1
|
Gómez-Lombardi A, Costa BG, Gutiérrez PP, Carvajal PM, Rivera LZ, El-Deredy W. The cognitive triad network - oscillation - behaviour links individual differences in EEG theta frequency with task performance and effective connectivity. Sci Rep 2024; 14:21482. [PMID: 39277643 PMCID: PMC11401920 DOI: 10.1038/s41598-024-72229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
We reconcile two significant lines of Cognitive Neuroscience research: the relationship between the structural and functional architecture of the brain and behaviour on the one hand and the functional significance of oscillatory brain processes to behavioural performance on the other. Network neuroscience proposes that the three elements, behavioural performance, EEG oscillation frequency, and network connectivity should be tightly connected at the individual level. Young and old healthy adults were recruited as a proxy for performance variation. An auditory inhibitory control task was used to demonstrate that task performance correlates with the individual EEG frontal theta frequency. Older adults had a significantly slower theta frequency, and both theta frequency and task performance correlated with the strengths of two network connections that involve the main areas of inhibitory control and speech processing. The results suggest that both the recruited functional network and the oscillation frequency induced by the task are specific to the task, are inseparable, and mark individual differences that directly link structure and function to behaviour in health and disease.
Collapse
Affiliation(s)
- Andre Gómez-Lombardi
- Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso, Chile.
- Centro de Investigación del Desarrollo en Cognición y Lenguaje, Universidad de Valparaíso, Valparaíso, Chile.
| | - Begoña Góngora Costa
- Centro de Investigación del Desarrollo en Cognición y Lenguaje, Universidad de Valparaíso, Valparaíso, Chile
| | - Pavel Prado Gutiérrez
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Pablo Muñoz Carvajal
- Centro para la Investigación Traslacional en Neurofarmacología, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Lucía Z Rivera
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Wael El-Deredy
- Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso, Chile
- Department of Electronic Engineering, School of Engineering, Universitat de València, Valencia, Spain
| |
Collapse
|
2
|
Zając-Lamparska L, Zabielska-Mendyk E, Zapała D, Augustynowicz P. Compensatory brain activity pattern is not present in older adults during the n-back task performance-Findings based on EEG frequency analysis. Front Psychol 2024; 15:1371035. [PMID: 38666231 PMCID: PMC11043891 DOI: 10.3389/fpsyg.2024.1371035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Cognitive ability is one of the most important enablers for successful aging. At the same time, cognitive decline is a well-documented phenomenon accompanying the aging process. Nevertheless, it is acknowledged that aging can also be related to positive processes that allow one to compensate for the decline. These processes include the compensatory brain activity of older adults primarily investigated using fMRI and PET. To strengthen the cognitive interpretation of compensatory brain activity in older adults, we searched for its indicators in brain activity measured by EEG. Methods The study sample comprised 110 volunteers, including 50 older adults (60-75 years old) and 60 young adults (20-35 years old) who performed 1-back, 2-back, and 3-back tasks while recording the EEG signal. The study analyzed (1) the level of cognitive performance, including sensitivity index, the percentage of correct answers to the target, and the percentage of false alarm errors; (2) theta and alpha power for electrodes located in the frontal-midline (Fz, AF3, AF4, F3, F4, FC1, and FC2) and the centro-parietal (CP1, CP2, P3, P4, and Pz) areas. Results Cognitive performance was worse in older adults than in young adults, which manifested in a significantly lower sensitivity index and a significantly higher false alarm error rate at all levels of the n-back task difficulty. Simultaneously, performance worsened with increasing task difficulty regardless of age. Significantly lower theta power in the older participants was observed at all difficulty levels, even at the lowest one, where compensatory activity was expected. At the same time, at this difficulty level, cognitive performance was worse in older adults than in young adults, which could reduce the chances of observing compensatory brain activity. The significant decrease in theta power observed in both age groups with rising task difficulty can reflect a declining capacity for efficient cognitive functioning under increasing demands rather than adapting to this increase. Moreover, in young adults, alpha power decreased to some extent with increasing cognitive demand, reflecting adaptation to them, while in older adults, no analogous pattern was observed. Discussion In conclusion, based on the results of the current study, the presence of compensatory activity in older adults cannot be inferred.
