1
|
Zglejc-Waszak K, Jozwik M, Thoene M, Wojtkiewicz J. Role of Receptor for Advanced Glycation End-Products in Endometrial Cancer: A Review. Cancers (Basel) 2024; 16:3192. [PMID: 39335163 PMCID: PMC11430655 DOI: 10.3390/cancers16183192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy. EC is associated with metabolic disorders that may promote non-enzymatic glycation and activate the receptor for advanced glycation end-products (RAGE) signaling pathways. Thus, we assumed that RAGE and its ligands may contribute to EC. Of particular interest is the interaction between diaphanous-related formin 1 (Diaph1) and RAGE during the progression of human cancers. Diaph1 is engaged in the proper organization of actin cytoskeletal dynamics, which is crucial in cancer invasion, metastasis, angiogenesis, and axonogenesis. However, the detailed molecular role of RAGE in EC remains uncertain. In this review, we discuss epigenetic factors that may play a key role in the RAGE-dependent endometrial pathology. We propose that DNA methylation may regulate the activity of the RAGE pathway in the uterus. The accumulation of negative external factors, such as hyperglycemia, inflammation, and oxidative stress, may interfere with the DNA methylation process. Therefore, further research should take into account the role of epigenetic mechanisms in EC progression.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Anatomy, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland
| | - Michael Thoene
- Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, Żołnierska 14C Str., 10-561 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
2
|
Guo ZL, Zhou J, Lin XJ, Yuan Q, Dong YL, Liu QB, Wang T. Regulation of the AGEs-induced inflammatory response in human periodontal ligament cells via the AMPK/NF-κB/ NLRP3 signaling pathway. Exp Cell Res 2024; 437:113999. [PMID: 38494067 DOI: 10.1016/j.yexcr.2024.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/04/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
The heightened prevalence and accelerated progression of periodontitis in individuals with diabetes is primarily attributed to inflammatory responses in human periodontal ligament cells (HPDLCs). This study is aimed at delineating the regulatory mechanism of nucleotide-binding oligomerization domain-like receptors (NLRs) in mediating inflammation incited by muramyl dipeptide (MDP) in HPDLCs, under the influence of advanced glycation end products (AGEs), metabolic by-products associated with diabetes. We performed RNA-seq in HPDLCs induced by AGEs treatment and delineated activation markers for the receptor of AGEs (RAGE). It showed that advanced glycation end products modulate inflammatory responses in HPDLCs by activating NLRP1 and NLRP3 inflammasomes, which are further regulated through the NF-κB signaling pathway. Furthermore, AGEs synergize with NOD2, NLRP1, and NLRP3 inflammasomes to augment MDP-induced inflammation significantly.
Collapse
Affiliation(s)
- Zhu-Ling Guo
- School of Dentistry, Hainan Medical University, Haikou, China; Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jie Zhou
- School of Dentistry, Hainan Medical University, Haikou, China
| | - Xue-Jing Lin
- School of Dentistry, Hainan Medical University, Haikou, China
| | - Qing Yuan
- School of Dentistry, Hainan Medical University, Haikou, China
| | - Yu-Lei Dong
- School of Dentistry, Hainan Medical University, Haikou, China
| | - Qi-Bing Liu
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, The First Affiliated Hospital, Haikou, 571199, China; Department of Pharmacology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
| | - Tao Wang
- Dental Medical Center, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital),19 Xiuhua Road, Haikou, 570311, Hainan, China.
| |
Collapse
|
3
|
Zglejc-Waszak K, Mukherjee K, Korytko A, Lewczuk B, Pomianowski A, Wojtkiewicz J, Banach M, Załęcki M, Nowicka N, Jarosławska J, Kordas B, Wąsowicz K, Juranek JK. Novel insights into the nervous system affected by prolonged hyperglycemia. J Mol Med (Berl) 2023; 101:1015-1028. [PMID: 37462767 PMCID: PMC10400689 DOI: 10.1007/s00109-023-02347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Multiple molecular pathways including the receptor for advanced glycation end-products-diaphanous related formin 1 (RAGE-Diaph1) signaling are known to play a role in diabetic peripheral neuropathy (DPN). Evidence suggests that neuropathological alterations in type 1 diabetic spinal cord may occur at the same time as or following peripheral nerve abnormalities. We demonstrated that DPN was associated with perturbations of RAGE-Diaph1 signaling pathway in peripheral nerve accompanied by widespread spinal cord molecular changes. More than 500 differentially expressed genes (DEGs) belonging to multiple functional pathways were identified in diabetic spinal cord and of those the most enriched was RAGE-Diaph1 related PI3K-Akt pathway. Only seven of spinal cord DEGs overlapped with DEGs from type 1 diabetic sciatic nerve and only a single gene cathepsin E (CTSE) was common for both type 1 and type 2 diabetic mice. In silico analysis suggests that molecular changes in spinal cord may act synergistically with RAGE-Diaph1 signaling axis in the peripheral nerve. KEY MESSAGES: Molecular perturbations in spinal cord may be involved in the progression of diabetic peripheral neuropathy. Diabetic peripheral neuropathy was associated with perturbations of RAGE-Diaph1 signaling pathway in peripheral nerve accompanied by widespread spinal cord molecular changes. In silico analysis revealed that PI3K-Akt signaling axis related to RAGE-Diaph1 was the most enriched biological pathway in diabetic spinal cord. Cathepsin E may be the target molecular hub for intervention against diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-085, Olsztyn, Poland.
