1
|
Greenway R, De-Kayne R, Brown AP, Camarillo H, Delich C, McGowan KL, Nelson J, Arias-Rodriguez L, Kelley JL, Tobler M. Integrative analyses of convergent adaptation in sympatric extremophile fishes. Curr Biol 2024; 34:4968-4982.e7. [PMID: 39395416 DOI: 10.1016/j.cub.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
The evolution of independent lineages along replicated environmental transitions frequently results in convergent adaptation, yet the degree to which convergence is present across multiple levels of biological organization is often unclear. Additionally, inherent biases associated with shared ancestry and variation in selective regimes across geographic replicates often pose challenges for confidently identifying patterns of convergence. We investigated a system in which three species of poeciliid fishes sympatrically occur in a toxic spring rich in hydrogen sulfide (H2S) and an adjacent nonsulfidic stream to examine patterns of adaptive evolution across levels of biological organization. We found convergence in morphological and physiological traits and genome-wide patterns of gene expression among all three species. In addition, there were shared signatures of selection on genes encoding H2S toxicity targets in the mitochondrial genomes of each species. However, analyses of nuclear genomes revealed neither evidence for substantial genomic islands of divergence around genes involved in H2S toxicity and detoxification nor substantial congruence of strongly differentiated regions across population pairs. These non-convergent, heterogeneous patterns of genomic divergence may indicate that sulfide tolerance is highly polygenic, with shared allele frequency shifts present at many loci with small effects along the genome. Alternatively, H2S tolerance may involve substantial genetic redundancy, with non-convergent, lineage-specific variation at multiple loci along the genome underpinning similar changes in phenotypes and gene expression. Overall, we demonstrate variability in the extent of convergence across organizational levels and highlight the challenges of linking patterns of convergence across scales.
Collapse
Affiliation(s)
- Ryan Greenway
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rishi De-Kayne
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anthony P Brown
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Henry Camarillo
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Cassandra Delich
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Kerry L McGowan
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Joel Nelson
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Lenin Arias-Rodriguez
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carretera Villahermosa-Cárdenas Km. 0.5 S/N, Entronque a Bosques de Saloya, 86150 Villahermosa, Tabasco, Mexico
| | - Joanna L Kelley
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Michael Tobler
- University of Missouri, St. Louis, Department of Biology, 1 University Boulevard, St. Louis, MO 63121, USA; University of Missouri, St. Louis, Whitney R. Harris World Ecology Center, 1 University Boulevard, St. Louis, MO 63121, USA; Saint Louis Zoo, WildCare Institute, 1 Government Drive, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Pacher K, Hernández-Román N, Juarez-Lopez A, Jiménez-Jiménez JE, Lukas J, Sevinchan Y, Krause J, Arias-Rodríguez L, Bierbach D. Thermal tolerance in an extremophile fish from Mexico is not affected by environmental hypoxia. Biol Open 2024; 13:bio060223. [PMID: 38314873 PMCID: PMC10868586 DOI: 10.1242/bio.060223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 02/07/2024] Open
Abstract
The thermal ecology of ectotherm animals has gained considerable attention in the face of human-induced climate change. Particularly in aquatic species, the experimental assessment of critical thermal limits (CTmin and CTmax) may help to predict possible effects of global warming on habitat suitability and ultimately species survival. Here we present data on the thermal limits of two endemic and endangered extremophile fish species, inhabiting a geothermally heated and sulfur-rich spring system in southern Mexico: The sulfur molly (Poecilia sulphuraria) and the widemouth gambusia (Gambusia eurystoma). Besides physiological challenges induced by toxic hydrogen sulfide and related severe hypoxia during the day, water temperatures have been previously reported to exceed those of nearby clearwater streams. We now present temperature data for various locations and years in the sulfur spring complex and conducted laboratory thermal tolerance tests (CTmin and CTmax) both under normoxic and severe hypoxic conditions in both species. Average CTmax limits did not differ between species when dissolved oxygen was present. However, critical temperature (CTmax=43.2°C) in P. sulphuraria did not change when tested under hypoxic conditions, while G. eurystoma on average had a lower CTmax when oxygen was absent. Based on this data we calculated both species' thermal safety margins and used a TDT (thermal death time) model framework to relate our experimental data to observed temperatures in the natural habitat. Our findings suggest that both species live near their thermal limits during the annual dry season and are locally already exposed to temperatures above their critical thermal limits. We discuss these findings in the light of possible physiological adaptions of the sulfur-adapted fish species and the anthropogenic threats for this unique system.
Collapse
Affiliation(s)
- Korbinian Pacher
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12487 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Natalia Hernández-Román
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma Tabasco, 86150 Villahermosa, Mexico
| | - Alejandro Juarez-Lopez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma Tabasco, 86150 Villahermosa, Mexico
| | | | - Juliane Lukas
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12487 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Yunus Sevinchan
- Science of intelligence cluster has the state of a department at TU Berlin, Excellence Cluster Science of Intelligence, Technische Universität Berlin, 10587 Berlin, Germany
| | - Jens Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12487 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, 10115 Berlin, Germany
- Science of intelligence cluster has the state of a department at TU Berlin, Excellence Cluster Science of Intelligence, Technische Universität Berlin, 10587 Berlin, Germany
| | - Lenin Arias-Rodríguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma Tabasco, 86150 Villahermosa, Mexico
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12487 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, 10115 Berlin, Germany
- Science of intelligence cluster has the state of a department at TU Berlin, Excellence Cluster Science of Intelligence, Technische Universität Berlin, 10587 Berlin, Germany
| |
Collapse
|
3
|
Ryan K, Greenway R, Landers J, Arias-Rodriguez L, Tobler M, Kelley JL. Selection on standing genetic variation mediates convergent evolution in extremophile fish. Mol Ecol 2023; 32:5042-5054. [PMID: 37548336 DOI: 10.1111/mec.17081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Hydrogen sulfide is a toxic gas that disrupts numerous biological processes, including energy production in the mitochondria, yet fish in the Poecilia mexicana species complex have independently evolved sulfide tolerance several times. Despite clear evidence for convergence at the phenotypic level in these fishes, it is unclear if the repeated evolution of hydrogen sulfide tolerance is the result of similar genomic changes. To address this gap, we used a targeted capture approach to sequence genes associated with sulfide processes and toxicity from five sulfidic and five nonsulfidic populations in the species complex. By comparing sequence variation in candidate genes to a reference set, we identified similar population structure and differentiation, suggesting that patterns of variation in most genes associated with sulfide processes and toxicity are due to demographic history and not selection. But the presence of tree discordance for a subset of genes suggests that several loci are evolving divergently between ecotypes. We identified two differentiation outlier genes that are associated with sulfide detoxification in the mitochondria that have signatures of selection in all five sulfidic populations. Further investigation into these regions identified long, shared haplotypes among sulfidic populations. Together, these results reveal that selection on standing genetic variation in putatively adaptive genes may be driving phenotypic convergence in this species complex.
