Med 2022; 11:jcm11071864. [PMID: 35407472 PMCID: PMC8999747 DOI: 10.3390/jcm11071864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke accounts for over 80% of all strokes and is one of the leading causes of mortality and permanent disability worldwide. Intravenous administration of recombinant tissue plasminogen activator (rt-PA) is an approved treatment strategy for acute ischemic stroke of large arteries within 4.5 h of onset, and mechanical thrombectomy can be used for large arteries occlusion up to 24 h after onset. Improving diagnostic work up for acute treatment, reducing onset-to-needle time and urgent radiological access angiographic CT images (angioCT) and Magnetic Resonance Imaging (MRI) are real problems for many healthcare systems, which limits the number of patients with good prognosis in real world compared to the results of randomized controlled trials. The applied endovascular procedures demonstrated high efficacy, but some cellular mechanisms, following reperfusion, are still unknown. Changes in the morphology and function of mitochondria associated with reperfusion and ischemia-reperfusion neuronal death are still understudied research fields. Moreover, future research is needed to elucidate the relationship between continuously refined imaging techniques and the variable structure or physical properties of the clot along with vascular permeability and the pleiotropism of ischemic reperfusion lesions in the penumbra, in order to define targeted preventive procedures promoting long-term health benefits.
Collapse
|
15
|
Fan J, Chen M, Cao S, Yao Q, Zhang X, Du S, Qu H, Cheng Y, Ma S, Zhang M, Huang Y, Zhang N, Shi K, Zhan S. Identification of a ferroptosis-related gene pair biomarker with immune infiltration landscapes in ischemic stroke: a bioinformatics-based comprehensive study. BMC Genomics 2022; 23:59. [PMID: 35033021 PMCID: PMC8761271 DOI: 10.1186/s12864-022-08295-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background Ischemic stroke (IS) is a principal contributor to long-term disability in adults. A new cell death mediated by iron is ferroptosis, characterized by lethal aggregation of lipid peroxidation. However, a paucity of ferroptosis-related biomarkers early identify IS until now. This study investigated potential ferroptosis-related gene pair biomarkers in IS and explored their roles in immune infiltration. Results In total, we identified 6 differentially expressed ferroptosis-related genes (DEFRGs) in the metadata cohort. Of these genes, 4 DEFRGs were incorporated into the competitive endogenous RNA (ceRNA) network, including 78 lncRNA-miRNA and 16 miRNA-mRNA interactions. Based on relative expression values of DEFRGs, we constructed gene pairs. An integrated scheme consisting of machine learning algorithms, ceRNA network, and gene pair was proposed to screen the key DEFRG biomarkers. The receiver operating characteristic (ROC) curve witnessed that the diagnostic performance of DEFRG pair CDKN1A/JUN was superior to that of single gene. Moreover, the CIBERSORT algorithm exhibited immune infiltration landscapes: plasma cells, resting NK cells, and resting mast cells infiltrated less in IS samples than controls. Spearman correlation analysis confirmed a significant correlation between plasma cells and CDKN1A/JUN (CDKN1A: r = − 0.503, P < 0.001, JUN: r = − 0.330, P = 0.025). Conclusions Our findings suggested that CDKN1A/JUN could be a robust and promising gene-pair diagnostic biomarker for IS, regulating ferroptosis during IS progression via C9orf106/C9orf139-miR-22-3p-CDKN1A and GAS5-miR-139-5p/miR-429-JUN axes. Meanwhile, plasma cells might exert a vital interplay in IS immune microenvironment, providing an innovative insight for IS therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08295-0.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Mengying Chen
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuai Cao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Qingling Yao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Xiaodong Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuang Du
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Huiyang Qu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Yuxuan Cheng
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuyin Ma
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Meijuan Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Yizhou Huang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Nan Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Kaili Shi
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuqin Zhan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China.
| |
Collapse
|
16
|
Schmaul S, Hanuscheck N, Bittner S. Astrocytic potassium and calcium channels as integrators of the inflammatory and ischemic CNS microenvironment. Biol Chem 2021; 402:1519-1530. [PMID: 34455729 DOI: 10.1515/hsz-2021-0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022]
Abstract
Astrocytes are key regulators of their surroundings by receiving and integrating stimuli from their local microenvironment, thereby regulating glial and neuronal homeostasis. Cumulating evidence supports a plethora of heterogenic astrocyte subpopulations that differ morphologically and in their expression patterns of receptors, transporters and ion channels, as well as in their functional specialisation. Astrocytic heterogeneity is especially relevant under pathological conditions. In experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), morphologically distinct astrocytic subtypes were identified and could be linked to transcriptome changes during different disease stages and regions. To allow for continuous awareness of changing stimuli across age and diseases, astrocytes are equipped with a variety of receptors and ion channels allowing the precise perception of environmental cues. Recent studies implicate the diverse repertoire of astrocytic ion channels - including transient receptor potential channels, voltage-gated calcium channels, inwardly rectifying K+ channels, and two-pore domain potassium channels - in sensing the brain state in physiology, inflammation and ischemia. Here, we review current evidence regarding astrocytic potassium and calcium channels and their functional contribution in homeostasis, neuroinflammation and stroke.
Collapse
Affiliation(s)
- Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| |
Collapse
|
17
|
Chavda V, Chaurasia B, Deora H, Umana GE. Chronic Kidney disease and stroke: A Bi-directional risk cascade and therapeutic update. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
18
|
Wang C, Ma Z, Wang Z, Ming S, Ding Y, Zhou S, Qian H. Eriodictyol Attenuates MCAO-Induced Brain Injury and Neurological Deficits via Reversing the Autophagy Dysfunction. Front Syst Neurosci 2021; 15:655125. [PMID: 34122022 PMCID: PMC8190663 DOI: 10.3389/fnsys.2021.655125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
The present study was designed to investigate the protective effect of eriodictyol on MCAO-induced brain injury and its regulation of neural function and to explore the mechanism of its regulation of autophagy in rats. Brain injury was induced by middle cerebral artery occlusion (MCAO) in adult rats and pretreated with eriodictyol (low dose: 20 mg/kg; medium dose: 40 mg/kg; high dose: 80 mg/kg) or saline. Rats in the treatment group had a smaller volume of infarction and improved neurological outcome and reduced the latency to the platform, increased the time spent in the correct quadrant compared to MCAO rats pretreated with saline. ELISA kits results confirmed that eriodictyol reduced the inflammatory response induced by MCAO. The results of apoptosis and proliferation by Nissl staining and immunofluorescence detection indicated that eriodictyol could inhibit apoptosis and promote the proliferation in MCAO rats. The expressions of LC3, ATG5, p62, and Beclin1 were used to evaluate the autophagy, as well as the reversal of the autophagy activator (rapamycin) on the neuroprotective effect of eriodictyol, which suggested that the protective effect of eriodictyol on brain injury may be related to the inhibition of autophagy. In summary, we, therefore, suggested that eriodictyol could reduce the inflammation response of brain injury and inhibit neuroapoptosis, directly affecting autophagy to alleviate brain injury. It will provide theoretical support for eriodictyol in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chuanxiang Wang
- Department of Neurology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhequan Ma
- Yangxin County Chinese Medicine Hospital, Yangxin, China
| | - Zuqiang Wang
- Yangxin County Chinese Medicine Hospital, Yangxin, China
| | - Shuping Ming
- The First Clinical College of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Yanbing Ding
- Department of Neurology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Sufang Zhou
- Department of Emergency, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Hongyu Qian
- Department of Neurology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|