1
|
Velasquez-Carvajal D, Garampon F, Besnardeau L, Lemée R, Schaub S, Castagnetti S. Microtubule reorganization during mitotic cell division in the dinoflagellate Ostreospis cf. ovata. J Cell Sci 2024; 137:jcs261733. [PMID: 38770570 DOI: 10.1242/jcs.261733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Dinoflagellates are marine organisms that undergo seasonal proliferation events known as algal blooms. Vegetative cell proliferation is a main contributing factor in these events. However, mechanistical understanding of mitosis and cytokinesis in dinoflagellates remains rudimentary. Using an optimized immunofluorescence protocol, we analysed changes in microtubule organization occurring during the mitotic cycle of the toxic dinoflagellate Ostreopsis cf. ovata. We find that the flagella and the cortical microtubule array persist throughout the mitotic cycle. Two cytoplasmic microtubule bundles originate from the ventral area, where the basal bodies are located - a cortical bundle and a cytoplasmic bundle. The latter associates with the nucleus in the cell centre before mitosis and with the acentrosomal extranuclear spindle during mitosis. Analysis of tubulin post-translational modifications identifies two populations of spindle microtubules - polar acetylated microtubules, whose length is constant, and central tyrosinated microtubules, which elongate during chromosome segregation. During cell division a microtubule-rich structure forms along the dorsal-ventral axis, associated with the site of cytokinesis, consistent with a cytokinetic mechanism that is independent of the actomyosin ring typical of animal and yeast cells.
Collapse
Affiliation(s)
- David Velasquez-Carvajal
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Flavie Garampon
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Rodolphe Lemée
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France
| | - Sebastien Schaub
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Stefania Castagnetti
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| |
Collapse
|
2
|
Kiørboe T. Predation in a Microbial World: Mechanisms and Trade-Offs of Flagellate Foraging. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:361-381. [PMID: 37368955 DOI: 10.1146/annurev-marine-020123-102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Heterotrophic nanoflagellates are the main consumers of bacteria and picophytoplankton in the ocean and thus play a key role in ocean biogeochemistry. They are found in all major branches of the eukaryotic tree of life but are united by all being equipped with one or a few flagella that they use to generate a feeding current. These microbial predators are faced with the challenges that viscosity at this small scale impedes predator-prey contact and that their foraging activity disturbs the ambient water and thus attracts their own flow-sensing predators. Here, I describe some of the diverse adaptations of the flagellum to produce sufficient force to overcome viscosity and of the flagellar arrangement to minimize fluid disturbances, and thus of the various solutions to optimize the foraging-predation risk trade-off. I demonstrate how insights into this trade-off can be used to develop robust trait-based models of microbial food webs.
Collapse
Affiliation(s)
- Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
3
|
Rzodkiewicz LD, Turcotte MM. Two duckweed species exhibit variable tolerance to microcystin-LR exposure across genotypic lineages. HARMFUL ALGAE 2024; 131:102548. [PMID: 38212081 DOI: 10.1016/j.hal.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Cyanotoxins produced by harmful cyanobacteria blooms can damage freshwater ecosystems and threaten human health. Floating macrophytes may be used as a means of biocontrol by limiting light and resources available to cyanobacteria. However, genetic variation in macrophyte sensitivity to cyanotoxins could influence their suitability as biocontrol agents. We investigated the influence of such intraspecific variation on the response of two rapidly growing duckweed species, Lemna minor and Spirodela polyrhiza, often used in nutrient and metal bioremediation. We assessed two biomarkers related to productivity (biomass and chlorophyll A production) and two related to fitness measures (population size and growth rate). Fifteen genetic lineages of each species were grown in media containing common cyanotoxin microcystin-LR at ecologically relevant concentrations or control media for a period of twelve days. Genotype identity had a strong impact on all biomarker responses. Microcystin concentration slightly increased the final population sizes of both macrophyte species with a marginal effect on growth rate of L. minor and the chlorophyll A production of S. polyrhiza, but overall these species were very tolerant of microcystin. The strong tolerance supports the potential use of these plants as bioremediators of cyanobacterial blooms. However, differential impact of microcystin exposure discovered in single lineage models among genotypes indicates a potential for cyanotoxins to act as selective forces, necessitating attention to genotype selection for bioremediation.