Collapse
Affiliation(s)
- Kara Ryan
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Ryan Greenway
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Constance, Germany
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Jake Landers
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Mexico
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
4
|
Riesch R, Araújo MS, Bumgarner S, Filla C, Pennafort L, Goins TR, Lucion D, Makowicz AM, Martin RA, Pirroni S, Langerhans RB. Resource competition explains rare cannibalism in the wild in livebearing fishes. Ecol Evol 2022; 12:e8872. [PMID: 35600676 PMCID: PMC9109233 DOI: 10.1002/ece3.8872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rüdiger Riesch
- Department of Biological Sciences Centre for Ecology, Evolution and Behaviour Royal Holloway University of London Egham UK
| | - Márcio S. Araújo
- Instituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro Brazil
| | - Stuart Bumgarner
- Department of Biological Sciences North Carolina State University Raleigh North Carolina USA
| | - Caitlynn Filla
- Department of Biological Sciences North Carolina State University Raleigh North Carolina USA
- Department of Anthropology University of Florida Gainesville Florida USA
| | - Laura Pennafort
- Department of Biological Sciences Centre for Ecology, Evolution and Behaviour Royal Holloway University of London Egham UK
| | - Taylor R. Goins
- Department of Biological Sciences North Carolina State University Raleigh North Carolina USA
| | - Darlene Lucion
- Department of Biological Sciences Centre for Ecology, Evolution and Behaviour Royal Holloway University of London Egham UK
| | - Amber M. Makowicz
- Department of Biological Sciences Florida State University Tallahassee Florida USA
| | - Ryan A. Martin
- Department of Biology Case Western Reserve University Cleveland Ohio USA
| | - Sara Pirroni
- Department of Biological Sciences Centre for Ecology, Evolution and Behaviour Royal Holloway University of London Egham UK
| | - R. Brian Langerhans
- Department of Biological Sciences North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
5
|
Conflict and the evolution of viviparity in vertebrates. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Ozerov M, Noreikiene K, Kahar S, Huss M, Huusko A, Kõiv T, Sepp M, López M, Gårdmark A, Gross R, Vasemägi A. Whole-genome sequencing illuminates multifaceted targets of selection to humic substances in Eurasian perch. Mol Ecol 2022; 31:2367-2383. [PMID: 35202502 PMCID: PMC9314028 DOI: 10.1111/mec.16409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Extreme environments are inhospitable to the majority of species, but some organisms are able to survive in such hostile conditions due to evolutionary adaptations. For example, modern bony fishes have colonized various aquatic environments, including perpetually dark, hypoxic, hypersaline and toxic habitats. Eurasian perch (Perca fluviatilis) is among the few fish species of northern latitudes that is able to live in very acidic humic lakes. Such lakes represent almost "nocturnal" environments; they contain high levels of dissolved organic matter, which in addition to creating a challenging visual environment, also affects a large number of other habitat parameters and biotic interactions. To reveal the genomic targets of humic-associated selection, we performed whole-genome sequencing of perch originating from 16 humic and 16 clear-water lakes in northern Europe. We identified over 800,000 single nucleotide polymorphisms, of which >10,000 were identified as potential candidates under selection (associated with >3000 genes) using multiple outlier approaches. Our findings suggest that adaptation to the humic environment may involve hundreds of regions scattered across the genome. Putative signals of adaptation were detected in genes and gene families with diverse functions, including organism development and ion transportation. The observed excess of variants under selection in regulatory regions highlights the importance of adaptive evolution via regulatory elements, rather than via protein sequence modification. Our study demonstrates the power of whole-genome analysis to illuminate the multifaceted nature of humic adaptation and provides the foundation for further investigation of causal mutations underlying phenotypic traits of ecological and evolutionary importance.
Collapse
Affiliation(s)
- Mikhail Ozerov
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Kristina Noreikiene
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Siim Kahar
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Magnus Huss
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Ari Huusko
- Natural resources Institute Finland (Luke)PaltamoFinland
| | - Toomas Kõiv
- Chair of Hydrobiology and FisheryInstitute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Margot Sepp
- Chair of Hydrobiology and FisheryInstitute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - María‐Eugenia López
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Riho Gross
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Anti Vasemägi
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| |
Collapse
|
7
|
Culumber ZW. Variation in behavioral traits across a broad latitudinal gradient in a livebearing fish. Evol Ecol 2022. [DOI: 10.1007/s10682-021-10146-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
9
|
Santi F, Vella E, Jeffress K, Deacon A, Riesch R. Phenotypic responses to oil pollution in a poeciliid fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118023. [PMID: 34461415 DOI: 10.1016/j.envpol.2021.118023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Pollution damages ecosystems around the globe and some forms of pollution, like oil pollution, can be either man-made or derived from natural sources. Despite the pervasiveness of oil pollution, certain organisms are able to colonise polluted or toxic environments, yet we only have a limited understanding of how they are affected by it. Here, we analysed phenotypic responses to oil pollution in guppies (Poecilia reticulata) living in oil-polluted habitats across southern Trinidad. We analysed body-shape and life-history traits for 352 individuals from 11 independent populations, six living in oil-polluted environments (including the naturally oil-polluted Pitch Lake), and five stemming from non-polluted habitats. Based on theory of, and previous studies on, responses to environmental stressors, we predicted guppies from oil-polluted waters to have larger heads and shallower bodies, to be smaller, to invest more into reproduction, and to produce more but smaller offspring compared to guppies from non-polluted habitats. Contrary to most of our predictions, we uncovered strong population-specific variation regardless of the presence of oil pollution. Moreover, guppies from oil-polluted habitats were characterised by increased body size; rounder, deeper bodies with increased head size; and increased offspring size, when compared to their counterparts from non-polluted sites. This suggests that guppies in oil-polluted environments are not only subject to the direct negative effects of oil pollution, but might gain some (indirect) benefits from other concomitant environmental factors, such as reduced predation and reduced parasite load. Our results extend our knowledge of organismal responses to oil pollution and highlight the importance of anthropogenic pollution as a source of environmental variation. They also emphasise the understudied ecological heterogeneity of extreme environments.
Collapse
Affiliation(s)
- Francesco Santi
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK.
| | - Emily Vella
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Katherine Jeffress
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Amy Deacon
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Rüdiger Riesch
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
10
|
Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide-rich springs. Proc Natl Acad Sci U S A 2021; 118:2014929118. [PMID: 34185679 PMCID: PMC8255783 DOI: 10.1073/pnas.2014929118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Environmental factors can promote phenotypic variation through alterations in the epigenome and facilitate adaptation of an organism to the environment. Although hydrogen sulfide is toxic to most organisms, the fish Poecilia mexicana has adapted to survive in environments with high levels that exceed toxicity thresholds by orders of magnitude. Epigenetic changes in response to this environmental stressor were examined by assessing DNA methylation alterations in red blood cells, which are nucleated in fish. Males and females were sampled from sulfidic and nonsulfidic natural environments; individuals were also propagated for two generations in a nonsulfidic laboratory environment. We compared epimutations between the sexes as well as field and laboratory populations. For both the wild-caught (F0) and the laboratory-reared (F2) fish, comparing the sulfidic and nonsulfidic populations revealed evidence for significant differential DNA methylation regions (DMRs). More importantly, there was over 80% overlap in DMRs across generations, suggesting that the DMRs have stable generational inheritance in the absence of the sulfidic environment. This is an example of epigenetic generational stability after the removal of an environmental stressor. The DMR-associated genes were related to sulfur toxicity and metabolic processes. These findings suggest that adaptation of P. mexicana to sulfidic environments in southern Mexico may, in part, be promoted through epigenetic DNA methylation alterations that become stable and are inherited by subsequent generations independent of the environment.
Collapse
|
11
|
Hulthén K, Hill JS, Jenkins MR, Langerhans RB. Predation and Resource Availability Interact to Drive Life-History Evolution in an Adaptive Radiation of Livebearing Fish. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.619277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predation risk and resource availability are two primary factors predicted by theory to drive the evolution of life histories. Yet, disentangling their roles in life-history evolution in the wild is challenging because (1) the two factors often co-vary across environments, and (2) environmental effects on phenotypes can mask patterns of genotypic evolution. Here, we use the model system of the post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes to provide a strong test of the roles of predation and resources in life-history evolution, as the two factors do not co-vary in this system and we attempted to minimize environmental effects by raising eight populations under common laboratory conditions. We tested a priori predictions of predation- and resource-driven evolution in five life-history traits. We found that life-history evolution in Bahamas mosquitofish largely reflected complex interactions in the effects of predation and resource availability. High predation risk has driven the evolution of higher fecundity, smaller offspring size, more frequent reproduction, and slower growth rate—but this predation-driven divergence primarily occurred in environments with relatively high resource availability, and the effects of resources on life-history evolution was generally greater within environments having high predation risk. This implies that resource-driven selection on life histories overrides selection from predators when resources are particularly scarce. While several results matched a priori predictions, with the added nuance of interdependence among selective agents, some did not. For instance, only resource levels, not predation risk, explained evolutionary change in male age at maturity, with more rapid sexual maturation in higher-resource environments. We also found faster (not slower) juvenile growth rates within low-resource and low-predation environments, probably caused by selection in these high-competition scenarios favoring greater growth efficiency. Our approach, using common-garden experiments with a natural system of low- and high-predation populations that span a continuum of resource availability, provides a powerful way to deepen our understanding of life-history evolution. Overall, it appears that life-history evolution in this adaptive radiation has resulted from a complex interplay between predation and resources, underscoring the need for increased attention on more sophisticated interactions among selective agents in driving phenotypic diversification.