Collapse
Affiliation(s)
- Ludmiła Zając-Lamparska
- Department of General and Human Development Psychology, Faculty of Psychology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Emilia Zabielska-Mendyk
- Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Dariusz Zapała
- Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Paweł Augustynowicz
- Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Bugos JA, Bidelman GM, Moreno S, Shen D, Lu J, Alain C. Music and Visual Art Training Increase Auditory-Evoked Theta Oscillations in Older Adults. Brain Sci 2022; 12:brainsci12101300. [PMID: 36291234 PMCID: PMC9599228 DOI: 10.3390/brainsci12101300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Music training was shown to induce changes in auditory processing in older adults. However, most findings stem from correlational studies and fewer examine long-term sustainable benefits. Moreover, research shows small and variable changes in auditory event-related potential (ERP) amplitudes and/or latencies in older adults. Conventional time domain analysis methods, however, are susceptible to latency jitter in evoked responses and may miss important information of brain processing. Here, we used time-frequency analyses to examine training-related changes in auditory-evoked oscillatory activity in healthy older adults (N = 50) assigned to a music training (n = 16), visual art training (n = 17), or a no-treatment control (n = 17) group. All three groups were presented with oddball auditory paradigms with synthesized piano tones or vowels during the acquisition of high-density EEG. Neurophysiological measures were collected at three-time points: pre-training, post-training, and at a three-month follow-up. Training programs were administered for 12-weeks. Increased theta power was found pre and post- training for the music (p = 0.010) and visual art group (p = 0.010) as compared to controls (p = 0.776) and maintained at the three-month follow-up. Results showed training-related plasticity on auditory processing in aging adults. Neuroplastic changes were maintained three months post-training, suggesting music and visual art programs yield lasting benefits that might facilitate encoding, retention, and memory retrieval.
Collapse
Affiliation(s)
- Jennifer A. Bugos
- School of Music, University of South Florida, Tampa, FL 33620, USA
- Correspondence: ; Tel.: +1-352-339-4076
| | - Gavin M. Bidelman
- Department of Speech, Language, and Hearing Sciences, Indiana University, Bloomington, IN 47408, USA
| | - Sylvain Moreno
- School of Interactive Arts and Technology, Simon Fraser University, Burnaby, BC V3T OA3, Canada
- Circle Innovation, Burnaby, BC V3T OA3, Canada
| | - Dawei Shen
- Rotman Research Institute, Toronto, ON M6A 2E1, Canada
| | - Jing Lu
- MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic and Science Technology of China, Chengdu 611731, China
| | - Claude Alain
- Rotman Research Institute, Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| |
Collapse
|
4
|
Opitz L, Wagner F, Rogenz J, Maas J, Schmidt A, Brodoehl S, Klingner CM. Still Wanting to Win: Reward System Stability in Healthy Aging. Front Aging Neurosci 2022; 14:863580. [PMID: 35707701 PMCID: PMC9190761 DOI: 10.3389/fnagi.2022.863580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Healthy aging is accompanied by multi-faceted changes. Especially within the brain, healthy aging exerts substantial impetus on core parts of cognitive and motivational networks. Rewards comprise basic needs, such as food, sleep, and social contact. Thus, a functionally intact reward system remains indispensable for elderly people to cope with everyday life and adapt to their changing environment. Research shows that reward system function is better preserved in the elderly than most cognitive functions. To investigate the compensatory mechanisms providing reward system stability in aging, we employed a well-established reward paradigm (Monetary Incentive Delay Task) in groups of young and old participants while undergoing EEG measurement. As a new approach, we applied EEG connectivity analyses to assess cortical reward-related network connectivity. At the behavioral level, our results confirm that the function of the reward system is preserved in old age. The mechanisms identified for maintaining reward system function in old age do not fit into previously described models of cognitive aging. Overall, older adults exhibit lower reward-related connectivity modulation, higher reliance on posterior and right-lateralized brain areas than younger adults, and connectivity modulation in the opposite direction than younger adults, with usually greater connectivity during non-reward compared to reward conditions. We believe that the reward system has unique compensatory mechanisms distinct from other cognitive functions, probably due to its etymologically very early origin. In summary, this study provides important new insights into cortical reward network connectivity in healthy aging.