Collapse
Affiliation(s)
- Lacey D Rzodkiewicz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, 15260, Pennsylvania, United States of America.
| | - Martin M Turcotte
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, 15260, Pennsylvania, United States of America
| |
Collapse
|
4
|
Driscoll WW, Wisecaver JH, Hackett JD, Espinosa NJ, Padway J, Engers JE, Bower JA. Behavioural differences underlie toxicity and predation variation in blooms of Prymnesium parvum. Ecol Lett 2023; 26:677-691. [PMID: 36924044 DOI: 10.1111/ele.14172] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 03/18/2023]
Abstract
Much of the evolutionary ecology of toxic algal blooms (TABs) remains unclear, including the role of algal toxins in the adaptive 'strategies' of TAB-forming species. Most eukaryotic TABs are caused by mixotrophs that augment autotrophy with organic nutrient sources, including competing algae (intraguild predation). We leverage the standing diversity of TABs formed by the toxic, invasive mixotroph Prymnesium parvum to identify cell-level behaviours involved in toxin-assisted predation using direct observations as well as comparisons between genetically distinct low- and high-toxicity isolates. Our results suggest that P. parvum toxins are primarily delivered at close range and promote subsequent prey capture/consumption. Surprisingly, we find opposite chemotactic preferences for organic (prey-derived) and inorganic nutrients between differentially toxic isolates, respectively, suggesting behavioural integration of toxicity and phagotrophy. Variation in toxicity may, therefore, reflect broader phenotypic integration of key traits that ultimately contribute to the remarkable flexibility, diversity, and success of invasive populations.
Collapse
Affiliation(s)
- William W Driscoll
- Department of Biology, Penn State Harrisburg, Middletown, Pennsylvania, USA.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Jennifer H Wisecaver
- Department of Biochemistry, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Jeremiah D Hackett
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Noelle J Espinosa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Jared Padway
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Jessica E Engers
- Department of Biology, Penn State Harrisburg, Middletown, Pennsylvania, USA
| | - Jessica A Bower
- Department of Biology, Penn State Harrisburg, Middletown, Pennsylvania, USA
| |
Collapse
|
5
|
Ehrlich E, Thygesen UH, Kiørboe T. Evolution of toxins as a public good in phytoplankton. Proc Biol Sci 2022; 289:20220393. [PMID: 35730156 PMCID: PMC9233926 DOI: 10.1098/rspb.2022.0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 12/25/2022] Open
Abstract
Toxic phytoplankton blooms have increased in many waterbodies worldwide with well-known negative impacts on human health, fisheries and ecosystems. However, why and how phytoplankton evolved toxin production is still a puzzling question, given that the producer that pays the costs often shares the benefit with other competing algae and thus provides toxins as a 'public good' (e.g. damaging a common competitor or predator). Furthermore, blooming phytoplankton species often show a high intraspecific variation in toxicity and we lack an understanding of what drives the dynamics of coexisting toxic and non-toxic genotypes. Here, by using an individual-based two-dimensional model, we show that small-scale patchiness of phytoplankton strains caused by demography can explain toxin evolution in phytoplankton with low motility and the maintenance of genetic diversity within their blooms. This patchiness vanishes for phytoplankton with high diffusive motility, suggesting different evolutionary pathways for different phytoplankton groups. In conclusion, our study reveals that small-scale spatial heterogeneity, generated by cell division and counteracted by diffusive cell motility and turbulence, can crucially affect toxin evolution and eco-evolutionary dynamics in toxic phytoplankton species. This contributes to a better understanding of conditions favouring toxin production and the evolution of public goods in asexually reproducing organisms in general.
Collapse
Affiliation(s)
- Elias Ehrlich
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Uffe Høgsbro Thygesen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Olesen AJ, Ryderheim F, Krock B, Lundholm N, Kiørboe T. Costs and benefits of predator-induced defence in a toxic diatom. Proc Biol Sci 2022; 289:20212735. [PMID: 35414232 DOI: 10.1098/rspb.2021.2735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phytoplankton employ a variety of defence mechanisms against predation, including production of toxins. Domoic acid (DA) production by the diatom Pseudo-nitzschia spp. is induced by the presence of predators and is considered to provide defence benefits, but the evidence is circumstantial. We exposed eight different strains of P. seriata to chemical cues from copepods and examined the costs and the benefits of toxin production. The magnitude of the induced toxin response was highly variable among strains, while the costs in terms of growth reduction per DA cell quota were similar and the trade-off thus consistent. We found two components of the defence in induced cells: (i) a 'private good' in terms of elevated rejection of captured cells and (ii) a 'public good' facilitated by a reduction in copepod feeding activity. Induced cells were more frequently rejected by copepods and rejections were directly correlated with DA cell quota and independent of access to other food items. By contrast, the public-good effect was diminished by the presence of alternative prey suggesting that it does not play a major role in bloom formation and that its evolution is closely associated with the grazing-deterrent private good.