Collapse
|
12
|
Roth-Monzón AJ, Belk MC, Zúñiga-Vega JJ, Johnson JB. What Drives Life-History Variation in the Livebearing Fish Poeciliopsis prolifica? An Assessment of Multiple Putative Selective Agents. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.608046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Life-history traits are directly linked to fitness, and therefore, can be highly adaptive. Livebearers have been used as models for understanding the evolution of life histories due to their wide diversity in these traits. Several different selective pressures, including population density, predation, and resource levels, can shape life-history traits. However, these selective pressures are usually considered independently in livebearers and we lack a clear understanding of how they interact in shaping life-history evolution. Furthermore, selective pressures such as interspecific competition are rarely considered as drivers of life-history evolution in poeciliids. Here we test the simultaneous effects of several potential selective pressures on life-history traits in the livebearing fish Poeciliopsis prolifica. We employ a multi-model inference approach. We focus on four known agents of selection: resource availability, stream velocity, population density, and interspecific competition, and their effect on four life-history traits: reproductive allocation, superfetation, number of embryos, and individual embryo size. We found that models with population density and interspecific competition alone were strongly supported in our data and, hence, indicated that these two factors are the most important selective agents for most life-history traits, except for embryo size. When population density and interspecific competition increase there is an increase in each of the three life-history traits (reproductive allocation, superfetation, and number of embryos). For individual embryo size, we found that all single-agent models were equivalent and it was unclear which selective agent best explained variation. We also found that models that included population density and interspecific competition as direct effects were better supported than those that included them as indirect effects through their influence on resource availability. Our study underscores the importance of interspecific competitive interactions on shaping life-history traits and suggests that these interactions should be considered in future life-history studies.
Collapse
|
13
|
Camarillo H, Arias Rodriguez L, Tobler M. Functional consequences of phenotypic variation between locally adapted populations: Swimming performance and ventilation in extremophile fish. J Evol Biol 2020; 33:512-523. [DOI: 10.1111/jeb.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Henry Camarillo
- Division of Biology Kansas State University Manhattan KS USA
| | - Lenin Arias Rodriguez
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco Villahermosa México
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| |
Collapse
|
14
|
Jourdan J, Piro K, Weigand A, Plath M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front Zool 2019; 16:29. [PMID: 31338113 PMCID: PMC6624920 DOI: 10.1186/s12983-019-0327-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Background Selective landscapes in rivers are made up by an array of selective forces that vary from source to downstream regions or between seasons, and local/temporal variation in fitness maxima can result in gradual spatio-temporal variation of phenotypic traits. This study aimed at establishing freshwater amphipods as future model organisms to study adaptive phenotypic diversification (evolutionary divergence and/or adaptive plasticity) along stream gradients. Methods We collected Gammarus roeselii from 16 sampling sites in the Rhine catchment during two consecutive seasons (summer and winter). Altogether, we dissected n = 1648 individuals and quantified key parameters related to morphological and life-history diversification, including naturally selected (e.g., gill surface areas) as well as primarily sexually selected traits (e.g., male antennae). Acknowledging the complexity of selective regimes in streams and the interrelated nature of selection factors, we assessed several abiotic (e.g., temperature, flow velocity) and biotic ecological parameters (e.g., conspecific densities, sex ratios) and condensed them into four principal components (PCs). Results Generalized least squares models revealed pronounced phenotypic differentiation in most of the traits investigated herein, and components of the stream gradient (PCs) explained parts of the observed differences. Depending on the trait under investigation, phenotypic differentiation could be ascribed to variation in abiotic conditions, anthropogenic disturbance (influx of thermally polluted water), or population parameters. For example, female fecundity showed altitudinal variation and decreased with increasing conspecific densities, while sexual dimorphism in the length of male antennae—used for mate finding and assessment—increased with increasing population densities and towards female-biased sex ratios. Conclusions We provide a comprehensive protocol for comparative analyses of intraspecific variation in life history traits in amphipods. Whether the observed phenotypic differentiation over small geographical distances reflects evolutionary divergence or plasticity (or both) remains to be investigated in future studies. Independent of the mechanisms involved, variation in several traits is likely to have consequences for ecosystem functions. For example, leaf-shredding in G. roeselii strongly depends on body size, which varied in dependence of several ecological parameters. Electronic supplementary material The online version of this article (10.1186/s12983-019-0327-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonas Jourdan
- 1Department of Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.,Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Kathrin Piro
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Alexander Weigand
- National Museum of Natural History Luxembourg, Luxembourg City, Luxembourg
| | - Martin Plath
- 4College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China.,5Shaanxi Key Laboratory for Molecular Biology for Agriculture, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
15
|
Aguilera G, Terán GE, Mirande JM, Alonso F, Rometsch S, Meyer A, Torres-Dowdall J. Molecular and morphological convergence to sulfide-tolerant fishes in a new species of Jenynsia (Cyprinodontiformes: Anablepidae), the first extremophile member of the family. PLoS One 2019; 14:e0218810. [PMID: 31291282 PMCID: PMC6619989 DOI: 10.1371/journal.pone.0218810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
Freshwater sulfide springs have extreme environmental conditions that only few vertebrate species can tolerate. These species often develop a series of morphological and molecular adaptations to cope with the challenges of life under the toxic and hypoxic conditions of sulfide springs. In this paper, we described a new fish species of the genus Jenynsia, Anablepidae, from a sulfide spring in Northwestern Argentina, the first in the family known from such extreme environment. Jenynsia sulfurica n. sp. is diagnosable by the lack of scales on the pre-pelvic area or the presence of a single row of scales, continuous or not, from the isthmus to the bases of the pelvic fins. Additionally, it presents a series of morphological and molecular characteristics that appear convergent with those seen in other fish species (e.g., Poeciliids) inhabiting sulfide springs. Most notably, J. sulfurica has an enlarged head and postorbital area compared to other fish of the genus and a prognathous lower jaw with a hypertrophied lip, thought to facilitate respiration at the air-water interface. Analyses of cox1 sequence showed that J. sulfurica has two unique mutations resulting in amino acid substitutions convergent to those seen in Poeciliids from sulfide springs and known to provide a physiological mechanism related to living in sulfide environments. A phylogenetic analysis, including molecular and morphological characters, placed J. sulfurica as sister taxa to J. alternimaculata, a species found in nearby, non-sulfide habitats directly connected to the sulfide springs. Thus, it can be inferred that the selection imposed by the presence of H2S has resulted in the divergence between these two species and has potentially served as a barrier to gene flow.