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, VA, 24016, USA
| | - Agnieszka Korytko
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-085, Olsztyn, Poland
| | - Bogdan Lewczuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andrzej Pomianowski
- Internal Medicine Department, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-085, Olsztyn, Poland
| | - Marta Banach
- Department of Neurology, Collegium Medicum, Jagiellonian University, 31-008, Krakow, Poland
| | - Michał Załęcki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Natalia Nowicka
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-085, Olsztyn, Poland
| | - Julia Jarosławska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-085, Olsztyn, Poland
| | - Krzysztof Wąsowicz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Judyta K Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-085, Olsztyn, Poland.
| |
Collapse
|
4
|
Zglejc-Waszak K, Schmidt AM, Juranek JK. The receptor for advanced glycation end products and its ligands' expression in OVE26 diabetic sciatic nerve during the development of length-dependent neuropathy. Neuropathology 2023; 43:84-94. [PMID: 35915909 DOI: 10.1111/neup.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023]
Abstract
Type 1 diabetes (T1D) may affect the peripheral nervous system and alter the expression of proteins contributing to inflammation and cellular cytoskeleton dysfunction, in most cases leading to the development of diabetic length-dependent neuropathy (DLDN). In the present study, we performed immunohistochemistry (IHC) to probe the expression of the receptor for advanced glycation end products (RAGE); its key ligands, high-mobility group box 1 (HMGB1), S100 calcium-binding protein B (S100B), and carboxymethyl-lysine (CML - advanced glycation end products (AGE)); and its cytoplasmic tail-binding partner, diaphanous related formin 1 (DIAPH1) and associated molecules, beta-actin (ACTB) and profilin 1 (PFN1) proteins in sciatic nerves harvested from seven-month old FVB/OVE26 mice with genetically-mediated T1D. We found that the amount of RAGE, HMGB1, and S100B proteins was elevated in diabetic vs the non-diabetic groups, while the amount of DIAPH1, ACTB, as well as PFN1 proteins did not differ between these groups. Moreover, our data revealed linear dependence between RAGE and HMGB1 proteins. Interaction criss-cross of selected sets of proteins in the sciatic nerve revealed that there were connected in a singular network. Our results indicate that T1D may alter expression patterns of RAGE axis proteins and thus contribute to DLDN.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, School of Medicine, Collegium Medicum, Olsztyn, Poland
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Judyta K Juranek
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, School of Medicine, Collegium Medicum, Olsztyn, Poland.,Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Sen CK, Roy S, Khanna S. Diabetic Peripheral Neuropathy Associated with Foot Ulcer: One of a Kind. Antioxid Redox Signal 2023. [PMID: 35850520 DOI: 10.1089/ars.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Significance: Diabetic peripheral neuropathy (DPN) associated with a diabetic foot ulcer (DFU) is likely to be complicated with critical factors such as biofilm infection and compromised skin barrier function of the diabetic skin. Repaired skin with a history of biofilm infection is known to be compromised in barrier function. Loss of barrier function is also observed in the oxidative stress affected diabetic and aged skin. Recent Advances: Loss of barrier function makes the skin prone to biofilm infection and cellulitis, which contributes to chronic inflammation and vasculopathy. Hyperglycemia favors biofilm formation as glucose lowering led to reduction in biofilm development. While vasculopathy limits oxygen supply, the O2 cost of inflammation is high increasing hypoxia severity. Critical Issues: The host nervous system can be inhabited by bacteria. Because electrical impulses are a part of microbial physiology, polymicrobial colonization of the host's neural circuit is likely to influence transmission of action potential. The identification of perineural apatite in diabetic patients with peripheral neuropathy suggests bacterial involvement. DPN starts in both feet at the same time. Future Directions: Pair-matched studies of DPN in the foot affected with DFU (i.e., DFU-DPN) compared with DPN in the without ulcer, and intact skin barrier function, are likely to provide critical insight that would help inform effective care strategies. This review characterizes DFU-DPN from a translational science point of view presenting a new paradigm that recognizes the current literature in the context of factors that are unique to DFU-DPN.