Collapse
Affiliation(s)
- Anna J Olesen
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Fredrik Ryderheim
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Chemische Ökologie, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Long M, Krock B, Castrec J, Tillmann U. Unknown Extracellular and Bioactive Metabolites of the Genus Alexandrium: A Review of Overlooked Toxins. Toxins (Basel) 2021; 13:905. [PMID: 34941742 PMCID: PMC8703713 DOI: 10.3390/toxins13120905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Various species of Alexandrium can produce a number of bioactive compounds, e.g., paralytic shellfish toxins (PSTs), spirolides, gymnodimines, goniodomins, and also uncharacterised bioactive extracellular compounds (BECs). The latter metabolites are released into the environment and affect a large range of organisms (from protists to fishes and mammalian cell lines). These compounds mediate allelochemical interactions, have anti-grazing and anti-parasitic activities, and have a potentially strong structuring role for the dynamic of Alexandrium blooms. In many studies evaluating the effects of Alexandrium on marine organisms, only the classical toxins were reported and the involvement of BECs was not considered. A lack of information on the presence/absence of BECs in experimental strains is likely the cause of contrasting results in the literature that render impossible a distinction between PSTs and BECs effects. We review the knowledge on Alexandrium BEC, (i.e., producing species, target cells, physiological effects, detection methods and molecular candidates). Overall, we highlight the need to identify the nature of Alexandrium BECs and urge further research on the chemical interactions according to their ecological importance in the planktonic chemical warfare and due to their potential collateral damage to a wide range of organisms.
Collapse
Affiliation(s)
- Marc Long
- IFREMER, Centre de Brest, DYNECO Pelagos, 29280 Plouzané, France;
| | - Bernd Krock
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| | - Justine Castrec
- University Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France;
- Station de Recherches Sous-Marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | - Urban Tillmann
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| |
Collapse
|
8
|
Long M, Marie D, Szymczak J, Toullec J, Bigeard E, Sourisseau M, Le Gac M, Guillou L, Jauzein C. Dinophyceae can use exudates as weapons against the parasite Amoebophrya sp. (Syndiniales). ISME COMMUNICATIONS 2021; 1:34. [PMID: 37938261 PMCID: PMC9723556 DOI: 10.1038/s43705-021-00035-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 05/09/2023]
Abstract
Parasites in the genus Amoebophrya sp. infest dinoflagellate hosts in marine ecosystems and can be determining factors in the demise of blooms, including toxic red tides. These parasitic protists, however, rarely cause the total collapse of Dinophyceae blooms. Experimental addition of parasite-resistant Dinophyceae (Alexandrium minutum or Scrippsiella donghaienis) or exudates into a well-established host-parasite coculture (Scrippsiella acuminata-Amoebophrya sp.) mitigated parasite success and increased the survival of the sensitive host. This effect was mediated by waterborne molecules without the need for a physical contact. The strength of the parasite defenses varied between dinoflagellate species, and strains of A. minutum and was enhanced with increasing resistant host cell concentrations. The addition of resistant strains or exudates never prevented the parasite transmission entirely. Survival time of Amoebophrya sp. free-living stages (dinospores) decreased in presence of A. minutum but not of S. donghaienis. Parasite progeny drastically decreased with both species. Integrity of the dinospore membrane was altered by A. minutum, providing a first indication on the mode of action of anti-parasitic molecules. These results demonstrate that extracellular defenses can be an effective strategy against parasites that protects not only the resistant cells producing them, but also the surrounding community.
Collapse
Affiliation(s)
- Marc Long
- IFREMER, Centre de Brest, DYNECO Pelagos, F-29280, Plouzané, France.
| | - Dominique Marie
- UMR 7144 Sorbonne Université & Centre National pour la Recherche Scientifique, «Adaptation and Diversity in Marine Environment», Team «Ecology of Marine Plankton, ECOMAP», Station Biologique de Roscoff, 29680, Roscoff, France
| | - Jeremy Szymczak
- UMR 7144 Sorbonne Université & Centre National pour la Recherche Scientifique, «Adaptation and Diversity in Marine Environment», Team «Ecology of Marine Plankton, ECOMAP», Station Biologique de Roscoff, 29680, Roscoff, France
| | - Jordan Toullec
- IFREMER, Centre de Brest, DYNECO Pelagos, F-29280, Plouzané, France
| | - Estelle Bigeard
- UMR 7144 Sorbonne Université & Centre National pour la Recherche Scientifique, «Adaptation and Diversity in Marine Environment», Team «Ecology of Marine Plankton, ECOMAP», Station Biologique de Roscoff, 29680, Roscoff, France
| | - Marc Sourisseau
- IFREMER, Centre de Brest, DYNECO Pelagos, F-29280, Plouzané, France
| | - Mickael Le Gac
- IFREMER, Centre de Brest, DYNECO Pelagos, F-29280, Plouzané, France
| | - Laure Guillou
- UMR 7144 Sorbonne Université & Centre National pour la Recherche Scientifique, «Adaptation and Diversity in Marine Environment», Team «Ecology of Marine Plankton, ECOMAP», Station Biologique de Roscoff, 29680, Roscoff, France
| | - Cécile Jauzein
- IFREMER, Centre de Brest, DYNECO Pelagos, F-29280, Plouzané, France
| |
Collapse
|
9
|
Ryderheim F, Selander E, Kiørboe T. Predator-induced defence in a dinoflagellate generates benefits without direct costs. THE ISME JOURNAL 2021; 15:2107-2116. [PMID: 33580210 PMCID: PMC8245491 DOI: 10.1038/s41396-021-00908-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 01/31/2023]
Abstract
Inducible defences in phytoplankton are often assumed to come at a cost to the organism, but trade-offs have proven hard to establish experimentally. A reason for this may be that some trade-off costs only become evident under resource-limiting conditions. To explore the effect of nutrient limitation on trade-offs in toxin-producing dinoflagellates, we induced toxin production in Alexandrium minutum by chemical cues from copepods under different levels of nitrogen limitation. The effects were both nitrogen- and grazer-concentration dependent. Induced cells had higher cellular toxin content and a larger fraction of the cells was rejected by a copepod, demonstrating the clear benefits of toxin production. Induced cells also had a higher carbon and nitrogen content, despite up to 25% reduction in cell size. Unexpectedly, induced cells seemed to grow faster than controls, likely owing to a higher specific nutrient affinity due to reduced size. We thus found no clear trade-offs, rather the opposite. However, indirect ecological costs that do not manifest under laboratory conditions may be important. Inducing appropriate defence traits in response to threat-specific warning signals may also prevent larger cumulative costs from expressing several defensive traits simultaneously.