Collapse
Affiliation(s)
- Gastón Aguilera
- Fundación Miguel Lillo - Unidad Ejecutora Lillo (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Guillermo Enrique Terán
- Fundación Miguel Lillo - Unidad Ejecutora Lillo (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Juan Marcos Mirande
- Fundación Miguel Lillo - Unidad Ejecutora Lillo (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Felipe Alonso
- Instituto de Bio y Geociencias del NOA (IBIGEO-CONICET), Rosario de Lerma, Salta, Argentina
| | - Sina Rometsch
- Chair of Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Hector Fellow Academy, Karlsruhe, Germany
| | - Axel Meyer
- Chair of Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Hector Fellow Academy, Karlsruhe, Germany
| | - Julian Torres-Dowdall
- Chair of Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
16
|
Brown AP, McGowan KL, Schwarzkopf EJ, Greenway R, Rodriguez LA, Tobler M, Kelley JL. Local ancestry analysis reveals genomic convergence in extremophile fishes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180240. [PMID: 31154969 DOI: 10.1098/rstb.2018.0240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The molecular basis of convergent phenotypes is often unknown. However, convergence at a genomic level is predicted when there are large population sizes, gene flow among diverging lineages or strong genetic constraints. We used whole-genome resequencing to investigate genomic convergence in fishes ( Poecilia spp.) that have repeatedly colonized hydrogen sulfide (H2S)-rich environments in Mexico. We identified genomic similarities in both single nucleotide polymorphisms (SNPs) and structural variants (SVs) among independently derived sulfide spring populations, with approximately 1.2% of the genome being shared among sulfidic ecotypes. We compared these convergent genomic regions to candidate genes for H2S adaptation identified from transcriptomic analyses and found that a significant proportion of these candidate genes (8%) were also in regions where sulfidic individuals had similar SNPs, while only 1.7% were in regions where sulfidic individuals had similar SVs. Those candidate genes included genes involved in sulfide detoxification, the electron transport chain (the main toxicity target of H2S) and other processes putatively important for adaptation to sulfidic environments. Regional genomic similarity across independent populations exposed to the same source of selection is consistent with selection on standing variation or introgression of adaptive alleles across divergent lineages. However, combined with previous analyses, our data also support that adaptive changes in mitochondrially encoded subunits arose independently via selection on de novo mutations. Pressing questions remain on what conditions ultimately facilitate the independent rise of adaptive alleles at the same loci in separate populations, and thus, the degree to which evolution is repeatable or predictable. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Anthony P Brown
- 1 School of Biological Sciences, Washington State University , 100 Dairy Road, Pullman, WA 99164 , USA
| | - Kerry L McGowan
- 1 School of Biological Sciences, Washington State University , 100 Dairy Road, Pullman, WA 99164 , USA
| | - Enrique J Schwarzkopf
- 1 School of Biological Sciences, Washington State University , 100 Dairy Road, Pullman, WA 99164 , USA
| | - Ryan Greenway
- 2 Division of Biology, Kansas State University , 116 Ackert Hall, Manhattan, KS 66506 , USA
| | - Lenin Arias Rodriguez
- 3 División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT) , CP 86150 Villahermosa, Tabasco , México
| | - Michael Tobler
- 2 Division of Biology, Kansas State University , 116 Ackert Hall, Manhattan, KS 66506 , USA
| | - Joanna L Kelley
- 1 School of Biological Sciences, Washington State University , 100 Dairy Road, Pullman, WA 99164 , USA
| |
Collapse
|
17
|
Greenway R, McNemee R, Okamoto A, Plath M, Arias‐Rodriguez L, Tobler M. Correlated divergence of female and male genitalia in replicated lineages with ongoing ecological speciation. Evolution 2019; 73:1200-1212. [DOI: 10.1111/evo.13742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ryan Greenway
- Division of Biology Kansas State University Manhattan Kansas 66506
| | - Rachel McNemee
- Division of Biology Kansas State University Manhattan Kansas 66506
| | - Alexander Okamoto
- Division of Biology Kansas State University Manhattan Kansas 66506
- Department of Organismal Biology and Anatomy The University of Chicago Chicago Illinois 60637
| | - Martin Plath
- College of Animal Science and Technology Northwest A&F University Yangling Shaanxi PR China
| | - Lenin Arias‐Rodriguez
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco Villahermosa Tabasco México
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan Kansas 66506
| |
Collapse
|
18
|
Rius BF, Petry AC, Langerhans RB, Figueiredo-Barros MP, Bozelli RL, Honda LK, Nova CC, Araújo MS. Correlates of life-history variation in the livebearing fishPoecilia vivipara(Cyprinodontiformes: Poeciliidae) inhabiting an environmental gradient. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Bianca F Rius
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro, Brazil
| | - Ana Cristina Petry
- Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade, Macaé, Brazil
| | - R Brian Langerhans
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | | | - Reinaldo L Bozelli
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Rio de Janeiro, Brazil
| | - Laura K Honda
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro, Brazil
| | - Clarice C Nova
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Rio de Janeiro, Brazil
| | - Márcio S Araújo
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro, Brazil
| |
Collapse
|
19
|
Brown AP, Arias-Rodriguez L, Yee MC, Tobler M, Kelley JL. Concordant Changes in Gene Expression and Nucleotides Underlie Independent Adaptation to Hydrogen-Sulfide-Rich Environments. Genome Biol Evol 2018; 10:2867-2881. [PMID: 30215710 PMCID: PMC6225894 DOI: 10.1093/gbe/evy198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 12/23/2022] Open
Abstract
The colonization of novel environments often involves changes in gene expression, protein coding sequence, or both. Studies of how populations adapt to novel conditions, however, often focus on only one of these two processes, potentially missing out on the relative importance of different parts of the evolutionary process. In this study, our objectives were 1) to better understand the qualitative concordance between conclusions drawn from analyses of differential expression and changes in genic sequence and 2) to quantitatively test whether differentially expressed genes were enriched for sites putatively under positive selection within gene regions. To achieve this, we compared populations of fish (Poecilia mexicana) that have independently adapted to hydrogen-sulfide-rich environments in southern Mexico to adjacent populations residing in nonsulfidic waters. Specifically, we used RNA-sequencing data to compare both gene expression and DNA sequence differences between populations. Analyzing these two different data types led to similar conclusions about which biochemical pathways (sulfide detoxification and cellular respiration) were involved in adaptation to sulfidic environments. Additionally, we found a greater overlap between genes putatively under selection and differentially expressed genes than expected by chance. We conclude that considering both differential expression and changes in DNA sequence led to a more comprehensive understanding of how these populations adapted to extreme environmental conditions. Our results imply that changes in both gene expression and DNA sequence-sometimes at the same loci-may be involved in adaptation.
Collapse
Affiliation(s)
- Anthony P Brown
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA 99164
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), C.P. 86150, Villahermosa, Tabasco, México
| | - Muh-Ching Yee
- Stanford Functional Genomics Facility, CCSR 0120, Stanford, CA 94305
| | - Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA 99164
| |
Collapse
|
20
|
Zimmer C, Riesch R, Jourdan J, Bierbach D, Arias-Rodriguez L, Plath M. Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies ( Poecilia mexicana). Genes (Basel) 2018; 9:E232. [PMID: 29724050 PMCID: PMC5977172 DOI: 10.3390/genes9050232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system.
Collapse
Affiliation(s)
- Claudia Zimmer
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Department of Ecology and Evolution, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Rüdiger Riesch
- Centre for Ecology, Evolution and Behaviour, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, D-63571 Gelnhausen, Germany.
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany.
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 86150 Villahermosa, Tabasco, Mexico.
| | - Martin Plath
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
21
|
Barts N, Greenway R, Passow CN, Arias-Rodriguez L, Kelley JL, Tobler M. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs. Genome 2018; 61:273-286. [DOI: 10.1139/gen-2017-0051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen sulfide (H2S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H2S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H2S—along with related lineages from non-sulfidic environments—to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H2S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H2S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H2S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H2S-rich environments are not necessarily repeatable across replicated lineages.