Collapse
Affiliation(s)
- Laura Opitz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Franziska Wagner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
- Clinician Scientist Program OrganAge, Jena University Hospital, Jena, Germany
- *Correspondence: Franziska Wagner,
| | - Jenny Rogenz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Johanna Maas
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Alexander Schmidt
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Stefan Brodoehl
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Carsten M. Klingner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
Sawai S, Fujikawa S, Murata S, Abiko T, Nakano H. Dominance of Attention Focus and Its Electroencephalogram Activity in Standing Postural Control in Healthy Young Adults. Brain Sci 2022; 12:538. [PMID: 35624924 PMCID: PMC9138695 DOI: 10.3390/brainsci12050538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Attention focus changes performance, and external focus (EF) improves performance compared to internal focus (IF). However, recently, the dominance of attention focus, rather than the effectiveness of unilateral EF, has been examined. Although the positive effects of EF on standing postural control have been reported, the dominance of attention focus has not yet been examined. Therefore, the purpose of this study was to examine the dominance of attention focus and its neural mechanism in standing postural control using electroencephalography (EEG). A standing postural control task under IF and EF conditions was performed on healthy young men. Gravity center sway and cortical activity simultaneously using a stabilometer and an EEG were measured. Participants were classified into IF-dominant and EF-dominant groups according to their index of postural stability. The EEG was analyzed, and cortical activity in the theta-wave band was compared between the IF-dominant and EF-dominant groups. Significant neural activity was observed in the left parietal lobe of the IF-dominant group in the IF condition, and in the left frontal lobe of the EF-dominant group in the EF condition (p < 0.05). Differences in EEG activity between IF-dominant and EF-dominant groups, in standing postural control, were detected. This contributes to the development of training methods that consider attentional focus dominance in postural control.
Collapse
Affiliation(s)
- Shun Sawai
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan; (S.S.); (S.M.); (T.A.)
- Department of Rehabilitation, Kyoto Kuno Hospital, Kyoto 605-0981, Japan
| | - Shoya Fujikawa
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan;
| | - Shin Murata
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan; (S.S.); (S.M.); (T.A.)
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan;
| | - Teppei Abiko
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan; (S.S.); (S.M.); (T.A.)
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan;
| | - Hideki Nakano
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan; (S.S.); (S.M.); (T.A.)
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan;
| |
Collapse
|
6
|
Metzen D, Genç E, Getzmann S, Larra MF, Wascher E, Ocklenburg S. Frontal and parietal EEG alpha asymmetry: a large-scale investigation of short-term reliability on distinct EEG systems. Brain Struct Funct 2021; 227:725-740. [PMID: 34676455 PMCID: PMC8843903 DOI: 10.1007/s00429-021-02399-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
EEG resting-state alpha asymmetry is one of the most widely investigated forms of functional hemispheric asymmetries in both basic and clinical neuroscience. However, studies yield inconsistent results. One crucial prerequisite to obtain reproducible results is the reliability of the index of interest. There is a body of research suggesting a moderate-to-good reliability of EEG resting-state alpha asymmetry, but unfortunately sample sizes in these studies are typically small. This study presents the first large-scale short-term reliability study of frontal and parietal EEG resting-state alpha asymmetry. We used the Dortmund Vital Study data set containing 370 participants. In each participant, EEG resting state was recorded eight times, twice with their eyes opened, twice with their eyes-closed, each on two different EEG systems. We found good reliability of EEG alpha power and alpha asymmetry on both systems for electrode pairs. We also found that alpha power asymmetry reliability is higher in the eyes-closed condition than in the eyes-open condition. The frontomedial electrode pair showed weaker reliability than the frontolateral and parietal electrode pairs. Interestingly, we found no population-level alpha asymmetry in frontal electrodes, one of the most investigated electrode sites in alpha asymmetry research. In conclusion, our results suggest that while EEG alpha asymmetry is an overall reliable measure, frontal alpha asymmetry should be assessed using multiple electrode pairs.
Collapse
Affiliation(s)
- Dorothea Metzen
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Erhan Genç
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139, Dortmund, Germany
| | - Stephan Getzmann
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139, Dortmund, Germany
| | - Mauro F Larra
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139, Dortmund, Germany
| | - Edmund Wascher
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139, Dortmund, Germany
| | | |
Collapse
|