Collapse
Affiliation(s)
- Fredrik Ryderheim
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Lyngby, Denmark.
| | - Erik Selander
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
10
|
Long M, Peltekis A, González-Fernández C, Hégaret H, Bailleul B. Allelochemicals of Alexandrium minutum: Kinetics of membrane disruption and photosynthesis inhibition in a co-occurring diatom. HARMFUL ALGAE 2021; 103:101997. [PMID: 33980437 DOI: 10.1016/j.hal.2021.101997] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Allelopathy is an efficient strategy by which some microalgae can outcompete other species. Allelochemicals from the toxic dinoflagellate Alexandrium minutum have deleterious effects on diatoms, inhibiting metabolism and photosynthesis and therefore give a competitive advantage to the dinoflagellate. The precise mechanisms of allelochemical interactions and the molecular target of allelochemicals remain however unknown. To understand the mechanisms, the short-term effects of A. minutum allelochemicals on the physiology of the diatom Chaetoceros muelleri were investigated. The effects of a culture filtrate were measured on the diatom cytoplasmic membrane integrity (polarity and permeability) using flow-cytometry and on the photosynthetic performance using fluorescence and absorption spectroscopy. Within 10 min, the unknown allelochemicals induced a depolarization of the cytoplasmic membranes and an impairment of photosynthesis through the inhibition of the plastoquinone-mediated electron transfer between photosystem II and cytochrome b6f. At longer time of exposure, the cytoplasmic membranes were permeable and the integrity of photosystems I, II and cytochrome b6f was compromised. Our demonstration of the essential role of membranes in this allelochemical interaction provides new insights for the elucidation of the nature of the allelochemicals. The relationship between cytoplasmic membranes and the inhibition of the photosynthetic electron transfer remains however unclear and warrants further investigation.
Collapse
Affiliation(s)
- Marc Long
- School of Chemistry, University of Wollongong, NSW 2522, Australia; Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Alexandra Peltekis
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR 7141, Centre National de la Recherche Scientifique (CNRS), Sorbonne université, 75005 Paris, France
| | - Carmen González-Fernández
- Immunobiotechnology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR 7141, Centre National de la Recherche Scientifique (CNRS), Sorbonne université, 75005 Paris, France.
| |
Collapse
|
11
|
Miele L, De Monte S. Aggregative cycles evolve as a solution to conflicts in social investment. PLoS Comput Biol 2021; 17:e1008617. [PMID: 33471791 PMCID: PMC7850506 DOI: 10.1371/journal.pcbi.1008617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/01/2021] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
Multicellular organization is particularly vulnerable to conflicts between different cell types when the body forms from initially isolated cells, as in aggregative multicellular microbes. Like other functions of the multicellular phase, coordinated collective movement can be undermined by conflicts between cells that spend energy in fuelling motion and ‘cheaters’ that get carried along. The evolutionary stability of collective behaviours against such conflicts is typically addressed in populations that undergo extrinsically imposed phases of aggregation and dispersal. Here, via a shift in perspective, we propose that aggregative multicellular cycles may have emerged as a way to temporally compartmentalize social conflicts. Through an eco-evolutionary mathematical model that accounts for individual and collective strategies of resource acquisition, we address regimes where different motility types coexist. Particularly interesting is the oscillatory regime that, similarly to life cycles of aggregative multicellular organisms, alternates on the timescale of several cell generations phases of prevalent solitary living and starvation-triggered aggregation. Crucially, such self-organized oscillations emerge as a result of evolution of cell traits associated to conflict escalation within multicellular aggregates. In aggregative multicellular life cycles, cells come together in heterogenous aggregates, whose collective function benefits all the constituent cells. Current explanations for the evolutionary stability of such organization presume that alternating phases of aggregation and dispersal are already in place. Here we propose that, instead of being externally driven, the temporal arrangement of aggregative life cycles may emerge from the interplay between ecology and evolution in populations with differential motility. In our model, cell motility underpins group formation and allows cells to forage individually and collectively. Notably, slower cells can exploit the propulsion by faster cells within multicellular groups. When the level of such exploitation is let evolve, increasing social conflicts are associated to the evolutionary emergence of self-sustained oscillations. Akin to aggregative life cycles, resource exhaustion triggers group formation, whereas conflicts within multicellular groups restrain resource consumption, thus paving the way for the subsequent unicellular phase. The evolutionary transition from equilibrium coexistence to life cycles solves conflicts among heterogenous cell types by integrating them on a timescale longer than cell division, that comes to be associated to multicellular organization.