Collapse
Affiliation(s)
- Nicholas Barts
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Ryan Greenway
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Courtney N. Passow
- Ecology, Evolution and Behavior, University of Minnesota St. Paul, 205 Cargill Building, St. Paul, MN 55108, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), C.P. 86150, Villahermosa, Tabasco, México
| | - Joanna L. Kelley
- Department of Biological Sciences, Washington State University, 431 Heald Hall, Pullman, WA 99164, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
22
|
Tobler M, Kelley JL, Plath M, Riesch R. Extreme environments and the origins of biodiversity: Adaptation and speciation in sulphide spring fishes. Mol Ecol 2018; 27:843-859. [DOI: 10.1111/mec.14497] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| | - Joanna L. Kelley
- School of Biological Sciences Washington State University Pullman WA USA
| | - Martin Plath
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi China
| | - Rüdiger Riesch
- School of Biological Sciences Centre for Ecology, Evolution and Behaviour Royal Holloway University of London Egham Surrey UK
| |
Collapse
|
23
|
Riesch R, Plath M, Bierbach D. Ecology and evolution along environmental gradients. Curr Zool 2018; 64:193-196. [PMID: 30402059 PMCID: PMC5905473 DOI: 10.1093/cz/zoy015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Rüdiger Riesch
- School of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, D-12587, Germany
| |
Collapse
|
24
|
Keagy J, Braithwaite VA, Boughman JW. Brain differences in ecologically differentiated sticklebacks. Curr Zool 2017; 64:243-250. [PMID: 30402065 PMCID: PMC5905471 DOI: 10.1093/cz/zox074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/20/2017] [Indexed: 11/12/2022] Open
Abstract
Populations that have recently diverged offer a powerful model for studying evolution. Ecological differences are expected to generate divergent selection on multiple traits, including neurobiological ones. Animals must detect, process, and act on information from their surroundings and the form of this information can be highly dependent on the environment. We might expect different environments to generate divergent selection not only on the sensory organs, but also on the brain regions responsible for processing sensory information. Here, we test this hypothesis using recently evolved reproductively isolated species pairs of threespine stickleback fish Gasterosteus aculeatus that have well-described differences in many morphological and behavioral traits correlating with ecological differences. We use a state-of-the-art method, magnetic resonance imaging, to get accurate volumetric data for 2 sensory processing regions, the olfactory bulbs and optic tecta. We found a tight correlation between ecology and the size of these brain regions relative to total brain size in 2 lakes with intact species pairs. Limnetic fish, which rely heavily on vision, had relatively larger optic tecta and smaller olfactory bulbs compared with benthic fish, which utilize olfaction to a greater extent. Benthic fish also had larger total brain volumes relative to their body size compared with limnetic fish. These differences were erased in a collapsed species pair in Enos Lake where anthropogenic disturbance has led to intense hybridization. Together these data indicate that evolution of sensory processing regions can occur rapidly and independently.
Collapse
Affiliation(s)
- Jason Keagy
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.,Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Victoria A Braithwaite
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.,Center for Brain, Behavior and Cognition, Pennsylvania State University, University Park, PA 16802, USA
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
25
|
Passow CN, Arias-Rodriguez L, Tobler M. Convergent evolution of reduced energy demands in extremophile fish. PLoS One 2017; 12:e0186935. [PMID: 29077740 PMCID: PMC5659789 DOI: 10.1371/journal.pone.0186935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022] Open
Abstract
Convergent evolution in organismal function can arise from nonconvergent changes in traits that contribute to that function. Theory predicts that low resource availability and high maintenance costs in extreme environments select for reductions in organismal energy demands, which could be attained through modifications of body size or metabolic rate. We tested for convergence in energy demands and underlying traits by investigating livebearing fish (genus Poecilia) that have repeatedly colonized toxic, hydrogen sulphide-rich springs. We quantified variation in body size and routine metabolism across replicated sulphidic and non-sulphidic populations in nature, modelled total organismal energy demands, and conducted a common-garden experiment to test whether population differences had a genetic basis. Sulphidic populations generally exhibited smaller body sizes and lower routine metabolic rates compared to non-sulphidic populations, which together caused significant reductions in total organismal energy demands in extremophile populations. Although both mechanisms contributed to variation in organismal energy demands, variance partitioning indicated reductions of body size overall had a greater effect than reductions of routine metabolism. Finally, population differences in routine metabolism documented in natural populations were maintained in common-garden reared individuals, indicating evolved differences. In combination with other studies, these results suggest that reductions in energy demands may represent a common theme in adaptation to physiochemical stressors. Selection for reduced energy demand may particularly affect body size, which has implications for life history evolution in extreme environments.
Collapse
Affiliation(s)
- Courtney N. Passow
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
26
|
Passow CN, Henpita C, Shaw JH, Quackenbush CR, Warren WC, Schartl M, Arias-Rodriguez L, Kelley JL, Tobler M. The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish. Mol Ecol 2017; 26:6384-6399. [PMID: 28926156 DOI: 10.1111/mec.14360] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
Abstract
The notorious plasticity of gene expression responses and the complexity of environmental gradients complicate the identification of adaptive differences in gene regulation among populations. We combined transcriptome analyses in nature with common-garden and exposure experiments to establish cause-effect relationships between the presence of a physiochemical stressor and expression differences, as well as to test how evolutionary change and plasticity interact to shape gene expression variation in natural systems. We studied two evolutionarily independent population pairs of an extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulphide (H2 S)-rich springs and adjacent nontoxic habitats and assessed genomewide expression patterns of wild-caught and common-garden-raised individuals exposed to different concentrations of H2 S. We found that 7.7% of genes that were differentially expressed between sulphidic and nonsulphidic ecotypes remained differentially expressed in the laboratory, indicating that sources of selection other than H2 S-or plastic responses to other environmental factors-contribute substantially to gene expression patterns observed in the wild. Concordantly differentially expressed genes in the wild and the laboratory were primarily associated with H2 S detoxification, sulphur processing and metabolic physiology. While shared, ancestral plasticity played a minor role in shaping gene expression variation observed in nature, we documented evidence for evolved population differences in the constitutive expression as well as the H2 S inducibility of candidate genes. Mechanisms underlying gene expression variation also varied substantially across the two ecotype pairs. These results provide a springboard for studying evolutionary modifications of gene regulatory mechanisms that underlie expression variation in locally adapted populations.
Collapse
Affiliation(s)
| | - Chathurika Henpita
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jennifer H Shaw
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Corey R Quackenbush
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, TX, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, México
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
27
|
Torres-Martínez A, Hernández-Franyutti A, Uribe MC, Contreras-Sánchez WM. Ovarian structure and oogenesis of the extremophile viviparous teleostPoecilia mexicana(Poeciliidae) from an active sulfur spring cave in Southern Mexico. J Morphol 2017; 278:1667-1681. [DOI: 10.1002/jmor.20740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/13/2017] [Accepted: 07/26/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Aarón Torres-Martínez
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tab; México
| | - Arlette Hernández-Franyutti
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tab; México
| | - Mari Carmen Uribe
- Laboratorio de Biología de la Reproducción Animal, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México; México
| | - Wilfrido Miguel Contreras-Sánchez
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tab; México
| |
Collapse
|
28
|
Brown AP, Greenway R, Morgan S, Quackenbush CR, Giordani L, Arias-Rodriguez L, Tobler M, Kelley JL. Genome-scale data reveal that endemic Poecilia populations from small sulphidic springs display no evidence of inbreeding. Mol Ecol 2017; 26:4920-4934. [PMID: 28731545 DOI: 10.1111/mec.14249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/04/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022]
Abstract
Populations with limited ranges can be highly vulnerable to changes in their environment and are, thus, of high conservation concern. Populations that experience human-induced range reductions are often highly inbred and lack genetic diversity, but it is unknown whether this is also the case for populations with naturally small ranges. The fishes Poecilia sulphuraria (listed as critically endangered) and Poecilia thermalis, which are endemic to small hydrogen sulphide-rich springs in southern Mexico, are examples of such populations with inherently small habitats. We used geometric morphometrics and population genetics to quantify phenotypic and genetic variation within and among two populations of P. sulphuraria and one population of P. thermalis. Principal component analyses revealed phenotypic and genetic differences among the populations. Evidence for inbreeding was low compared to populations that have undergone habitat reduction. The genetic data were also used to infer the demographic history of these populations to obtain estimates for effective population sizes and migration rates. Effective population sizes were large given the small habitats of these populations. Our results imply that these three endemic extremophile populations should each be considered separately for conservation purposes. Additionally, this study suggests that populations in naturally small habitats may have lower rates of inbreeding and higher genetic diversity than expected, and therefore may be better equipped to handle environmental perturbations than anticipated. We caution, however, that the inferred lack of inbreeding and the large effective population sizes could potentially be a result of colonization by genetically diverse ancestors.