Collapse
Affiliation(s)
- Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Yang C, Zhao X, An X, Zhang Y, Sun W, Zhang Y, Duan Y, Kang X, Sun Y, Jiang L, Lian F. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1136796. [PMID: 37056668 PMCID: PMC10086245 DOI: 10.3389/fendo.2023.1136796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic disease that gravely endangers human health and seriously affects the quality of life of hyperglycemic patients. More seriously, it can lead to amputation and neuropathic pain, imposing a severe financial burden on patients and the healthcare system. Even with strict glycemic control or pancreas transplantation, peripheral nerve damage is difficult to reverse. Most current treatment options for DPN can only treat the symptoms but not the underlying mechanism. Patients with long-term diabetes mellitus (DM) develop axonal transport dysfunction, which could be an important factor in causing or exacerbating DPN. This review explores the underlying mechanisms that may be related to axonal transport impairment and cytoskeletal changes caused by DM, and the relevance of the latter with the occurrence and progression of DPN, including nerve fiber loss, diminished nerve conduction velocity, and impaired nerve regeneration, and also predicts possible therapeutic strategies. Understanding the mechanisms of diabetic neuronal injury is essential to prevent the deterioration of DPN and to develop new therapeutic strategies. Timely and effective improvement of axonal transport impairment is particularly critical for the treatment of peripheral neuropathies.
Collapse
|
7
|
Juranek J, Mukherjee K, Kordas B, Załęcki M, Korytko A, Zglejc-Waszak K, Szuszkiewicz J, Banach M. Role of RAGE in the Pathogenesis of Neurological Disorders. Neurosci Bull 2022; 38:1248-1262. [PMID: 35729453 PMCID: PMC9554177 DOI: 10.1007/s12264-022-00878-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
This review reflects upon our own as well as other investigators' studies on the role of receptor for advanced glycation end-products (RAGE), bringing up the latest information on RAGE in physiology and pathology of the nervous system. Over the last ten years, major progress has been made in uncovering many of RAGE-ligand interactions and signaling pathways in nervous tissue; however, the translation of these discoveries into clinical practice has not come to fruition yet. This is likely, in part to be the result of our incomplete understanding of this crucial signaling pathway. Clinical trials examining the therapeutic efficacy of blocking RAGE-external ligand interactions by genetically engineered soluble RAGE or an endogenous RAGE antagonist, has not stood up to its promise; however, other trials with different blocking agents are being considered with hope for therapeutic success in diseases of the nervous system.
Collapse
Affiliation(s)
- Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland.
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Blacksburg, VA, 24016, USA
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Michał Załęcki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Agnieszka Korytko
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Jarosław Szuszkiewicz
- Department of Materials and Machines Technology, Faculty of Technical Sciences, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Marta Banach
- Department of Neurology, Collegium Medicum, Jagiellonian University, 31-008, Kraków, Poland.
| |
Collapse
|
8
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
9
|
Patel PA, Hegert JV, Cristian I, Kerr A, LaConte LEW, Fox MA, Srivastava S, Mukherjee K. Complete loss of the X-linked gene CASK causes severe cerebellar degeneration. J Med Genet 2022; 59:1044-1057. [PMID: 35149592 DOI: 10.1136/jmedgenet-2021-108115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/13/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Heterozygous loss of X-linked genes like CASK and MeCP2 (Rett syndrome) causes developmental delay in girls, while in boys, loss of the only allele of these genes leads to epileptic encephalopathy. The mechanism for these disorders remains unknown. CASK-linked cerebellar hypoplasia is presumed to result from defects in Tbr1-reelin-mediated neuronal migration. METHOD Here we report clinical and histopathological analyses of a deceased 2-month-old boy with a CASK-null mutation. We next generated a mouse line where CASK is completely deleted (hemizygous and homozygous) from postmigratory neurons in the cerebellum. RESULT The CASK-null human brain was smaller in size but exhibited normal lamination without defective neuronal differentiation, migration or axonal guidance. The hypoplastic cerebellum instead displayed astrogliosis and microgliosis, which are markers for neuronal loss. We therefore hypothesise that CASK loss-induced cerebellar hypoplasia is the result of early neurodegeneration. Data from the murine model confirmed that in CASK loss, a small cerebellum results from postdevelopmental degeneration of cerebellar granule neurons. Furthermore, at least in the cerebellum, functional loss from CASK deletion is secondary to degeneration of granule cells and not due to an acute molecular functional loss of CASK. Intriguingly, female mice with heterozygous deletion of CASK in the cerebellum do not display neurodegeneration. CONCLUSION We suggest that X-linked neurodevelopmental disorders like CASK mutation and Rett syndrome are pathologically neurodegenerative; random X-chromosome inactivation in heterozygous mutant girls, however, results in 50% of cells expressing the functional gene, resulting in a non-progressive pathology, whereas complete loss of the only allele in boys leads to unconstrained degeneration and encephalopathy.
Collapse
Affiliation(s)
- Paras A Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Julia V Hegert
- Department of Pathology, Orlando Health, Orlando, Florida, USA
| | | | - Alicia Kerr
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | | | - Michael A Fox
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA.,School of Neuroscience, Blacksburg, Virginia, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA.,Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA .,Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| |
Collapse
|