Collapse
Affiliation(s)
- Leonardo Miele
- School of Mathematics, University of Leeds, U.K.
- Institut de Biologie de l’Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- * E-mail: (LM); (SDM)
| | - Silvia De Monte
- Institut de Biologie de l’Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plőn, Germany
- * E-mail: (LM); (SDM)
| |
Collapse
|
12
|
De Rijcke M, Baert JM, Brion N, Vandegehuchte MB, De Laender F, Janssen CR. Monoculture-based consumer-resource models predict species dominance in mixed batch cultures of dinoflagellates. HARMFUL ALGAE 2020; 99:101921. [PMID: 33218445 DOI: 10.1016/j.hal.2020.101921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/30/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Global change will disturb the frequency, scale and distribution of harmful algal blooms (HABs), but we are unable to predict future HABs due to our limited understanding of how physicochemical changes in the environment affect interspecific competition between dinoflagellates. Trait-based mechanistic modelling is an important tool to unravel and quantify various direct and indirect interactions between species. The present study explores whether MacArthur's consumer-resource model can be used as a viable base model to predict dinoflagellate growth in closed multispecies systems. To this end, two batch culture experiments (294 cultures in total) with monocultures and multispecies cultures of Alexandrium minutum, Prorocentrum lima, P. micans, Protoceratium reticulatum and Scrippsiella trochoidea were performed. Despite changes to the relative (different nitrate concentrations) and absolute nutrient availability (dilutions of L1 medium), P. micans outcompeted all other species in mixed cultures. Consumer-resource modelling parameterized using monoculture growth correctly predicted this species dominance (R² between 0.80 and 0.95). Parameter estimates revealed that P. micans had a faster uptake of nitrogen when compared to its competitors, but did not differ in resource efficiency and natural mortality rate. Yet, while the model accurately predicted community dynamics during the growth phase, it was not able to predict their dynamics beyond the point of quiescence. Consumer-resource modelling was shown to differentiate the roles of resource assimilation, resource efficiency, and natural mortality rates in batch culture experiments with minimal data requirements beyond common measurements. The results suggest that consumer-resource models provide a promising basis for trait-based modelling of interspecific competition between (harmful) algae.
Collapse
Affiliation(s)
- M De Rijcke
- Flanders Marine Institute (VLIZ), InnovOcean site, Wandelaarkaai 7, 8400 Ostend, Belgium; Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - J M Baert
- Behavioural Ecology and Ecophysiology Research Group, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Terrestrial Ecology Unit, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| | - N Brion
- Analytical, Environmental and Geo-Chemistry research group, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - M B Vandegehuchte
- Flanders Marine Institute (VLIZ), InnovOcean site, Wandelaarkaai 7, 8400 Ostend, Belgium.
| | - F De Laender
- Research Unit of Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - C R Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
13
|
Yamamichi M, Kyogoku D, Iritani R, Kobayashi K, Takahashi Y, Tsurui-Sato K, Yamawo A, Dobata S, Tsuji K, Kondoh M. Intraspecific Adaptation Load: A Mechanism for Species Coexistence. Trends Ecol Evol 2020; 35:897-907. [PMID: 32674869 DOI: 10.1016/j.tree.2020.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
Evolutionary ecological theory suggests that selection arising from interactions with conspecifics, such as sexual and kin selection, may result in evolution of intraspecific conflicts and evolutionary 'tragedy of the commons'. Here, we propose that such an evolution of conspecific conflicts may affect population dynamics in a way that enhances species coexistence. Empirical evidence and theoretical models suggest that more abundant species is more susceptible to invasion of 'selfish' individuals that increase their own reproductive success at the expense of population growth (intraspecific adaptation load). The density-dependent intraspecific adaptation load gives rise to a self-regulation mechanism at the population level, and stabilizes species coexistence at the community level by negative frequency-dependence.