Collapse
Affiliation(s)
- Anthony P Brown
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ryan Greenway
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Samuel Morgan
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Corey R Quackenbush
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | | | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
29
|
Shared and unique patterns of phenotypic diversification along a stream gradient in two congeneric species. Sci Rep 2016; 6:38971. [PMID: 27982114 PMCID: PMC5159898 DOI: 10.1038/srep38971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022] Open
Abstract
Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Río Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites.
Collapse
|
30
|
Ingley SJ, Johnson JB. Selection is stronger in early-versus-late stages of divergence in a Neotropical livebearing fish. Biol Lett 2016; 12:20151022. [PMID: 26979559 DOI: 10.1098/rsbl.2015.1022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
How selection acts to drive trait evolution at different stages of divergence is of fundamental importance in our understanding of the origins of biodiversity. Yet, most studies have focused on a single point along an evolutionary trajectory. Here, we provide a case study evaluating the strength of divergent selection acting on life-history traits at early-versus-late stages of divergence in Brachyrhaphis fishes. We find that the difference in selection is stronger in the early-diverged population than the late-diverged population, and that trait differences acquired early are maintained over time.
Collapse
Affiliation(s)
- Spencer J Ingley
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jerald B Johnson
- Department of Biology, Brigham Young University, Provo, UT 84602, USA Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
31
|
Greenway R, Drexler S, Arias‐Rodriguez L, Tobler M. Adaptive, but not condition‐dependent, body shape differences contribute to assortative mating preferences during ecological speciation. Evolution 2016; 70:2809-2822. [DOI: 10.1111/evo.13087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Ryan Greenway
- Division of Biology Kansas State University Manhattan Kansas 66506
| | - Shannon Drexler
- Department of Biology University of Wisconsin‐Platteville 1 University Plaza Platteville Wisconsin 53818
| | - Lenin Arias‐Rodriguez
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco Villahermosa Tabasco México
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan Kansas 66506
| |
Collapse
|
32
|
Tobler M, Passow CN, Greenway R, Kelley JL, Shaw JH. The Evolutionary Ecology of Animals Inhabiting Hydrogen Sulfide–Rich Environments. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032418] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydrogen sulfide (H2S) is a respiratory toxicant that creates extreme environments tolerated by few organisms. H2S is also produced endogenously by metazoans and plays a role in cell signaling. The mechanisms of H2S toxicity and its physiological functions serve as a basis to discuss the multifarious strategies that allow animals to survive in H2S-rich environments. Despite their toxicity, H2S-rich environments also provide ecological opportunities, and complex selective regimes of covarying abiotic and biotic factors drive trait evolution in organisms inhabiting H2S-rich environments. Furthermore, adaptation to H2S-rich environments can drive speciation, giving rise to biodiversity hot spots with high levels of endemism in deep-sea hydrothermal vents, cold seeps, and freshwater sulfide springs. The diversity of H2S-rich environments and their inhabitants provides ideal systems for comparative studies of the effects of a clear-cut source of selection across vast geographic and phylogenetic scales, ultimately informing our understanding of how environmental stressors affect ecological and evolutionary processes.
Collapse
Affiliation(s)
- Michael Tobler
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | | | - Ryan Greenway
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | - Joanna L. Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | - Jennifer H. Shaw
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078
| |
Collapse
|
33
|
Sommer-Trembo C, Bierbach D, Arias-Rodriguez L, Verel Y, Jourdan J, Zimmer C, Riesch R, Streit B, Plath M. Does personality affect premating isolation between locally-adapted populations? BMC Evol Biol 2016; 16:138. [PMID: 27338278 PMCID: PMC4918032 DOI: 10.1186/s12862-016-0712-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background One aspect of premating isolation between diverging, locally-adapted population pairs is female mate choice for resident over alien male phenotypes. Mating preferences often show considerable individual variation, and whether or not certain individuals are more likely to contribute to population interbreeding remains to be studied. In the Poecilia mexicana-species complex different ecotypes have adapted to hydrogen sulfide (H2S)-toxic springs, and females from adjacent non-sulfidic habitats prefer resident over sulfide-adapted males. We asked if consistent individual differences in behavioral tendencies (animal personality) predict the strength and direction of the mate choice component of premating isolation in this system. Results We characterized focal females for their personality and found behavioral measures of ‘novel object exploration’, ‘boldness’ and ‘activity in an unknown area’ to be highly repeatable. Furthermore, the interaction term between our measures of exploration and boldness affected focal females’ strength of preference (SOP) for the resident male phenotype in dichotomous association preference tests. High exploration tendencies were coupled with stronger SOPs for resident over alien mating partners in bold, but not shy, females. Shy and/or little explorative females had an increased likelihood of preferring the non-resident phenotype and thus, are more likely to contribute to rare population hybridization. When we offered large vs. small conspecific stimulus males instead, less explorative females showed stronger preferences for large male body size. However, this effect disappeared when the size difference between the stimulus males was small. Conclusions Our results suggest that personality affects female mate choice in a very nuanced fashion. Hence, population differences in the distribution of personality types could be facilitating or impeding reproductive isolation between diverging populations depending on the study system and the male trait(s) upon which females base their mating decisions, respectively. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0712-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolin Sommer-Trembo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China. .,Department of Ecology and Evolution, J.W. Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany.
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, CP. 86150, Mexico
| | - Yesim Verel
- Department of Ecology and Evolution, J.W. Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Jonas Jourdan
- Department of Ecology and Evolution, J.W. Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany.,Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Claudia Zimmer
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.,Department of Ecology and Evolution, J.W. Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Rüdiger Riesch
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX, UK
| | - Bruno Streit
- Department of Ecology and Evolution, J.W. Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
| |
Collapse
|
34
|
Riesch R, Tobler M, Lerp H, Jourdan J, Doumas T, Nosil P, Langerhans RB, Plath M. Extremophile Poeciliidae: multivariate insights into the complexity of speciation along replicated ecological gradients. BMC Evol Biol 2016; 16:136. [PMID: 27334284 PMCID: PMC4918007 DOI: 10.1186/s12862-016-0705-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022] Open
Abstract
Background Replicate population pairs that diverge in response to similar selective regimes allow for an investigation of (a) whether phenotypic traits diverge in a similar and predictable fashion, (b) whether there is gradual variation in phenotypic divergence reflecting variation in the strength of natural selection among populations, (c) whether the extent of this divergence is correlated between multiple character suites (i.e., concerted evolution), and (d) whether gradual variation in phenotypic divergence predicts the degree of reproductive isolation, pointing towards a role for adaptation as a driver of (ecological) speciation. Here, we use poeciliid fishes of the genera Gambusia and Poecilia that have repeatedly evolved extremophile lineages able to tolerate high and sustained levels of toxic hydrogen sulfide (H2S) to answer these questions. Results We investigated evolutionary divergence in response to H2S in Gambusia spp. (and to a lesser extent Poecilia spp.) using a multivariate approach considering the interplay of life history, body shape, and population genetics (nuclear miscrosatellites to infer population genetic differentiation as a proxy for reproductive isolation). We uncovered both shared and unique patterns of evolution: most extremophile Gambusia predictably evolved larger heads and offspring size, matching a priori predictions for adaptation to sulfidic waters, while variation in adult life histories was idiosyncratic. When investigating patterns for both genera (Gambusia and Poecilia), we found that divergence in offspring-related life histories and body shape were positively correlated across populations, but evidence for individual-level associations between the two character suites was limited, suggesting that genetic linkage, developmental interdependencies, or pleiotropic effects do not explain patterns of concerted evolution. We further found that phenotypic divergence was positively correlated with both environmental H2S-concentration and neutral genetic differentiation (a proxy for gene flow). Conclusions Our results suggest that higher toxicity exerts stronger selection, and that divergent selection appears to constrain gene flow, supporting a scenario of ecological speciation. Nonetheless, progress toward ecological speciation was variable, partially reflecting variation in the strength of divergent selection, highlighting the complexity of selective regimes even in natural systems that are seemingly governed by a single, strong selective agent. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0705-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rüdiger Riesch
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK. .,Department of Biological Sciences & W. M. Keck Center for Behavioral Biology, North Carolina State University, 127 David Clark Labs, Raleigh, NC, 27695-7617, USA.
| | - Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS, 66506, USA
| | - Hannes Lerp
- Natural History Collections, Museum Wiesbaden, Friedrich-Ebert-Allee 2, 65185, Wiesbaden, Germany
| | - Jonas Jourdan
- J. W. Goethe-University Frankfurt/M., Evolutionary Ecology Group, Max-von-Laue Str. 13, 60438, Frankfurt a. M., Germany
| | - Tess Doumas
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Rd., Houston, TX, 77004, USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - R Brian Langerhans
- Department of Biological Sciences & W. M. Keck Center for Behavioral Biology, North Carolina State University, 127 David Clark Labs, Raleigh, NC, 27695-7617, USA
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, 712100, People's Republic of China
| |
Collapse
|
35
|
Schulz‐Mirbach T, Eifert C, Riesch R, Farnworth MS, Zimmer C, Bierbach D, Klaus S, Tobler M, Streit B, Indy JR, Arias‐Rodriguez L, Plath M. Toxic hydrogen sulphide shapes brain anatomy: a comparative study of sulphide‐adapted ecotypes in the
Poecilia mexicana
complex. J Zool (1987) 2016. [DOI: 10.1111/jzo.12366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T. Schulz‐Mirbach
- Department Biology II Ludwig‐Maximilians‐University Munich Planegg‐Martinsried Germany
| | - C. Eifert
- Ecology and Evolution J. W. Goethe University Frankfurt Frankfurt am Main Germany
| | - R. Riesch
- School of Biological Sciences Royal Holloway University of London Egham UK
| | - M. S. Farnworth
- Göttingen Center for Molecular Biosciences Georg‐August‐University Göttingen Göttingen Germany
| | - C. Zimmer
- Ecology and Evolution J. W. Goethe University Frankfurt Frankfurt am Main Germany
| | - D. Bierbach
- Department of Biology and Ecology of Fishes Leibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - S. Klaus
- Ecology and Evolution J. W. Goethe University Frankfurt Frankfurt am Main Germany
| | - M. Tobler
- Division of Biology Kansas State University Manhattan KS USA
| | - B. Streit
- Ecology and Evolution J. W. Goethe University Frankfurt Frankfurt am Main Germany
| | - J. R. Indy
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco (UJAT) Villahermosa Tabasco México
| | - L. Arias‐Rodriguez
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco (UJAT) Villahermosa Tabasco México
| | - M. Plath
- College of Animal Science and Technology Northwest A&F University Yangling China
| |
Collapse
|
36
|
Pfenninger M, Patel S, Arias-Rodriguez L, Feldmeyer B, Riesch R, Plath M. Unique evolutionary trajectories in repeated adaptation to hydrogen sulphide-toxic habitats of a neotropical fish (Poecilia mexicana). Mol Ecol 2016; 24:5446-59. [PMID: 26405850 DOI: 10.1111/mec.13397] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/05/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
Replicated ecological gradients are prime systems to study processes of molecular evolution underlying ecological divergence. Here, we investigated the repeated adaptation of the neotropical fish Poecilia mexicana to habitats containing toxic hydrogen sulphide (H2 S) and compared two population pairs of sulphide-adapted and ancestral fish by sequencing population pools of >200 individuals (Pool-Seq). We inferred the evolutionary processes shaping divergence and tested the hypothesis of increase of parallelism from SNPs to molecular pathways. Coalescence analyses showed that the divergence occurred in the face of substantial bidirectional gene flow. Population divergence involved many short, widely dispersed regions across the genome. Analyses of allele frequency spectra suggest that differentiation at most loci was driven by divergent selection, followed by a selection-mediated reduction of gene flow. Reconstructing allelic state changes suggested that selection acted mainly upon de novo mutations in the sulphide-adapted populations. Using a corrected Jaccard index to quantify parallel evolution, we found a negligible proportion of statistically significant parallel evolution of Jcorr = 0.0032 at the level of SNPs, divergent genome regions (Jcorr = 0.0061) and genes therein (Jcorr = 0.0091). At the level of metabolic pathways, the overlap was Jcorr = 0.2545, indicating increasing parallelism with increasing level of biological integration. The majority of pathways contained positively selected genes in both sulphide populations. Hence, adaptation to sulphidic habitats necessitated adjustments throughout the genome. The largely unique evolutionary trajectories may be explained by a high proportion of de novo mutations driving the divergence. Our findings favour Gould's view that evolution is often the unrepeatable result of stochastic events with highly contingent effects.
Collapse
Affiliation(s)
- Markus Pfenninger
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Hessen, Germany
| | - Simit Patel
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Hessen, Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, C.P. 86150 Tabasco, México
| | - Barbara Feldmeyer
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Hessen, Germany
| | - Rüdiger Riesch
- School of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, 712100 Yangling, China
| |
Collapse
|
37
|
Moore MP, Riesch R, Martin RA. The predictability and magnitude of life-history divergence to ecological agents of selection: a meta-analysis in livebearing fishes. Ecol Lett 2016; 19:435-42. [DOI: 10.1111/ele.12576] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/04/2015] [Accepted: 01/06/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Michael P. Moore
- Department of Biology; Case Western Reserve University; Cleveland OH 44106 USA
| | - Rüdiger Riesch
- School of Biological Sciences; Royal Holloway; University of London; Egham TW20 0EX UK
| | - Ryan A. Martin
- Department of Biology; Case Western Reserve University; Cleveland OH 44106 USA
| |
Collapse
|
38
|
Kelley JL, Arias-Rodriguez L, Patacsil Martin D, Yee MC, Bustamante CD, Tobler M. Mechanisms Underlying Adaptation to Life in Hydrogen Sulfide-Rich Environments. Mol Biol Evol 2016; 33:1419-34. [PMID: 26861137 PMCID: PMC4868117 DOI: 10.1093/molbev/msw020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is a potent toxicant interfering with oxidative phosphorylation in mitochondria and creating extreme environmental conditions in aquatic ecosystems. The mechanistic basis of adaptation to perpetual exposure to H2S remains poorly understood. We investigated evolutionarily independent lineages of livebearing fishes that have colonized and adapted to springs rich in H2S and compared their genome-wide gene expression patterns with closely related lineages from adjacent, nonsulfidic streams. Significant differences in gene expression were uncovered between all sulfidic and nonsulfidic population pairs. Variation in the number of differentially expressed genes among population pairs corresponded to differences in divergence times and rates of gene flow, which is consistent with neutral drift driving a substantial portion of gene expression variation among populations. Accordingly, there was little evidence for convergent evolution shaping large-scale gene expression patterns among independent sulfide spring populations. Nonetheless, we identified a small number of genes that was consistently differentially expressed in the same direction in all sulfidic and nonsulfidic population pairs. Functional annotation of shared differentially expressed genes indicated upregulation of genes associated with enzymatic H2S detoxification and transport of oxidized sulfur species, oxidative phosphorylation, energy metabolism, and pathways involved in responses to oxidative stress. Overall, our results suggest that modification of processes associated with H2S detoxification and toxicity likely complement each other to mediate elevated H2S tolerance in sulfide spring fishes. Our analyses allow for the development of novel hypotheses about biochemical and physiological mechanisms of adaptation to extreme environments.