Collapse
Affiliation(s)
- Masato Yamamichi
- Department of General Systems Studies, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.
| | - Daisuke Kyogoku
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Ryosuke Iritani
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), Wako, Saitama 351-0198, Japan
| | - Kazuya Kobayashi
- Hokkaido Forest Research Station, Field Science Education and Research Center, Kyoto University, 553 Tawa, Shibecha-cho, Kawakami-gun, Hokkaido 088-2339, Japan
| | - Yuma Takahashi
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Kaori Tsurui-Sato
- Center for Strategic Research Project, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Akira Yamawo
- Faculty of Agriculture and Life Science, Hirosaki University, 1 Bunkyo-cho, Hirosaki 036-8560, Japan
| | - Shigeto Dobata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuki Tsuji
- Department of Subtropical Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Michio Kondoh
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
14
|
Verma A, Hughes DJ, Harwood DT, Suggett DJ, Ralph PJ, Murray SA. Functional significance of phylogeographic structure in a toxic benthic marine microbial eukaryote over a latitudinal gradient along the East Australian Current. Ecol Evol 2020; 10:6257-6273. [PMID: 32724512 PMCID: PMC7381561 DOI: 10.1002/ece3.6358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
Genetic diversity in marine microbial eukaryotic populations (protists) drives their ecological success by enabling diverse phenotypes to respond rapidly to changing environmental conditions. Despite enormous population sizes and lack of barriers to gene flow, genetic differentiation that is associated with geographic distance, currents, and environmental gradients has been reported from planktonic protists. However, for benthic protists, which have reduced dispersal opportunities, phylogeography and its phenotypic significance are little known. In recent years, the East Australian Current (EAC) has intensified its southward flow, associated with the tropicalization of temperate waters. Benthic harmful algal species have been increasingly found in south-eastern Australia. Yet little is known about the potential of these species to adapt or extend their range in relation to changing conditions. Here, we examine genetic diversity and functional niche divergence in a toxic benthic dinoflagellate, Ostreopsis cf. siamensis, along a 1,500 km north-south gradient in southeastern Australia. Sixty-eight strains were established from eight sampling sites. The study revealed long-standing genetic diversity among strains established from the northern-most sites, along with large phenotypic variation in observed physiological traits such as growth rates, cell volume, production of palytoxin-like compounds, and photophysiological parameters. Strains from the southern populations were more uniform in both genetic and functional traits, and have possibly colonized their habitats more recently. Our study reports significant genetic and functional trait variability in a benthic harmful algal species, indicative of high adaptability, and a possible climate-driven range extension. The observed high trait variation may facilitate development of harmful algal blooms under dynamic coastal environmental conditions.
Collapse
Affiliation(s)
- Arjun Verma
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - David J. Hughes
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | | | - David J. Suggett
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - Peter J. Ralph
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - Shauna A. Murray
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| |
Collapse
|
15
|
Blossom HE, Markussen B, Daugbjerg N, Krock B, Norlin A, Hansen PJ. The Cost of Toxicity in Microalgae: Direct Evidence From the Dinoflagellate Alexandrium. Front Microbiol 2019; 10:1065. [PMID: 31178832 PMCID: PMC6538772 DOI: 10.3389/fmicb.2019.01065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Empirical evidence of the cost of producing toxic compounds in harmful microalgae is completely lacking. Yet costs are often assumed to be high, implying substantial ecological benefits with adaptive significance exist. To study potential fitness costs of toxin production, 16 strains including three species of the former Alexandrium tamarense species complex were grown under both carbon limitation and unlimited conditions. Growth rates, levels of intracellular paralytic shellfish toxins (PSTs), and effects of lytic compounds were measured to provide trade-off curves of toxicity for both PST and lytic toxicity under high light (300 μmol photons m-2 s-1) and under low light (i.e., carbon limited; 20 μmol photons m-2 s-1). Fitness costs in terms of reduced growth rates with increasing PST content were only evident under unlimited conditions, but not under carbon limitation, in which case PST production was positively correlated with growth. The cost of production of lytic compounds was detected both under carbon limitation and unlimited conditions, but only in strains producing PST. The results may direct future research in understanding the evolutionary role and ecological function of algal toxins. The intrinsic growth rate costs should be accounted for in relation to quantifying benefits such as grazer avoidance or toxin-mediated prey capture in natural food web settings.
Collapse
Affiliation(s)
- Hannah E Blossom
- Marine Biological Section, Department of Biology, University of Copenhagen, Elsinore, Denmark
| | - Bo Markussen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Daugbjerg
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bernd Krock
- Alfred-Wegener Institut für Polar-und Meeresforschung, Bremerhaven, Germany
| | - Andreas Norlin
- Marine Biological Section, Department of Biology, University of Copenhagen, Elsinore, Denmark
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Elsinore, Denmark
| |
Collapse
|
16
|
Dakos V, Matthews B, Hendry AP, Levine J, Loeuille N, Norberg J, Nosil P, Scheffer M, De Meester L. Ecosystem tipping points in an evolving world. Nat Ecol Evol 2019; 3:355-362. [DOI: 10.1038/s41559-019-0797-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023]
|
17
|
Hauert C, Saade C, McAvoy A. Asymmetric evolutionary games with environmental feedback. J Theor Biol 2019; 462:347-360. [DOI: 10.1016/j.jtbi.2018.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
18
|
Chakraborty S, Pančić M, Andersen KH, Kiørboe T. The cost of toxin production in phytoplankton: the case of PST producing dinoflagellates. THE ISME JOURNAL 2019; 13:64-75. [PMID: 30108304 PMCID: PMC6298997 DOI: 10.1038/s41396-018-0250-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/29/2018] [Accepted: 07/19/2018] [Indexed: 01/23/2023]
Abstract
Many species of phytoplankton produce toxins that may provide protection from grazing. In that case one would expect toxin production to be costly; else all species would evolve toxicity. However, experiments have consistently failed to show any costs. Here, we show that costs of toxin production are environment dependent but can be high. We develop a fitness optimization model to estimate rate, costs, and benefits of toxin production, using PST (paralytic shellfish toxin) producing dinoflagellates as an example. Costs include energy and material (nitrogen) costs estimated from well-established biochemistry of PSTs, and benefits are estimated from relationship between toxin content and grazing mortality. The model reproduces all known features of PST production: inducibility in the presence of grazer cues, low toxicity of nitrogen-starved cells, but high toxicity of P-limited and light-limited cells. The model predicts negligible reduction in cell division rate in nitrogen replete cells, consistent with observations, but >20% reduction when nitrogen is limiting and abundance of grazers high. Such situation is characteristic of coastal and oceanic waters during summer when blooms of toxic algae typically develop. The investment in defense is warranted, since the net growth rate is always higher in defended than in undefended cells.
Collapse
Affiliation(s)
- Subhendu Chakraborty
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Kgs.2800, Lyngby, Denmark.
| | - Marina Pančić
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Kgs.2800, Lyngby, Denmark
| | - Ken H Andersen
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Kgs.2800, Lyngby, Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Kgs.2800, Lyngby, Denmark
| |
Collapse
|
19
|
Brandenburg KM, Wohlrab S, John U, Kremp A, Jerney J, Krock B, Van de Waal DB. Intraspecific trait variation and trade-offs within and across populations of a toxic dinoflagellate. Ecol Lett 2018; 21:1561-1571. [DOI: 10.1111/ele.13138] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/01/2018] [Accepted: 07/12/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Karen M. Brandenburg
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 6708 PB Wageningen The Netherlands
| | - Sylke Wohlrab
- Department of Ecological Chemistry; Alfred Wegener Institute (AWI); Helmholtz Centre for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
- Helmholtz-Institut für Funktionelle Marine Biodiversität (HIFMB); Ammerländer Heerstraße 231 23129 Oldenburg Germany
| | - Uwe John
- Department of Ecological Chemistry; Alfred Wegener Institute (AWI); Helmholtz Centre for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
- Helmholtz-Institut für Funktionelle Marine Biodiversität (HIFMB); Ammerländer Heerstraße 231 23129 Oldenburg Germany
| | - Anke Kremp
- SYKE Marine Research Laboratory; Agnes Sjöbergin katu 2 FI-00790 Helsinki Finland
| | - Jacqueline Jerney
- SYKE Marine Research Laboratory; Agnes Sjöbergin katu 2 FI-00790 Helsinki Finland
| | - Bernd Krock
- Department of Ecological Chemistry; Alfred Wegener Institute (AWI); Helmholtz Centre for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
| | - Dedmer B. Van de Waal
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 6708 PB Wageningen The Netherlands
| |
Collapse
|
20
|
Xu J, Kiørboe T. Toxic dinoflagellates produce true grazer deterrents. Ecology 2018; 99:2240-2249. [DOI: 10.1002/ecy.2479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/11/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jiayi Xu
- Centre for Ocean Life; National Institute of Aquatic Resources; Technical University of Denmark; Kemitorvet, 2800 Kgs. Lyngby Denmark
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 200062 Shanghai China
| | - Thomas Kiørboe
- Centre for Ocean Life; National Institute of Aquatic Resources; Technical University of Denmark; Kemitorvet, 2800 Kgs. Lyngby Denmark
| |
Collapse
|
21
|
Pančić M, Kiørboe T. Phytoplankton defence mechanisms: traits and trade-offs. Biol Rev Camb Philos Soc 2018; 93:1269-1303. [DOI: 10.1111/brv.12395] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Marina Pančić
- Centre for Ocean Life; Technical University of Denmark, DTU Aqua, Kemitorvet B201; Kongens Lyngby DK-2800 Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life; Technical University of Denmark, DTU Aqua, Kemitorvet B201; Kongens Lyngby DK-2800 Denmark
| |
Collapse
|
22
|
Matthews B, Best RJ, Feulner PGD, Narwani A, Limberger R. Evolution as an ecosystem process: insights from genomics. Genome 2017; 61:298-309. [PMID: 29241022 DOI: 10.1139/gen-2017-0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Evolution is a fundamental ecosystem process. The study of genomic variation of organisms can not only improve our understanding of evolutionary processes, but also of contemporary and future ecosystem dynamics. We argue that integrative research between the fields of genomics and ecosystem ecology could generate new insights. Specifically, studies of biodiversity and ecosystem functioning, evolutionary rescue, and eco-evolutionary dynamics could all benefit from information about variation in genome structure and the genetic architecture of traits, whereas genomic studies could benefit from information about the ecological context of evolutionary dynamics. We propose new ways to help link research on functional genomic diversity with (reciprocal) interactions between phenotypic evolution and ecosystem change. Despite numerous challenges, we anticipate that the wealth of genomic data being collected on natural populations will improve our understanding of ecosystems.