Collapse
Affiliation(s)
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | | | - Muh-Ching Yee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA
| | | | | |
Collapse
|
39
|
Krist M, Munclinger P. Context dependence of maternal effects: testing assumptions of optimal egg size, differential, and sex allocation models. Ecology 2016; 96:2726-36. [PMID: 26649393 DOI: 10.1890/14-2450.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
If offspring develop in adverse conditions, the maternal component of their phenotypic variation might increase due to the stronger dependence of offspring traits on parental investment. This should result in increased parental investment to individual offspring, as assumed by the model of optimal egg size. The opposite pattern, i.e., stronger dependence of offspring fitness on parental investment and consequently larger parental investment under good conditions is assumed by both the theory of differential allocation if attractive males provide material benefits, and reproductive compensation if they invest less into paternal care. Another influential idea is the Trivers-Willard model, which assumes sex-specific dependence of offspring fitness on parental investment. Here we tested these ideas by examining the effects of egg size on offspring fitness across many postnatal contexts in the Collared Flycatcher Ficedula albicollis. We employed a cross-fostering design that generated variation in egg size within nests and used brood means of fledgling mass as a functional measure of the quality of rearing conditions. Effects of egg size on three offspring traits, including lifetime reproductive success of recruits, were more pronounced in low-quality broods. These results support the assumption of the model of optimal egg size. Based on female preference for males providing material benefits, this pattern could support differential allocation, if attractive males invest less in paternal care, or reproductive compensation, if they invest more. By comparison, we did not find any evidence for sex specificity of fitness returns that might explain sex monomorphism of egg size in this species. The challenge for future studies will be the integration of components of parental investment and offspring fitness into their global measures and testing how the former affects the latter across gradients of postnatal conditions.
Collapse
|
40
|
Abstract
The extraordinary species richness of freshwater fishes has attracted much research on mechanisms and modes of speciation. We here review research on speciation in freshwater fishes in light of speciation theory, and place this in a context of broad-scale diversity patterns in freshwater fishes. We discuss several major repeated themes in freshwater fish speciation and the speciation mechanisms they are frequently associated with. These include transitions between marine and freshwater habitats, transitions between discrete freshwater habitats, and ecological transitions within habitats, as well as speciation without distinct niche shifts. Major research directions in the years to come include understanding the transition from extrinsic environment-dependent to intrinsic reproductive isolation and its influences on species persistence and understanding the extrinsic and intrinsic constraints to speciation and how these relate to broad-scale diversification patterns through time.
Collapse
Affiliation(s)
- Ole Seehausen
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| | - Catherine E. Wagner
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
41
|
Patterns of Macroinvertebrate and Fish Diversity in Freshwater Sulphide Springs. DIVERSITY-BASEL 2014. [DOI: 10.3390/d6030597] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Extreme environments are characterised by the presence of physicochemical stressors and provide unique study systems to address problems in evolutionary ecology research. Sulphide springs provide an example of extreme freshwater environments; because hydrogen sulphide’s adverse physiological effects induce mortality in metazoans even at micromolar concentrations. Sulphide springs occur worldwide, but while microbial communities in sulphide springs have received broad attention, little is known about macroinvertebrates and fish inhabiting these toxic environments. We reviewed qualitative occurrence records of sulphide spring faunas on a global scale and present a quantitative case study comparing diversity patterns in sulphidic and adjacent non-sulphidic habitats across replicated river drainages in Southern Mexico. While detailed studies in most regions of the world remain scarce, available data suggests that sulphide spring faunas are characterised by low species richness. Dipterans (among macroinvertebrates) and cyprinodontiforms (among fishes) appear to dominate the communities in these habitats. At least in fish, there is evidence for the presence of highly endemic species and populations exclusively inhabiting sulphide springs. We provide a detailed discussion of traits that might predispose certain taxonomic groups to colonize sulphide springs, how colonizers subsequently adapt to cope with sulphide toxicity, and how adaptation may be linked to speciation processes.
Collapse
|
42
|
Jourdan J, Bierbach D, Riesch R, Schießl A, Wigh A, Arias-Rodriguez L, Indy JR, Klaus S, Zimmer C, Plath M. Microhabitat use, population densities, and size distributions of sulfur cave-dwelling Poecilia mexicana. PeerJ 2014; 2:e490. [PMID: 25083351 PMCID: PMC4106196 DOI: 10.7717/peerj.490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/28/2014] [Indexed: 11/20/2022] Open
Abstract
The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities.
Collapse
Affiliation(s)
- Jonas Jourdan
- Evolutionary Ecology Group, Goethe University of Frankfurt , Frankfurt am Main , Germany ; Biodiversity and Climate Research Centre (BiKF) , Frankfurt am Main , Germany
| | - David Bierbach
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Berlin , Germany
| | - Rüdiger Riesch
- Department of Animal and Plant Sciences, University of Sheffield , Sheffield , UK
| | - Angela Schießl
- Evolutionary Ecology Group, Goethe University of Frankfurt , Frankfurt am Main , Germany
| | - Adriana Wigh
- Evolutionary Ecology Group, Goethe University of Frankfurt , Frankfurt am Main , Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT) , Villahermosa, Tabasco , México
| | - Jeane Rimber Indy
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT) , Villahermosa, Tabasco , México
| | - Sebastian Klaus
- Evolutionary Ecology Group, Goethe University of Frankfurt , Frankfurt am Main , Germany
| | - Claudia Zimmer
- Evolutionary Ecology Group, Goethe University of Frankfurt , Frankfurt am Main , Germany
| | - Martin Plath
- Evolutionary Ecology Group, Goethe University of Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|
43
|
Tobler M, Henpita C, Bassett B, Kelley JL, Shaw JH. H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments. Comp Biochem Physiol A Mol Integr Physiol 2014; 175:7-14. [PMID: 24813672 DOI: 10.1016/j.cbpa.2014.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/26/2014] [Accepted: 04/17/2014] [Indexed: 11/16/2022]
Abstract
Disentangling the effects of plasticity, genetic variation, and their interactions on organismal responses to environmental stressors is a key objective in ecological physiology. We quantified the expression of five candidate genes in response to hydrogen sulfide (H2S) exposure in fish (Poecilia mexicana, Poeciliidae) from a naturally sulfide-rich environment as well as an ancestral, non-sulfidic population to test for constitutive and environmentally dependent population differences in gene expression patterns. Common garden raised individuals that had never encountered environmental H2S during their lifetime were subjected to short or long term H2S exposure treatments or respective non-sulfidic controls. The expression of genes involved in responses to H2S toxicity (cytochrome c oxidase, vascular endothelial growth factor, and cytochrome P450-2J6), H2S detoxification (sulfide:quinone oxidoreductase), and endogenous H2S production (cystathionine γ lyase) was determined in both gill and liver tissues by real time PCR. The results indicated complex changes in expression patterns that--depending on the gene--not only differed between organs and populations, but also on the type of H2S exposure. Populations differences, both constitutive and H2S exposure dependent (i.e., plastic), in gene expression were particularly evident for sulfide:quinone oxidoreductase, vascular endothelial growth factor, and to a lesser degree for cytochrome P450-2J6. Our study uncovered putatively adaptive modifications in gene regulation that parallel previously documented adaptive changes in phenotypic traits.
Collapse
Affiliation(s)
- Michael Tobler
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Chathurika Henpita
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Brandon Bassett
- Center for Veterinary Health Sciences, Oklahoma State University, 205 McElroy Hall, Stillwater, OK 74078, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| | - Jennifer H Shaw
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA.
| |
Collapse
|
44
|
Koskella B. Research highlights for issue 3. Evol Appl 2014; 7:337-8. [PMID: 24665336 PMCID: PMC3962294 DOI: 10.1111/eva.12153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Britt Koskella
- Research highlights associate editor Evolutionary Applications
| |
Collapse
|