Collapse
Affiliation(s)
- Blake Matthews
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Rebecca J Best
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,b School of Earth Sciences and Environmental Sustainability, Northern Arizona University, 525 S. Beaver Street, Flagstaff, AZ 86011, USA
| | - Philine G D Feulner
- c Eawag, Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,d University of Bern, Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, Bern, Switzerland
| | - Anita Narwani
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Romana Limberger
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,e Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
23
|
Dong Y, Qu Y, Li C, Han X, Ambuchi JJ, Liu J, Yu Y, Feng Y. Simultaneous algae-polluted water treatment and electricity generation using a biocathode-coupled electrocoagulation cell (bio-ECC). JOURNAL OF HAZARDOUS MATERIALS 2017; 340:104-112. [PMID: 28715734 DOI: 10.1016/j.jhazmat.2017.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
How to utilize electrocoagulation (EC) technology for algae-polluted water treatment in an energy-efficient manner remains a critical challenge for its widespread application. Herein, a novel biocathode-coupled electrocoagulation cell (bio-ECC) with sacrificial iron anode and nitrifying biocathode was developed. Under different solution conductivities (2.33±0.25mScm-1 and 4.94±0.55mScm-1), the bio-ECC achieved almost complete removal of algae cells. The maximum power densities of 8.41 and 11.33Wm-3 at corresponding current densities of 48.03Am-3 and 66.26Am-3 were obtained, with the positive energy balance of 4.52 and 7.44Wm-3. In addition, the bio-ECC exhibited excellent NH4+-N removal performance with the nitrogen removal rates of 7.28mgL-1h-1 and 6.77mgL-1h-1 in cathode chamber, indicating the superiority of bio-ECC in NH4+-N removal. Pyrosequencing revealed that nitrifiers including Nitrospira, Nitrobacter, Nitrosococcus, and Nitrosomonas were enriched in biocathode. The removal mechanisms of algae in anode chamber were also explored by AFM and SEM-EDX tests. These results provide a proof-of-concept study of transferring energy-intensive EC process into an energy-neutral process with high-efficiency algae removal and electricity recovery.
Collapse
Affiliation(s)
- Yue Dong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Youpeng Qu
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin 150080, China.
| | - Chao Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Xiaoyu Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - John J Ambuchi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Junfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yanling Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
24
|
Synergistic cooperation promotes multicellular performance and unicellular free-rider persistence. Nat Commun 2017; 8:15707. [PMID: 28580966 PMCID: PMC5465372 DOI: 10.1038/ncomms15707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
The evolution of multicellular life requires cooperation among cells, which can be undermined by intra-group selection for selfishness. Theory predicts that selection to avoid non-cooperators limits social interactions among non-relatives, yet previous evolution experiments suggest that intra-group conflict is an outcome, rather than a driver, of incipient multicellular life cycles. Here we report the evolution of multicellularity via two distinct mechanisms of group formation in the unicellular budding yeast Kluyveromyces lactis. Cells remain permanently attached following mitosis, giving rise to clonal clusters (staying together); clusters then reversibly assemble into social groups (coming together). Coming together amplifies the benefits of multicellularity and allows social clusters to collectively outperform solitary clusters. However, cooperation among non-relatives also permits fast-growing unicellular lineages to 'free-ride' during selection for increased size. Cooperation and competition for the benefits of multicellularity promote the stable coexistence of unicellular and multicellular genotypes, underscoring the importance of social and ecological context during the transition to multicellularity.
Collapse
|
25
|
Parameterising a public good: how experiments on predation can be used to predict cheat frequencies. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|